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We present a novel system for the automatic video monitoring of honey bee foraging

activity at the hive entrance. This monitoring system is built upon convolutional neural

networks that perform multiple animal pose estimation without the need for marking.

This precise detection of honey bee body parts is a key element of the system to

provide detection of entrance and exit events at the entrance of the hive including

accurate pollen detection. A detailed evaluation of the quality of the detection and a

study of the effect of the parameters are presented. The complete system also integrates

identification of barcode marked bees, which enables the monitoring at both aggregate

and individual levels. The results obtained on multiple days of video recordings show

the applicability of the approach for large-scale deployment. This is an important step

forward for the understanding of complex behaviors exhibited by honey bees and the

automatic assessment of colony health.

Keywords: honey bee monitoring, bee counting, pollen detection, pose estimation, convolutional neural networks

1. INTRODUCTION

There is a growing interest in the quantification of behavior in honey bees (Apis Melifera).
One of the major concerns is the dramatic yearly decrease in honey bee populations (Neumann
and Carreck, 2010; Anderson et al., 2011; Huang and Giray, 2012), which has impacted the
agriculture industry in the last few years. Although there are existing hypotheses regarding the
usage of pesticides and urban growth, there are still questions unanswered that require precise
observations to guide possible actions. Furthermore, honey bee colonies exhibit complex self-
regulatory behaviors that are not yet fully understood. This includes how colonies maintain
homeostasis or adapt to environmental changes, automatic adjustment of circadian patterns based
on thermal cycles (Giannoni-Guzmán et al., 2021), thermo-regulation (Kaspar et al., 2018), or the
individual variation in foraging activities in function of the season of the year (Meikle and Holst,
2016). Such studies may benefit greatly from automatic surveillance systems of the hives to detect
both individual and collective behavior continuously over days or even seasons to provide crucial
insights about biological mechanisms that express themselves over such time frames.

Foraging behavior has traditionally been studied through visual inspection of bees marked with
number tags (Wario et al., 2015), which is a very time-consuming and error-prone process, as
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foraging bees usually spend very little time in the ramp before
entering the hive with their payload. The overall count of
entrance and exits can currently be estimated using optical or
mechanical bee counting sensors that detect the passage and
direction of individual bees through gates at the entrance of the
hive (Meikle and Holst, 2016). In that setup, only aggregated
statistics can be obtained, which led to the development of sensor
technology to detect entrance and exits of individuals marked
with Radio-Frequency Identification tags (RFID) (de Souza et al.,
2018).

A complementary approach is to analyze the behavior through
video recordings. The advantage of the video collection at the
colony entrance is that in addition to entrance and exit events,
a much larger set of information is available: payload (pollen),
the identity of bees with markings, morphology and phenotype,
social interactions, gait, etc. This technique is minimally invasive
since it does not require manipulation of the individuals, except
to perform optional marking. One of the main challenges of this
approach is the need for algorithmic processing of the videos
which is not needed in simpler sensor setups. The application
of machine vision to such applications has become in the
last decade a very compelling option due to the improvement
in computational power and artificial intelligence methods
(Branson et al., 2009). The idea is to develop algorithms that
can identify and quantify the behaviors of interest with limited
human intervention. This enables the design of high throughput
systems that can analyze long periods of video recordings
automatically.

Ideally, the observation should happen in the most natural
setup to avoid interfering with the behavior; however, there is
a known trade-off between the complexity of the problem and
the conditions of observation (Robie et al., 2017). As the set-up
becomes as unobtrusive as possible, the complexity of the task
rises, which requires more powerful algorithmic approaches to
address it. This is the case at a normal entrance of a colony,
where there are natural changes of illumination, changing the
number of individuals, and fast moving individuals that make
the problem more challenging. In addition, the entrance ramp
can be very crowded at certain times of the day, which makes it
difficult for traditional background subtraction based algorithms
(Campbell et al., 2008) to detect precisely each individual.

In this study, we introduce a new computer vision system that
leverages recent advances in deep learning to monitor collective
and individual behavior of honey bees at the entrance of their hive
with minimal interference. The rest of this study is organized as
follows. In Section 2, an overview of related study is presented.
The proposed system is presented in Section 3 and evaluated in
Section 4. The main findings and future directions are discussed
in Section 5.

2. RELATED WORK

We first review related studies about the monitoring of honey
bees in the context of foraging analysis, then discuss more general
methodologies for detection, tracking, and characterization of
individual behavior from video.

2.1. Bee Counters and Forager Traffic
Analysis
Bee counting has previously been addressed with the help of
optical counters, RFID techology, and Machine Vision Counters.
Refer to Meikle and Holst (2016) for a detailed review of existing
approaches.

Optical counters consist of small tunnels that force the bees
to pass through them one by one where they cross an optical
beam that triggers a detection. The only crossing is detected,
which limits the information to aggregated counting. Multiple
commercial products exist for this task, such as Hive Mind
Strength monitor, Arnia Remote Hive Monitoring, or Lowland
Electronics’s BeeSCAN and ApiSCAN-Plus, as well as open-
source projects such as https://github.com/hydronics2/2019-
easy-bee-counter.

Radio Frequency Identification (RFID) counters (de Souza
et al., 2018) solve the identification problem by using individual
lightweight radio frequency tags that are placed on the torso
of the bees. Radio frequency detectors detect the entrance or
exit of each tag that is associated with a unique ID. Due to the
limited range of detection, bees are typically guided into tunnels.
Detection is limited to tagged bees and requires the gluing of the
tags on each individual to be monitored.

