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Posterior Cortical Atrophy is a rare but significant form of dementia which affects people’s

visual ability before their memory. This is often misdiagnosed as an eyesight rather

than brain sight problem. This paper aims to address the frequent, initial misdiagnosis

of this disease as a vision problem through the use of an intelligent, cost-effective,

wearable system, alongside diagnosis of the more typical Alzheimer’s Disease. We

propose low-level features constructed from the IMU data gathered from 35 participants,

while they performed a stair climbing and descending task in a real-world simulated

environment. We demonstrate that with these features the machine learning models

predict dementia with 87.02% accuracy. Furthermore, we investigate how system

parameters, such as number of sensors, affect the prediction accuracy. This lays the

groundwork for a simple clinical test to enable detection of dementia which can be carried

out in the wild.

Keywords: health—clinical, wearable computers, empirical study that tells us about people, lab study, dementia

INTRODUCTION

The rate of people living with dementia is increasing. Alzheimer’s Disease (AD) is themost common
cause of dementia and is often seen as simply part of the aging process and something which will
affect most people (International Alzheimer’s Disease, 2019) as the average living age increases.
AD is a progressive disease which affects a person’s memory and therefore their ability to conduct
activities of daily living independently which decreases their quality of life (Gale et al., 2018).
However, AD is not a single disease type, instead there is the typical presentation and a number
of atypical presentations (Graff-Radford et al., 2021). Posterior Cortical Atrophy (PCA) is one such
atypical presentation which typically results in “a progressive, often striking, and fairly selective
decline in visual-processing skills and other functions that depend on the parietal, occipital, and
occipitotemporal regions of the brain” (Crutch et al., 2012). Different types of AD may often be
misdiagnosed until quite advanced. This is indeed the case for PCA where the atypical vision-based
symptoms present themselves at an early age (typically emerging during 50–65 years old) leading
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to a simple vision-problem diagnosis (Crutch et al., 2012).
Therefore, it is important to develop methods that can identify
AD regardless of its type so that people with rare forms can
efficiently get the treatment they need. We do this by building
on previous studies into everyday walking tasks detection.

People with typical Alzheimer’s Disease (tAD) have
characteristic issues when navigating their everyday
environments (McCarthy et al., 2019) with a noticeable
general decline in gait patterns (Valkanova and Ebmeier, 2017).
Previous lab-based research has demonstrated differences in
gait parameters such as step-time and walking speed between
people with dementia and age-matched controls (Marquis et al.,
2002; Waite et al., 2005; Wang et al., 2006; Verghese et al., 2007;
Cedervall et al., 2014; Rosso et al., 2017). These studies indicate
that the decline is linked to both phenotype and stage of the
disease (Allali et al., 2016; Castrillo et al., 2016; Del Campo et al.,
2016; McCarthy et al., 2019; Yong et al., 2020). Furthermore, a
noticeable decline in gait is thought to predate other cognitive
decline (Hall et al., 2000). Therefore, a decline in gait appears
to be an appropriate biomarker for the detection of dementia
(Montero-Odasso, 2016). However, it is important to move out
of the laboratory setting to in-the-wild settings for clinical tools
to better aid persons with disability (Holloway and Dawes, 2016).
In the recent disability interactions manifesto (Holloway, 2019)
the need for in-the-wild data collection was clearly stated. Such
data sets were deemed essential to ensure future technologies
to aid persons with disabilities such as dementia in living
more independently.

This work is part of a wider investigation of gait and spatial
navigation in people with dementia in a living lab environment,
which specifically focuses on both people with tAD and PCA.
Within the field of dementia there is a need for research in living
labs, which move beyond highly controlled lab-based settings
(Duff, 2020; Schneider and Goldberg, 2020). The living labs serve
as a stepping-stone to full in-the-wild testing (Alavi et al., 2020).
Full in-the-wild testing for dementia could reduce the stress of
clinical tests for patients and allow for continuous monitoring
of decline. Therefore, in this research we aim to pave the way
to in-the-wild detection of dementia by discriminating people
with dementia from controls in a living lab. Furthermore, we
include a rare form of dementia—PCA—that is often missed
by clinicians, demonstrating the benefits of this approach
to dementia detection. The evidence-based discrimination
of dementia, particularly its atypical presentations, not only
has clinical applications, but also addresses a key desire of
health and social-care professionals for better understanding
of rarer presentations of dementia, for appropriate evidence-
based assessment (McIntyre et al., 2019). Our apparatus uses
low-cost, unobtrusive devices to discriminate dementia, which
not only increases the applicability of our research, but also
has not been achieved before. Furthermore, we analyze system
parameters that led to accurate discrimination, which could aid
future research seeking to extend this research or deploy it in
the wild.

Therefore, in this paper we focus specifically on the question—
can wearable, low-cost, unobtrusive devices be used to detect
AD regardless of its presentation? In answering this question, we
contribute the following:

• Demonstrate the feasibility of discriminating controls from
people with two types of dementia [the more typical
Alzheimer’s disease (tAD) and a rare form of dementia—
Posterior Cortical Atrophy (PCA)] in a simulated real-world
environment—a staircase. To do this we analyzed data from
a low-cost, IMU system using machine learning classifiers.
The developed analysis software tools are available at https://
github.com/williambhot/detecting_dementia_stairs.

• Examine different system parameters and the direction of
traversal that promote accurate discrimination of dementia.

• Release a data set of IMU data from people with tAD,
older adults and people with PCA to foster this work in the
research community.

• Discuss use cases for the proposed system.

While the primary aim of this study is to discriminate both the
rare PCA and more typical Alzheimer’s Disease from healthy
controls, we also analyze differences in the detection of these two
types of the disease by analyzing the performance of a ternary
model that seeks to discriminate the two types of dementia from
each other as well as from controls.

We believe that this research, could provide a key stepping-
stone in enabling potential applications in detecting dementia
such as a screening tool for healthcare workers and practitioners,
general self-screening and support tool. Nevertheless, further
research would be required before this is possible to address
some of the limitations of this study (such as generalization
issues) and full in-the-wild testing. We discuss this further in
section Discussion.

RELATED WORK

Posterior Cortical Atrophy
PCA is a rare early-onset syndrome which presents with visual
complaints and is most commonly caused by Alzheimer’s disease
(AD) pathology. PCA has been identified as a distinct clinical
syndrome as opposed to just AD with specific, noticeable visual
deficits (Mendez et al., 2002). It also affects literacy, numeracy
and gesture (Crutch et al., 2016). People with PCA, as opposed
to typical AD (tAD) have better language and memory abilities
(Crutch et al., 2016; Firth et al., 2019), but these come at the
cost of a greater understanding of the disease and higher levels
of depression (Mendez et al., 2002). Specific interventions need
to be developed for people with PCA which help overcome
the difficulties they face in visual tasks and help aid better
mental health (Mendez et al., 2002). However, such interventions
can only be developed once the disease has been detected
and detection is often delayed due to the atypical symptoms
compared to tAD and the early onset of the disease (Crutch et al.,
2012; Graff-Radford et al., 2021).

Detecting rare forms of dementia like PCA with confidence
is not an easy task. People often notice something going wrong
with their eyes, e.g., being unable to see a shuttlecock once it
has landed on the ground but being able to see it when in flight.
The first stop for people following these visual oddities is to visit
the optician or GP. It is rare that the symptoms as presented are
immediately associated with a form of AD. More generally health
and social care practitioners are often unaware of, and find it
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difficult to appreciate that forms of dementia can affect people’s
visual abilities (McIntyre et al., 2019).

Dementia Detection
Previous work in the detection of dementia has ranged
from mobile-based automatic speech recognition tools (e.g.,
Shibata et al., 2018; Tröger et al., 2018) to oculomotor
performance during web browsing and multimodal interactions
with computer avatars (Cano et al., 2017). However, to date
these screening tools remain proofs of concept rather than
clinical tools.