Machine vision based counters have been explored for about a
decade now. These counters have a simple setup in terms of data
capture (video camera at the entrance) and leave the complexity
of the problem to algorithm development. Among the first ones
to propose such a system, Campbell et al. (2008) detected bees
using background subtraction and modeled the possible motion
in subsequent frames to perform tracking. However, as they
noted, a more detailed model of the bee orientation is necessary
to avoid merging tracks when honey bees interact closely at the
entrance. Similar detection and tracking approach was applied to
flight trajectories in front of the hive by Magnier et al. (2018).
Using stereovision sensors, Chiron et al. (2013) obtained 3D
flight trajectories. Recent study explored approximate forager
traffic quantization from the detection of motion (Kulyukin and
Mukherjee, 2019).

More advanced detectors have incorporated the usage of tags
(Chen et al., 2012; Boenisch et al., 2018). These tags contain 2d
barcodes that can be detected by computer vision algorithms.
Such detection can be used for both the detection of individual
entrance/exit and identification. Compared to RFID, such tag
design is lower cost and more accessible.

In addition to traffic, payload information provides additional
ways to assess the health of the hive, for instance, by having a
precise account of the pollen intake (Frias et al., 2016). The study
of Babic et al. (2016) used low-resolution images and traditional
image processing techniques for detecting pollen. Several
convolutional neural network architectures were evaluated by
Rodriguez et al. (2018a) on a higher resolution dataset of images
of individual honey bees, showing the possibility of accurate
automatic pollen detection. This approach was adapted to
FPGA by Sledevič (2018) for low-cost real-time implementation.
More recently, Marstaller et al. (2019) proposed a CNN
architecture that can detect pollen balls on extracted images of
individual bees.
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2.2. Behavior Quantification From Video
More generally, behavior quantification is an extended field of
research that has led to relevant developments for the monitoring
of diverse animals from video.

Estimation and tracking of pose (position of the body parts)
is a typical first step to classify and characterize actions and
behavior. Even though most of the published study has focused
on human pose estimation (Cao et al., 2017; Güler et al.,
2018), several contributions have targeted animal behavior more
specifically (Mathis et al., 2018; Nath et al., 2019).

Reliable long-term tracking is fundamental for the study
of behavior. For tracking, Cascaded Pose Regression (Dollár
et al., 2010) was applied to track individuals such as Drosophila,
mice, and fish (Kabra et al., 2012). This method relied on an
initial estimate to be refined progressively using a sequence of
regressors. This type of approach is better suited for tracking in
setups where individuals are always visible and captured at a high
frame rate, as it requires an initialization when a new individual
appears in the field of view.

Pose estimation built on top of deep network architectures was
demonstrated to detect body part keypoints reliably in various
animals (Mathis et al., 2018; Nath et al., 2019; Pereira et al., 2019).
These methods however have so far focused on the tracking of
a single animal. A recent exception was the detection and pose
estimation of the honey bee body inside of the hive using a
modified U-net architecture (Bozek et al., 2018). This approach
estimated orientation and used a recursive formulation to guide
detection in subsequent frames. As most bees were visible for
extended periods of time, visual identity models were trained
to solve reidentification when tracks crossed each other or an
individual became occluded for a short amount of time.

Detailed pose estimation for multiple bees at the entrance
of the hive was first shown in Rodriguez et al. (2018b). This

last approach will be evaluated in detail and integrated into a
complete system in this study.

3. MATERIALS AND METHODS

In this study, a complete system for foraging characterization of
honey bee hives using recordings from the video is proposed.
The system consists of the following modules: (1) data collection:
recordings of video using camera capture at the colony entrance,
(2) detection and tracking of honey bee individuals, (3) activity
classification to decide if the bee is leaving, entering, or
walking, and recognize the presence of a pollen payload, (4)
identification of marked bees, (5) activity analysis through
actograms summarizing extended periods of time. The general
architecture is shown in Figure 1. The developed software is
open-source and made available to the community as detailed in
the Data Availability Statement section.

3.1. Data Collection
The video capture system is designed to observe the ramp
through which all foraging bees must pass to exit or enter
the colony. Figure 2 shows the system used in this study.
We used a 4 Mpixels GESS IP camera connected to a video
recorder configured to record continuous H264 video at 8Mbps.
A transparent acrylic plastic cover located on top of the ramp
forces the bees to remain in the focal plane of the camera. To
avoid interfering with the bee biological cycles, only natural light
is used. A white plastic diffuses the natural light received, and
a black mask is put around the camera to reduce the direct
reflections that could be visible on the plastic cover.

The majority of videos used in this study were acquired from
June 25 to June 30, 2017 at the UPR Agricultural Experimental

FIGURE 1 | Overview of the video analysis modules. In green, the base system can be applied uniformly to both unmarked and marked bees to detect all foraging

events and produce aggregated statistics including global information of pollen intake. In orange, the identification module extends the base system to associate

events to tagged bees to produce actograms for detailed analysis of behavior at the individual level.

Frontiers in Computer Science | www.frontiersin.org 3 February 2022 | Volume 3 | Article 769338

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Rodriguez et al. Video Monitoring of Honey Bees

Station of Gurabo, Puerto Rico, from 8 a.m.–6 p.m. to take into
account different lighting setups. Each video is 1 h long.