Previous research has identified that changes in gait are
sensitive to dementia, even at early disease stages (Hall et al.,
2000), and during the transitional stage between normal
cognitive decline and dementia also known as Mild Cognitive
Impairment (Gwak et al., 2018; Halloway et al., 2019; Schaat et al.,
2020). It was found that a decline in gait predates observable
cognitive changes associated with dementia, and gait continues
to decline with the progression of dementia (Marquis et al.,
2002; Waite et al., 2005; Wang et al., 2006; Verghese et al.,
2007; Cedervall et al., 2014). By comparing the gait of healthy
age-matched controls to that of people with dementia, clinical
research has identified that changes in the pace, rhythm and
variability of gait are associated with the decline into dementia
(Verghese et al., 2007). Researchers have found people with
dementia to have a lower natural walking speed (Marquis et al.,
2002; Waite et al., 2005; Wang et al., 2006; Verghese et al.,
2007), lower cadence, shorter stride length, shorter swing times
and longer stance times as well as longer double support times
(Verghese et al., 2007). Furthermore, studies have also shown that
variability in gait is higher amongst people with dementia, who
lack rhythmic and consistent gait (Verghese et al., 2007).

While previous clinical research has helped to identify the
changes in gait that occur during the decline into dementia, this
research has ignored two important factors that would allow
such knowledge to be used for detection of the disease in the
wild. Firstly, previous research relies heavily on experiments
conducted in laboratory settings that do not mirror the
complexities of the real-world environments through which
people with dementia must navigate (McCarthy et al., 2019).
These laboratory experiments usually involve monitoring the
gait of participants while they walk along a straight, uninclined
path for a short distance and use full biomechanics models to
determine changes in gait (Marquis et al., 2002;Waite et al., 2005;
Wang et al., 2006; Verghese et al., 2007). For example, many
use electronic walkways with inbuilt pressure sensors (Verghese
et al., 2007; Wittwer et al., 2013; Callisaya et al., 2017) or
motion capture systems (Cedervall et al., 2014). The form factor,
complicated setup procedures and price of these measurement
systems limit their use in real world environments. Secondly,
while some previous studies have analyzed different types of
dementia (Mc Ardle et al., 2020), previous studies ignore the
differences between types of dementia and either focus on one
type of dementia (Wittwer et al., 2013; Cedervall et al., 2014;
Callisaya et al., 2017) or consider dementia without looking at
its type (Marquis et al., 2002; Wang et al., 2006). Furthermore, to
our knowledge, gait of people with PCA has only been analyzed
by previous research in this line of investigation (Carton et al.,

2016; Ocal et al., 2017; Yong et al., 2018, 2020; McCarthy et al.,
2019; McCarthy et al., Unpublished1). This research has found
that some patients with dementia show a consistent pattern
of hesitation (which can be identified from step times) when
navigating complex routes (McCarthy et al., 2019; Yong et al.,
2020). However, it was not possible within that task to identify
patterns which could be used for predictive purposes. We believe
that the regular pattern offered by stairs will help to regularize
these irregularities within the gait pattern whichwould then allow
for successful detection of tAD and PCA. Once the feasibility of
this approach is established, it will enable a low-cost detection
device to be added to footwear. This could enable the detection
of dementia in the wild, minimizing stressful laboratory tests,
and promoting data-driven methods for appropriate detection of
dementia for both typical AD and the rarer PCA. Furthermore,
the ability of the device to detect the typical Alzheimer’s disease
(tAD) provides the final product with a much wider number
of use cases. The unobtrusive, low-cost nature of such a device
enables its deployment in high-risk populations to continuously
monitor changes in risk of developing dementia.

MATERIALS AND METHODS

In this section, we present the proposed STEP-UP framework and
technical details.

Data Collection Protocol
Participants’ gait was monitored using Inertial Measurement
Units (IMUs) while they climbed a staircase in the living
lab environment. This living lab was co-designed by clinical,
engineering and computer science researchers, with inputs from
patients. The IMUs used were MTw (Xsens Technologies B.V.,
The Netherlands). They are comprised of an accelerometer, a
gyroscope, and amagnetometer (however, themagnetometer was
not used for this study). Each participant had a sensor attached
to the outside of each heel with the long axis being horizontal, as
well as a sensor on the back of the pelvis attached orthogonally
to the sensors on the heels (Figure 1). Participants were asked
to walk up or down a short flight of stairs consisting of four
steps (the dimensions of each step were 23 × 112 × 25 cm, H
× W × D) (Figure 1) in a variety of environmental conditions.
These environmental conditions included different lighting levels
(low: 20 lux; high: 190 lux) and either the presence or absence
of visual cues (i.e., hazard tape over the edge of steps). Each
participant was asked to attempt 16 versions of the trial (twice for
each combination of conditions—dim light/bright light, visual
cues/no visual cues—in the upwards and downwards direction).
No constraints were imposed on the way of descending or
ascending the stairs. The ordering of trials was randomized for
each participant (see Figure 2A).

Participants
Participants were from one of three groups—the group with PCA
[containing 11 participants—6 female and 5 male—of age 64.6

1McCarthy, I. D., Suzuki, T., Holloway, C., Poole, T., Frost, C., Carton, A., et al.
(Unpublished). Gait Assessment of People with Alzheimer’s Disease Traversing

Routes of Varying Complexity.
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FIGURE 1 | Project STEP-UP: to enable low-cost and wearable IMU sensors to infer dementia types in the wild whilst climbing stairs.

FIGURE 2 | Technical details of Step-up framework: (A) Gait Recording procedure using wearable IMUs, (B) Procedure for the exclusion of corrupted files, (C)

Feature extraction procedure using windowed averaging, (D) Model training and tuning procedure, (E) Validation procedure using Leave One Out Validation. The

procedure for splitting the dataset into training and testing sets is shown under (D,E).

± 5.9 years, height 168.92 ± 6.49 cm, weight 68.22 ± 13.31 kg,
with Mini Mental State Examination (MMSE) score 18.6 ± 6.1],
the group with tAD (containing 10 participants—6 female and 4
male—of age 66.2 ± 5.0 years, height 167.91 ± 11.82 cm, weight
66.21 ± 5.03 kg, with MMSE score 18.6 ± 5.0) and the control
group consisting of age matched participants with no diagnosed
form of dementia (containing 14 participants—6 female and
8 male—of age 64.2 ± 4.1 years, height 172.36 ± 13.21 cm,
weight 73.23 ± 15.23 kg). The experimental design of having a
control group of healthy age-matched participants is the standard
experimental protocol used in this field (Callisaya et al., 2017;
McCarthy et al., 2019). MMSE tests were only conducted on
people with dementia, and not on control participants. One-way
ANOVAs demonstrated that there were no statistically significant

differences between the groups in age [F(2,32) = 0.506; p = 0.61],
weight [F(2,30) = 0.404; p = 0.67] or height [F(2,31) = 0.580; p =

0.57]. Furthermore, a student’s t-test showed that there was no
difference between MMSE scores for participants in the PCA
and tAD conditions [t(18) = 0; p = 1]. Ethical approval for
the study was provided by the National Research Ethics Service
Committee LondonQueen Square, and written informed consent
was obtained from all 35 participants.

Pre-processing and Classification Strategy
The data was processed in Python 3.7 (Python
Programming Language, RRID:SCR_008394) using standard
data processing libraries including NumPy (NumPy,
RRID:SCR_008633), SciPy (SciPy, RRID:SCR_008058),
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TABLE 1 | The dataset before removing the corrupted files compared to the

dataset after this removal.

Group Number of trials Number of trials

(before removal) (after removal)

Control 208 207

PCA 159 150

tAD 160 159

Total 527 516

Pandas (Pandas, RRID:SCR_018214), Matplotlib (MatPlotLib,
RRID:SCR_008624) and Scikit Learn (scikit-learn,
RRID:SCR_002577). The data pre-processing and classification
strategy is shown in Figure 2. This process included
hyperparameter optimization on the models to select the
best parameters and analysis of how direction of traversal and
different system setups affected the performance of this model.
This section summarizes the methods we used to achieve this.
The software tools we developed are released to foster this work
in the research community (https://github.com/williambhot/
detecting_dementia_stairs).

Exclusion of Participants
On visualizing the IMU data—acceleration and gyroscope data—
data for some trials was found to be corrupted. Visualizing the
raw data from these trials showed only noise and no evidence of
cyclic, step-like motion (Figure 2B). Therefore, these trials were
removed from further analysis.