3.2. Pose Estimation
Body pose is defined as a skeleton model combining a set
of body parts with their connections. For honey bees, we
considered five parts including Abdomen, Thorax, Head, AntL
(left antenna), and AntR (right antenna), as shown in Figure 3.
In the evaluation section, we will show an ablation study using
simplified models with 3 parts (abdomen, thorax and head),

2 parts (abdomen and head), and 1 part (either thorax, or
head). In terms of connections, the 5 parts model considers 5
connections: Head-Abdomen, Thorax-Abdomen, Head-Thorax,
Head-AntL, Head-AntR. The simplified models consider the
subset of connections that connect the considered parts.

We use a tracking-by-detection approach, where the
individuals are first detected in each frame independently and
then tracked through time to produce a pose trajectory, which
provides for each individual bee the evolution over time of the
position of their body part.

FIGURE 2 | Video capture system used in the field: (left) overview of the system installed at the entrance of the colony and (right) detail on the entrance. (1) Bee-hive,

(2) camera, (3) entrance ramp, and (4) protection against direct sunlight.

FIGURE 3 | Pose detection model. (a) 5 parts skeleton (Head, Thorax, Abdomen, Left and Right Antenna) and connection used. (b) Confidence map of the abdomen

keypoints used to train the (S) branch. (c) The magnitude of the Part Affinity Field (PAF) of the thorax-abdomen connection used to train the (L) branch. (d)

Convolutional Neural Network architecture used to predict the body part confidence maps and PAFs organized as a feature extraction backbone followed by the two

branches (S) and (L) with iterative refinement stages.
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3.2.1. Architecture of the Pose Detector
The pose estimation module in each frame follows the Part
Affinity Fields (PAF) approach proposed by Cao et al. (2017),
with modifications to take into account the specificity of the
colony entrance videos. The convolutional neural network is
composed of a feature extraction backbone (F) and two pose
detection branches (S,L). Refer to Figure 3d for the architecture
of the network used in this study.

Let us denote F as the feature map produced by the feature
extraction backbone. Following Cao et al. (2017), we used the 10
first convolutional layers of VGG-19 (Simonyan and Zisserman,
2014), pre-trained on ImageNet. The next two layers (conv4_3
and conv4_4) were modified to reduce the dimension from 512
down to 128 while keeping the same 1/8 resolution.

The keypoints branch (S) estimates a set of 2D confidence
maps where each pixel belongs to a particular body part keypoint.
Each confidence map is used to detect keypoints related to a
single type of body part (e.g., head) for all individuals at once. The
PAF branch (L) produces Part-Affinity Field vector maps that are
used to connect body parts of different types. Each PAF is used
to connect a single type of connection (e.g., head-thorax). The
output of both branches is used as input of an inference algorithm
outside of the network that estimates both the keypoints and their
connections, to produce a set of individual body skeletons.

Let us now denote S = (S1, ..., Sj, ..., SJ) the set of J heatmaps,
one per body part, and L = (L1, ..., Lc, ..., LC) the C vector fields
or PAFs, one per connection, considered for the configuration of
the pose for each individual. The prediction of S and L is done
with multiple stages of refinements producing multiple estimates
St and Lt . After a first stage t = 1 that takes as input the features
F, subsequent stages t > 1 refine previous estimates St−1 and
Lt−1 iteratively.

3.2.2. Training
Based on the annotated keypoints, the reference confidence map
S∗j is generated as the combination of a set of gaussian kernels

centered on the x, y position of each annotated part of type
j. Each channel of the (S) branch will be used for a different

part. The reference PAF vector fields L∗j are generated by the

interpolation between two of the keypoints that belong to a
joint. Channels of the (L) branch are organized in pairs of
consecutive channels associated with a single connection. The
reference skeleton model, confidence maps, and PAF fields are
illustrated in Figures 3a–c.

The loss functions at stage t for confidence map j and PAF
c are defined as the weighted mean squared errors

∑

pW(p) ·

||Stj (p)− S∗j (p)||
2
2 and

∑

pW(p) · ||Ltc(p)− L∗c (p)||
2
2, where S

∗
j and

L∗c correspond to synthetic confidence maps and PAFs generated
from the reference keypoints.W(p) is a binary mask defined as 0
for all pixels that do not belong to the bounding box surrounding
the keypoints of any annotated bee. The overall loss function is
defined as the sum of the losses for all stages during training. Only
the output of the last stage is used for inference.

To improve the generalization of the network, we performed
data augmentation in the form of random geometrical
transformations combining rotation, translation, reflection,
and scaling applied to both the input image and associated
reference keypoints. In order to maximize the usage of the
training dataset, all generated images were centered on an
individual, although the size was designed to also include
significant contexts, such as other individuals and backgrounds.

3.2.3. Inference Stage
Once the set of confidence maps and PAFs are computed,
the greedy inference is performed to (i) detect the body-part
keypoints and (ii) group keypoints into skeletons illustrated in
Figure 4.

Keypoints are detected by extracting the local maxima
from the (S) confidence maps and applying non-maximum
suppression with a fixed radius to remove duplicates. The
detection threshold is fixed and only parts with a score higher
than 0.5 are accepted as a hypothesis.