This resulted in the removal of 11 trials from a total of 527
trials (Table 1). After removing excluded trials, 40.12% of trials
were controls, 29.07% were in the PCA condition and 30.81%
were in the tAD condition. Up-sampling was conducted on the
trials from the different conditions before training any models,
so that the models did not overfit to these differences in the
frequencies in the groups.

Dead Reckoning and Gait Parameters
Initially we tried to calculate velocity and displacement from the
IMU data using a dead-reckoning technique with a zero-offset to
account for sensor drift (Ojeda and Borenstein, 2007; Park and
Suh, 2010). Using this we calculated gait parameters that have
been previously associated with dementia such as lower walking
speed (Marquis et al., 2002; Waite et al., 2005; Wang et al.,
2006; Verghese et al., 2007) and shorter stride length (Verghese
et al., 2007). However, we found that in our current set up it
was not possible to conduct dead reckoning with a high enough
degree of accuracy for calculating the gait parameters required.
We attribute this to the experimental setup as well as issues
with controlling the task across participants, especially those with
more advanced dementia. See the discussion for more details
on this.

Lower-Level Features
Considering the difficulty of conducting dead-reckoning and
calculating gait parameters in a system designed to be useable

in the real world, we propose more low-level features that, from
a low-cost IMU system, can be more easily designed for real-
world use. This involved calculating the vector length of the 3d
linear and angular acceleration to obtain the resultant linear and
angular acceleration (see Figure 2C):

R =

√

x2 + y2 + z2

These two signals—resultant linear acceleration and resultant
angular acceleration—were then split into a constant number of
windows (k) and the averages of each window (µi where i is the
number of the window) were used as the features. The windows
were calculated in the following way—across the entire dataset,
the same number of windows (k) were used and in a single
trial these windows were of the same length (l), however, across
multiple trials window length was different (see Figure 2C):

µi =

∑(i+1)×l
t=i×l Rt

l

Where i ∈ [0, k) is the number of the current window varying
between 0 and k−1, k is the total number of windows and t is the
current sample for the linear or angular acceleration.

These windowed averages were used as the feature values,
allowing a constant number of features for each trial, while
providing the model with information from different sections of
the trial. The primary reason for using this approach was to have
a constant number of features for all trials, which is required
by many Machine Learning models. The number of windows
was set using hyperparameter optimization. Specifically, different
numbers of windows were experimented with, but it was found
that models using a multiple of four windows achieved a
higher performance than others and specifically eight windows
yielded the best performance (Figure 3). One reason for this
could be that there were four steps in the staircase and,
therefore, setting the number of windows to a multiple of
four provides an approximate way to separate the data based
on steps, assuming each step is traversed in approximately
the same amount of time in a single trial. However, every
participant did not take the same amount of time on each
step, and several participants waited for a while on some
steps. Therefore, for these participants segmenting the data in
this way would not segment the trial by steps. Nevertheless,
this was not our motivation for doing this, but rather it was
to segment the trial into an equal number of windows so
that models that required a fixed number of features could
be employed.

Machine Learning Models
We assessed the ability of different machine learning models to
classify the data, including decision trees (Random Forest and
Gradient Boosting Models) and Multi-Layer Perceptron (MLP)
models. To this end, we fit the models to the data and evaluated
the models’ ability to generalize by testing it on unseen data (see
the following section). Furthermore, we chose the parameters of
this model through hyper-parameter optimization discussed later
(see Figure 2D).
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FIGURE 3 | A plot of the prediction accuracies of the Random Forest Classifier when using different numbers of windows (1–15) for constructing the features.

Two variants of all the models were fit to the data—a binary
model to discriminate dementia from control participants and
a ternary model to discriminate between controls, tAD and
PCA participants. While we were able to discriminate people
with dementia from control participants, we were unable to
discriminate PCA from tAD with high accuracy (see section
Results for more details). We suggest that this is because the
gait of the two types of dementia was similar to each other
and therefore could not be discriminated using these low-level
features (see discussion for more details).