Grouping uses the PAF from the (L) branch to select the most
likely connections by calculating the association score explained
later in Equation (6). All the association candidates (j1, j2) with
valid part types are sorted in descending score Ej1j2 to perform

FIGURE 4 | Examples of bee skeletons reconstructed in the inference stage. (a) Because of the bottom-up greedy association, a partial skeleton can be generated

even when some keypoints are not visible or detected. The use of our modified PAF score also enables the correct associations in crowded areas by constraining both

orientation and length of the connections. (b) Example of incorrect association (in red) between head and abdomen obtained if factor πj1 j2 is ignored when two bodies

are aligned.
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greedy bottom-up association. If a new association conflict with
existing connections with either j1 or j2, it is discarded, else it
is added to the connections. The final skeletons are obtained by
extracting the connected components of all selected connections.

Given that the honey bees at the entrancemay have completely
arbitrary orientations, it is common for two or more individuals
to be aligned. This is unusual in typical videos with humans,
where people do not commonly have connections of the
same type (e.g., abdomen-head) aligned with each other. The
original approach measured the association between two parts by
computing the line integral over the corresponding PAFs or, in
other words, by measuring the alignment of the detected body
parts. We used the distribution of the distance between points to
constrain the connections based on the scale of the honey bees’
bodies. The new PAF score associated with the body parts j1 and
j2 is expressed as:

Ej1 ,j2 =

∫ u=1

u=0
Lc(p(u)) ·

dj2 − dj1
∥

∥dj2 − dj1
∥

∥

πj1j2du (1)

where the point p(u) = (1 − u)dj1 + udj2 moves along the
linear segment between the two body parts for u ∈ [0, 1].
The probability πj1j2 is defined as the empirical probability that
j1 connects with j2 conditioned on their distance

∥

∥dj2 − dj1
∥

∥.
It follows a gaussian distribution specific to each type of
connection, fitted on the training dataset.

The π factor is important in scenarios where PAFs can be
aligned since all individuals share the same PAF channels in
the network. This particular assumption works well for honey
bees, as their body is usually quite rigid, so the variance of
the connection length is small. Figure 4b shows an example of
alignment that leads to the incorrect association if this factor is
omitted.

3.3. Tracking
Once the detections on each frame have been obtained, they
are matched temporally on a frame-by-frame basis using the
Hungarian algorithm (Kuhn, 1955). The cost used for the
Hungarian assignment algorithm is determined by the distance
between detected keypoints in a frame and the predicted
positions from the past. We take into account not only point
to point distance for the thorax but also antennae and head.
Formally, the distance between two bees in consecutive frames
is measured in the following way.

D(bk,i, bk+1,i′ ) =
1

J

J
∑

j=1

δ(dk,i,j, dk+1,i′,j) (2)

where bk,i refers to the set of keypoints for detected bee i in frame
k and dk,i,j indicates the keypoint of part j for that bee, and J is
the number of body parts considered. Finally, the cost δ(d, d′)
between two keypoints:

δ(d, d′) =

{

‖d− d′‖ if both d and d′ were detected

δ0 else
(3)

where δ0 is a fixed misdetection penalty (δ0 = 200 pixels in our
experiments) that is close to the typical distance between two bees
located along with each other.

Once the assignment is done by the Hungarian method, an
unassigned track will be considered a disappeared track and an
unassigned detection in frame i+ 1 will start a new track.

From that point on, detected bees can be associated with a
trajectory index trackId instead of independent indices in each
frame. We will denote by T(i) = (Tk,i,Tk+1,i, ..Tk′,i) the trajectory
with trackId i, starting at frame k, and ending at frame k′. Each
element Tk,i is associated with a detection dk,i, as well as optional
frame levels information such as the presence of pollen or tag.

3.4. Foraging Events Detection and
Labeling
3.4.1. Entrance/Exit Detection
We perform the detection of entrance and exit events using the
starting and ending points of the tracks using the classification
policy illustrated in Figure 5.

First, tracks shorter than 5 frames are discarded. The leaving
and entering behavior is defined by crossing the red line (as
shown in Figure 5). The direction of the track would determine
if it is leaving or entering. Tracks that both start and end in
the middle are considered walking bees. The other two classes
of tracks are those that start and end in the bottom (outside) or
top (inside). These tracks are among those bees that dwell in the
border and enter and exit the field of view of the camera without
actually crossing or entering the center of the ramp. Although
these tracks could be used in the future to assess the level of
crowding of the ramp, they are ignored in this study to focus on
the entrance and exits.

3.4.2. Pollen Classification at Frame and Track Levels
Once the pose estimation is performed, the location of the
keypoints of the head and the tip of the abdomen are used to
precisely crop the image of each individual bee with optional
orientation compensation, as shown in Figure 6. The image
obtained is then passed to a shallow network with two layers
that have previously shown high accuracy in pollen detection
classification (Rodriguez et al., 2018a) to predict the decisions for
each detection in each frame.

Track-level pollen classification is performed by aggregating
the framewise pollen classification using a majority vote.

3.5. Bee Identification Using Tags
Once all bees have been detected and tracked, the individual
identity information can be added to the tracks for those bees
that have been marked with a tag.