Nevertheless, given features (µi;where i ∈
[

0, k
)

) the models
learnt a mapping (Ŵ) from features to the probability (p)
of this data belonging to the different classes (c;where c =
{

control, dementia
}

or c = {control, PCA, tAD}). This is
as follows:

p (c|µ0, . . . ,µk) = Ŵ(µ0, . . . ,µk)

Based on the value of this probability for each class, the most
likely class for that data can then be ascertained as the class with
the maximum probability.

Evaluation of Models
A Leave-One-Person-Out (also called leave-one-subject-out,
LOSO) cross validation was used to evaluate the generalization
capabilities of our predictions (see Figure 2E). In this method,
the model is trained on the data from all but one participant
(Cho et al., 2019). Predictions are thenmade on the data from the
remaining participant to gauge how well the model performs on
unseen data from a participant on which it has not been trained.

As data from each model are not independent from one another,
the Cochran’s Q test was used to determine the significance of
the overall accuracy of each model. This was done using the
dichotomous “true” or “false” prediction for each fold. A pairwise
post-hoc Dunn test with Bonferroni adjustments was used to test
for differences between models. All statistical tests were run with
a significance level of α = 0.05 and were conducted using IBM
SPSS V25 (IBM SPSS Statistics, RRID:SCR_019096).

Furthermore, we report accuracy and F1 scores for all models.
These are calculated by exhaustively leaving each participant
out (as explained above), training the model on the remaining
participants and evaluating the model on the participant left out.
The accuracy and F1 score were then calculated across all these
folds of the data. The accuracy was calculated as the number of
correctly classified trials over the total number of trials. F1 scores
with respect to each class were calculated as:

F1 =
2× precision× recall

precision+ recall

Hyper-Parameter Optimization
The hyper-parameters for all models were chosen using
hyperparameter optimization—a standard method in Machine
Learning for systematically choosing the parameters of the model
that are not directly learnt. All the models were tuned for this
study using a type of hyper-parameter tuning—exhaustive grid
search (Buitinck et al., 2013) in which variations of the model
are run repeatedly using different values of the hyper-parameters,
that have been identifiedmanually. The hyper-parameters chosen
for the model for the final analyses were the parameters that
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TABLE 2 | Values of the hyper-parameters (for each model) that yielded the

highest performance and were used in all analyses.

Model Parameter name Binary

parameters

Multiclass

parameters

Gradient

boosting

Number of trees 80 70

Maximum depth of trees 1 3

Minimum samples in leaf nodes 2 2

Learning rate 0.15 0.05

Random

forest

Number of trees 120 120

Maximum depth of trees None 3

Minimum samples in leaf nodes 5 2

MLP Number of units in hidden layer 8 8

Non-linearity Logistic/

sigmoid

function

Maximum number of iterations 750 750

Learning rate 0.0002 0.0002

produced the best performance while conducting the grid search
(Table 2). This approach was also used for selecting the number
of windows to use in constructing the features (see Figure 3).

Direction of Traversal and System Analysis
A secondary aim of the study was to identify the components
of the system that promote a high classification accuracy. This
involved analyzing: the importance of the three sensors, the
importance of the different features and the importance of the
direction of traversal of the stairs.

For the analysis of the importance of the sensors, the
performance of different variants of the models was analyzed.
These variants of the models used features from different
combinations of the sensors. The importance of the different
features was analyzed using the tree-based models (i.e., the
Random Forest and Gradient Boosting models), firstly, because
they provide methods for determining the importance of
features in making a prediction and secondly, due to their high
performance. This analysis was done, by calculating the reduction
in impurity (or error) that each node (or partition) provides
weighted by the probability of reaching that node in the tree and
then averaged over all trees to give the final metric of importance.
Therefore, importance represents how well the feature portioned
the data into the relevant classes weighted by the likelihood of
this feature being used in classifying a datapoint. The analysis
of traversal direction was done by training the model on all the
data, then separating predictions into those made on trials in the
upward direction and those made in the downward direction and
calculating the accuracy on these subsets separately.

To understand which sensors were most effective a Kruskal-
Wallis H-test was conducted and pairwise post-hoc Dunn tests
with Bonferroni adjustments were used to determine which
sensors to use in further analyses. Finally, a Friedman’s Two-
Way Analysis of Variance was conducted to understand the
importance of features and the influence of upwards and
downwards traversal.