The tag detection is performed with the help of the open
source project April Tags (Wang and Olson, 2016). We have
generated the tag25h5 family, which consists of 5 x 5 binary codes
with a minimumHamming distance of 5 between codes, and that
code for 3009 unique tags. The tags are printed on waterproof
paper using a 1,200 dpi laser printer, cut automatically using a
laser cutter, and placed on the torso of the honey bees. The code
used to generate the tag sheets for printing and laser cutting
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FIGURE 5 | Event classification policy based on trajectory endpoints. The entrance to the hive is at the top and the outside world is at the bottom. Red arrows

represent exit events (leaving): these trajectories start inside the ramp and end below the threshold represented by the red line. Green lines represent entrances: these

trajectories start at the bottom and end inside the ramp. Black lines represent ignored trajectories that are the result of tracking interruptions or of bees that dwell in a

single area but never enter nor exit.

FIGURE 6 | Detail of individual bees. (A) Typical frame with a detected pose. (B) Cropped image with thorax centering. (C) Cropped image with thorax centering and

orientation compensation using the head and abdomen axis. (D) Example of bee tagged with a 5× 5 apriltag barcode of the tag25h5 family.

is provided in the generatetagsheet package shared in the Data
Availability section.

In contrast to existing systems for individual monitoring

(Crall et al., 2015) or (Boenisch et al., 2018) that are based

primarily on tag detection, we consider tags as an augmentation

of the trajectories obtained from whole body detection, thus

tracking marked and unmarked bees with the same process.
Given that tags are much smaller than the honey bee themselves,
they can be more easily occluded, and their high-resolution
barcode is more easily impacted by motion blur. For these
reasons, we chose to perform whole bee detection as the main
input for tracking, even for marked bees. Our system, therefore,
relies on the assumption that the framerate is fast enough to track
without ambiguity based on geometric proximity alone (we used

20 frames per second in our experiments). In each frame k, each
trajectory element T(k, i) is then potentially associated with a tag
ID by finding the detected tag whose center is the closest to the
thorax keypoint. In case the distance is larger than a threshold
d > 0, the track is not assigned any tag for this frame. After
association, the most frequent tag ID is selected for each track,
thus augmenting each trajectory with individual identity when
available.

4. RESULTS

The system has been evaluated with respect to two main aspects:
(i) pose detection in individual frames, and (ii) foraging event
detection and classification (entrance/exit, presence of pollen).
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4.1. Performance of Detection and Pose
Estimation
4.1.1. Dataset for Pose Estimation of Honey Bees
As part of the contributions of this study, a honey bee pose dataset
is released. This dataset consists of 270 frames, chosen from a
pool of 10 videos distributed across several days between June
22, 2016 and June 28, 2016, and different times of the day, using
the recording setup described in Section 3.1. Each frame was fully
labeled using 5 key-body points (Head, Thorax, Abdomen, AntL,
and AntR). The dataset contains a total of 1,452 fully labeled bees.
The annotations are stored in COCO format (Lin et al., 2014).

4.1.2. Evaluation Methodology
The evaluation of the algorithm was performed using mean
Average Precision (mAP) as provided by the pose evaluation
package https://github.com/leonid-pishchulin/poseval based on
Insafutdinov et al. (2017). The mAP metric relies on the greedy
assignment of the body pose predictions to the ground truth (GT)
based on the highest PCKh. PCKh-0.5 is the standard metric
used for human pose estimation where a keypoint is correctly
detected if its residual distance to the ground truth is less than
half of the head size (Andriluka et al., 2014). As an equivalent
for honey bee pose estimation, we considered that a key-point is
correctly detected if its residual is less than half of the distance
between thorax and head. We defined a fixed threshold for all
the individual detections of 0.5, thus making sure that only high
confidence keypoint hypotheses were passed to the inference
stage.

The dataset was split into training and validation datasets as
follows: 70% of the data was used for training and the remaining
30% for validation. The frames used for validation were extracted
from videos captured on a different day and at different times
of the day than the training to ensure as much independence
as possible between the datasets. The VGG19 feature extraction
backbone was frozen with weights pre-trained on ImageNet. The
training was performed on the S and L branches using the Adam
optimizer with a learning rate of 1e−4.

Figure 7 shows an overview of the performance for 1, 2, 3,
and 5 parts and 2, 3, 4, 5, and 6 stages models. We trained the
model for 20,000 epochs, and show the mAP averaged between
19,000 and 20,000 epochs. These results are analyzed in the next
subsections.

4.1.3. Effect of the Number of Parts
Figure 7 andTable 1 show that in terms of detectionmAP, higher
scores are obtained with the 5 parts model than the models with
fewer parts. We hypothesize that the higher number of parts
may help the network interpolate poorly detected parts by using
features learned for the detection of its connected parts. This is
supported by the fact that the head part benefits more from the
addition of the antennas, to which it is connected in the 5 parts
model, compared to the thorax, which is not connected to the
antennas in any model.

We also compared our approach with the popular YoloV3
object detector (Redmon and Farhadi, 2018), trained to detect a
bounding box around the thorax. Such a detector could be used
in a two-step approach where each individual is first detected

approximately, before applying a more precise body parts model
on each individual separately. This top-down 2-steps approach
is necessary to apply the body parts models designed for one
individual such as Mathis et al. (2018), Marstaller et al. (2019),
and Pereira et al. (2019). The bounding boxes used for training
were centered on the thorax ground-truth with a fixed size of
150 × 100 pixels. The detector was trained until early stopping
with standard parameters of 9 anchor boxes, 13 x 13 grid size,
and pre-trained weights from Darknet-53. The model used a
standard threshold of 0.5 to discard overlapping anchor boxes.
For testing, the center of the bounding box was used as the
estimate of the thorax location for comparison with keypoint
detection. For these comparisons, we used the implementation
by Zihao Zhang from https://github.com/zzh8829/yolov3-tf2. In
our experiments, Yolo only reaches 79.8 mAP, compared to 97.6
when we train our approach for the detection of only the thorax
part. Based on these results, we did not consider approaches
based on anchor boxes further for the proposed monitoring
system, relying instead on the more precise heatmap based
keypoint detection.

4.1.4. Effect of the Refinement Stages
The refinement stages proposed in Cao et al. (2017) are designed
to increase the accuracy of pose estimation. A rationale is that
due to the difficulty of the task, and the diversity of conditions,
scale, background, part detection, and affinity fields may not be
estimated properly and/or in a consistent way in the first stage.
Recursively refining the part detection and affinity fields was
shown to improve the performance in human pose estimation.
We now explore the effect of the refinement stages for honey bee
detection.

The results from Figure 7 show no clear trend of the
performance in terms of the number of stages. This is confirmed
in Table 2 where mAP performance for all keypoints is shown
in the case of the 5 parts model. In our case, the videos have
a single background and all the animals preserve their scale
with respect to the camera, which could help in obtaining good
performance without the need for extra refinement stages. The
two best performing number of stages are 2 and 6, with a small
decrease of performance for the intermediate number of stages.
Since each additional stage adds 9 extra layers, we, therefore,
decided to limit the model to 2 stages in further experiments,
which allowed us to allocate more models in parallel inside the
GPU and to increase the throughput of the pipeline.

4.2. Performance of Foraging Events
Detection
Foraging events correspond to entrances and exits of honey bees
in the ramp with the potential presence of pollen. We evaluated
the different aspects of their detection as follows: tracking in
Section 4.2.1, entrance/exit detection in Section 4.2.2, and pollen
recognition in Section 4.2.3.

4.2.1. Tracking
For the evaluation of tracking, a video segment of 1,200
frames (60 s) was fully annotated manually. During the manual
annotation, it was identified the intrinsic difficulty of creating
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FIGURE 7 | Mean Average Precision (mAP) for the detection of (top) head and (bottom) thorax. The box plot shows performance mean 19,000 epochs of training.

From left to right, results for Head show training using 1 part (Head), 2 parts (Head, Abdomen), 3 (Head, Abdomen, Thorax), and 5 parts (3 parts + 2 antennas) results

for Thorax show training using 1 part (Thorax), 3 parts (Head, Abdomen, Thorax), and 5 parts (3 parts + 2 antennas). Description of the mAP can be found in Section

4.2.

the groundtruth close to the borders of the field of view, where
individuals are only partially visible and it is not clear where
to stop tracking and how to identity fragmented tracks. For
example, a bee partially leaving the field of viewmay still be visible
enough for a human annotator to keep track with a consistent
identity but only by using uncertain visual cues. For this reason,
all annotations were filtered to keep only detections and track
fragments located in the interval y ∈ [200, 1,000] pixels, which
includes the inside and outside thresholds y = 600 and y =

300. A large portion of the excluded data corresponds to static

bees remaining close to the entrance, or bees walking near the
edge, which are not relevant for entrance/exit detection. The
corresponding dataset contains 6,687 detections assigned to 79
tracks.

The tracking algorithm was configured with a maximum
matching range of 200 pixels. The evaluation was performed
using the package from https://github.com/cheind/py-
motmetrics for multiple object tracker metrics. All ground-
truth tracks were mostly tracked (tracked for more than 80% of
the track length). At the detection level, it was identified 0 false
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TABLE 1 | Summary of the best mAP when training on skeletons composed of 1,

2, 3, and 5 parts and YOLO-v3 on Thorax.

Yolo(%) 1 part*(%) 2 parts(%) 3 parts(%) 5 parts(%)

Head – 96.3 98.7 96.4 99.1

Tip abdomen – – 94.0 96.2 95.0

Thorax 79.8 97.6 – 95.0 98.7

Right antenna – – – – 94.4

Left antenna – – – – 90.4

*Two different models were used for 1 part: one model with the head only, another for

thorax only.

TABLE 2 | Body part detection Performance (mAP) per number of stages.

1 stage

AP(%)

2 stages

AP(%)

3 stages

AP(%)

4 stages

AP(%)

5 stages

AP(%)

6 stages

AP(%)

Head 97.3 98.4 96.5 97.1 96.4 98.2

Tip abdomen 97.6 96.1 92.6 94.6 99.0 99.1

Thorax 96.2 97.0 95.6 97.6 99.2 99.7

Right antenna 90.3 90.7 87.6 84.4 86.1 94.4

Left antenna 86.5 87.7 88.6 85.8 88.1 90.4

positives and 20 misdetections out of 6,687, which generated 10
track fragmentations. A total of 12 identity switches were found,
mostly due to this fragmentation.

In the future, we plan to use visual identity models (Romero-
Ferrero et al., 2018) integrated into more complex predictive
tracking algorithms to reduce such fragmentation and help with
the re-identification of individuals that exit the field of view for a
short time.

4.2.2. Entrances and Exits
We used data captured on June 27, 2017 (10 h of video
from 8 a.m.–6 p.m.) to evaluate entrance and exit detection
performance. Manual annotation was performed on tagged bees
to label each tagged bee track as entering or leaving, ignoring
walking bees. This approach was used to facilitate human
annotation, as the tag could be used by the annotators to make
sure they inspected the behavior of each individual for the
complete interval in which they were in the field of view without
relying on the tracking algorithm itself.

The automatically detected body pose tracks (which does
not rely on the presence of a tag) were augmented with
the information from the manual annotations. The automatic
entrance/exit event classification of these tracks was compared
to the corresponding manual annotation. Automatic detection
could also produce Noise, which would be a track that does not
cross the entrance virtual line.

The confusion matrix in Table 3 shows that overall entrances
perform better than exits. There is a low number of Noise for
entrances too, which seems to be related to the fact that bees
returning to the colony do not typically stay on the ramp, and
enter the colony immediately. For exits, there is a much higher
number of Noise trajectories. Unlike bees that are entering,

TABLE 3 | Confusion matrix of entrance and exit detection. Rows represent the

manual annotation of each corresponding track (groundtruth).

GT\DT Entrance Exit Noise Total

Entrance 99 3 4 106

Exits 3 83 14 102

Each column represents the automatic classification (detection).

exiting bees can spend more time on the ramp, which makes
them vulnerable to track interruption due to misdetection on
any of these frames. These interruptions would warrant an
improvement of the tracking algorithm to reduce interruptions
and with additional re-identification of lost tracks in the future.

4.2.3. Pollen Recognition
We carried out the evaluation of pollen detection at two levels:
first, at the image level using a manually annotated image dataset,
and second, at the event level using manually labeled entrance
events. The image level classifier in both cases follows previous
study (Rodriguez et al., 2018a) discussed in theMethod section.

4.2.3.1. Evaluation of Pollen Recognition at the Image Level
The image dataset consists of 1,550 annotations of pollen (775)
and non-pollen (775) bees from 3 videos, collected at 12 p.m.,
1 p.m. and 2 p.m. on the 22, 23, and 24 of June 2017, respectively.
Each pollen bearing bee entering was annotated only once, as
well as another non-pollen bearing bee in the same frame that
served to balance the dataset with a negative sample taken in
similar conditions. For training and validation, an 80–20 random
split was used. This dataset provides about double the amount of
annotation than a previously released dataset (Rodriguez et al.,
2018a) and will be shared as well.

We used three different methodologies for extraction of the
cropped images of each individual which was fed as input of
the pollen classification network. The first approach, Manual
centering, consists of the extraction of the images based on the
thorax position and creating a box of 450 x 375 pixels around
it. The second one, Manual centering and orientation, uses the
manually annotated position of the head and abdomen to rotate
and center the image so that all extracted 300 x 200 pixels images
are aligned vertically and centered on the midpoint between
head and abdomen. The last approach, Automatic centering
and orientation, was the same as the previous one but used
the detected head and abdomen parts instead of the manually
annotated ones. The groundtruth of pollen labeling was in this
case obtained by matching the manual thorax annotation to the
closest automatic thorax detection.

In the results shown in Table 4, we observe a 3% increased
performance when using orientation compensated images.
Coupled with previous results, which showed that the 5-parts
model performed better than simpler models of detection, this
supports the use of the proposed detection based on a pose
model. which both leverages the annotations of different body
parts to improve detection and provides direct information
to compensate orientation and facilitate the down-stream
analysis such as pollen detection. Pose compensation using
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automatic pose detection obtained slightly better performance
than compensation using manually annotated data. Visual
inspection revealed that human annotation was more imprecise
when annotating such a large amount of frames, while automatic
centering produced slightly more consistent alignment.

4.2.3.2. Evaluation of Pollen Recognition at the Event Level
We used the same three models for image level classification as
in the previous subsection (Manual centering, Manual centering

TABLE 4 | Performance of pollen detection at the image level.

Cropping method Precision(%) Recall(%) F1

Manual centering only 94.58 94.56 0.946

Manual centering + orientation 96.30 96.25 0.963

Automatic centering + orientation 97.26 97.28 0.973

TABLE 5 | Performance of the detection of the event “entrance with pollen.”

Precision(%) Recall(%) F1

Manual centering 59.7 52.0 0.555

Manual centering + orientation 80.1 75.0 0.776

Automatic centering + orientation 81.2 78.1 0.798

and orientation, and Automatic centering and orientation).
Track level classification was performed as explained in the
Methods section.

The results are summarized in Table 5. The best performance
is obtained by using the model with automatic centering and
orientation compensation, followed by manual compensation
with a 2% difference. The automatic compensation makes sure all
the bodies are aligned, thus, facilitating the pollen classification
task. Centering only experienced a higher drop in performance,
since the classifier has the harder task to learn invariance to
orientation during training, which is not needed if orientation
is compensated explicitly. This supports the proposed bottom-up
approach where orientation is estimated as part of the detection
step.

The 81.2% precision corresponds to a mere 21 false positives,
which impact severely the metrics due to the high imbalance
in the dataset (100 positives vs. 1,150 negatives). In terms of
recall, a visual inspection of the errors showed that imperfect
tracking accounts for most of the 22 false negatives presented.
Improving tracking robustness is, therefore, an important aspect
for future study to be able to improve the accuracy of
the estimates.

4.3. Application to Long-Term Monitoring
As a proof-of-concept of the scalability of the approach, the
proposed system was adapted for high-performance computing
platforms and applied on multiple days of videos.

FIGURE 8 | Timeline of foraging events for several tagged bees over the span of 8 days (Middle), with the example of trajectories for bee #1607 (Top) and bee #638

(Bottom). Video analysis was performed from 8:00 to 17:59 each day from June 21 to June 28, 2017. The timeline shows the individual patterns of behavior of each

bee over multiple days. The images show a sampling of event types (entrance, entrance with pollen, exit), luminosity conditions (after sunrise, daylight, before sunset),

and ramp crowding (8–30 bees). The trajectories shown in these plots are based on the center of the body which may be slightly shifted from the tag position.
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4.3.1. Computational Complexity Evaluation
Profiling of the code was done on a node at UPR HPCf with the
following specifications: Intel Xeon E5-2630 v4 CPU at 2.20GHz
and 128MBRAM equipped with 1 NVIDIA Tesla P100 GPU card
with 12MB memory. The analysis was performed on a typical
video of the dataset with 72,000 frames (resolution 2,560 x 1,440,
20 fps) resized to 1/4 its original size (640 x 360). The offline
processing could be performed at a speed equivalent to 1̃3.8 fps,
with 88% of the time spent in the detection and 10% in pollen
classification, tracking, and other processing adding negligible
time.

Based on these results, we expect further optimization of
the network architecture (such as replacing the VGG backbone
with a more recent lightweight backbone) and its numerical
implementation should enable real-time processing on GPU
accelerated edge devices to enable deployment directly in the
field.

4.3.2. Multi-Day Dataset
The dataset is composed of 8 days of daylight videos acquired
from 8 a.m.–5 p.m., representing more than 72 h of video. Three
types of events were detected: exit, entrance without pollen, and
entrance with pollen. Figure 8 shows several examples of such
events for a few tagged bees, in relation to the total timeline that
shows the individual behavior.

In this dataset, we used April Tags (Wang and Olson, 2016)
that include error correcting codes. The tags printed from the
tag25h5 family (refer to Figure 6D) appeared with a size of
around 25 × 25 pixels in the video frames. In these conditions,
the identification was relatively unambiguous, as 86% of the
tracks had all their associated tags with the same ID, and only
5% of the remaining tracks (0.7% of all tracks) had the majority
ID account for less than 90% of the associated tags. In more
challenging conditions, the presence of conflicting IDs may be
used to monitor identification errors.

FIGURE 9 | (A) Hourly counts of entrance and exits for 8 consecutive days. Entrances with pollen, overlayed as a separate statistic, appear to not be directly

proportional to the total entrances. The peak at 9 a.m. on 2017/06/25 is due to a temporary misalignment of the camera that occurred during maintenance of the

colony. (B) Hourly counts before (2017/08/17) and after (2017/11/27, 2018/01/07) hurricane Maria show very diverse foraging patterns (refer to text).
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Because the system tracked all bees, with or without a tag,
the global foraging activity of the colony was also measured.
The 3 types of events were counted and aggregated in 1-h
intervals to produce the actograms shown in Figure 9. The
top panel shows results on the same 8 days as in Figure 8.
The bottom panel shows results on three additional days, at
different times of the year including pre- and post-hurricane
Maria (August 2018 and November 2018, respectively). The
automatic detection of foraging patterns aligned with the lower
activity at the end of the summer and the scarce sources
of food that happened after the flora in the island was
impacted by the hurricane. The much higher activity in pollen
foraging observed a few weeks later in January 2018 can be
explained by the rising food sources availability and the ability
of the colony to reproduce, which requires proteins provided
by pollen.

5. DISCUSSION

In this study, we presented a new system for the automatic
surveillance of honey bees at the hive entrance using
machine learning and computer vision and applied them
to implement an end-to-end pipeline that quantifies their
foraging behavior.

First, we presented an adaptation of the Part Affinity Fields
approach for the detection and tracking of honey bees. Results
showed that this tracking-by-detection approach produces high-
quality results in presence of multiple individuals and is a
promising approach to obtain precise estimates of pose for
behavioral studies. We presented an ablation study of this
architecture, showing the effect of the number of stages and the
number of parts in the quality of the detection.

The precise detection of body parts allowed us to create tracks
for all bees, both marked and unmarked while providing the
identity of the marked bees when they appeared. This constitutes
a multi-resolution view of the activity of the colony as specific
behaviors patterns could be assigned to individual marked bees
over long periods of time while capturing the global statistics of
the behavior of unmarked bees.

We also compared several methods for pollen bearing
recognition in honey bees. We concluded that using automatic
alignment from the pose estimation and a convolutional
neural network for image classification improved the accuracy,
supporting the use of a detailed pose model.

These methods were combined to detect and characterize
foraging behavior in honey bees. Application to videos capturing
multiple days, and covering different times of the day and
different parts of the year showed the applicability of the
approach for large-scale offline analysis.

This system constitutes the first complete system that accounts
for the foraging behavior that includes pollen foraging at global
and individual levels. It provides a platform that can be built
upon in the future to account for other behaviors such as fanning,

paralysis (Bailey, 1965), or the presence of parasites such as
varroa-mite (Bjerge et al., 2019). Based on this prototype, we
are currently working on the computational and architectural
optimization necessary to obtain real-time operation in the field.
To scale the approach further, we are also considering extending
re-identification beyond tag recognition. This would benefit from
the availability of detailed pose information extracted by the
system and simplify the logistics of marking a large number of
bees to access individual behaviors.
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