TABLE 3 | Results from a representative run of the models for detecting the

dementia (PCA/tAD).

Model Accuracy

(%)

F1 score (wrt the

control class) (%)

F1 score (wrt the

dementia PCA/tAD

class) (%)

Gradient boosting 86.05 82.78 88.27

Random forest 87.02 83.14 88.38

MLP 86.63 82.71 87.75

FIGURE 4 | A confusion matrix for the binary Random Forest model.

RESULTS

Prediction Results
This section presents the results achieved in detecting whether
participants had dementia as well as the type of dementia.

In the binary models, trained to discriminate people with
dementia from controls, the Random Forest Classifier was the
most successful at predicting the presence of dementia, which
it accurately did in 87.02% of cases (see Table 3; Figure 4 for
more details). Furthermore, the F1 score with respect to control
class was 83.14 and 88.38% with respect to the dementia class,
both of which were higher than the same for any other model.
The Cochran’s Q test confirmed the differences between the
performance of the models, χ2 (4, N = 516)= 47.56, p < 0.001.

In the case of the ternary type-based classification (Control vs.
tAD vs. PCA), the MLP classifier outperforms all other classifiers
and accurately predicts the type of dementia in 68.22% of cases.
Furthermore, the F1 score with respect to the control class was
83.72%, 64.8% with respect to the PCA class, and 47.69% with
respect to the tAD class. The Cochran’s Q test confirmed that
there were differences between the performance of the models,
χ2 (4, N = 516)= 47.56, p < 0.001.

Furthermore, analyzing the confusion matrix of the winning
model (the MLP classifier) in the ternary case suggests that
the model misclassifies more often between the two types
of dementia than with controls (see Table 4; Figure 5). This
could be because people with dementia share some similar
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TABLE 4 | Results from a representative run of the models for detecting the type

of dementia.

Model Accuracy F1 score (wrt the

control class)

F1 score (wrt the

PCA class)

F1 score (wrt the

tAD class)

MLP 68.22% 83.72% 64.8% 47.69%

FIGURE 5 | A confusion matrix for the ternary MLP model.

symptoms no matter the type and therefore their gait is much
more similar to each other than to that of controls. Moreover,
it is more common for the model to confuse participants
with tAD with the control group than it is for the model
to confuse participants with PCA with the control group.
This could be because PCA affects visual processing more
than tAD, and therefore the effects of this disease are more
prominent in a trial such as this. This trend has also been
identified by previous research done in the same program
of work at Pedestrian Accessibility Movement Environment
Laboratory (PAMELA), which found that participants with
early stage PCA performed worse than people with tAD
(Yong et al., 2020). Therefore, because the gait of participants
with PCA is more easily distinguishable from “normal” gait
than the gait of participants with tAD, the model does not
confuse PCA with controls as often as it confuses tAD
with controls.

In summary, these models could enable an in-the-wild
screening tool for dementia, allowing people to conduct an initial
screening, with reasonably high accuracy, before potentially
receiving a clinical test to verify this. However, further research
is required before this is possible, particularly in the case of
the type-based classification where accuracy for the two types
of dementia is lower than that for controls, suggesting that the
current system may be sensitive to dementia, but not its type. See
the discussion for more details.

Direction of Traversal and System Analysis
Analysis of Number of Sensors
A Kruskal-Wallis H test showed that there was a statistically
significant difference in the importance of the sensors, χ2(6) =

TABLE 5 | Average accuracies of Binary Gradient Boosting Classifiers using

different sensors.

Position of sensors used Accuracy (%)

Left foot 81.99

Right foot 84.78

Pelvis 74.45

Left, right foot 85.94

Left foot, pelvis 81.90

Right foot, pelvis 83.25

Left foot, right foot, pelvis 83.41

The table shows the average accuracies (across 25 samples) of the Binary Gradient

Boosting classifier when using the data from different combinations of the sensors to

construct the features.

157.13, p < 0.001. Specifically, we tested the performance across
model variants that used all different combinations of sensors
(left foot; right foot; pelvis; left foot and right foot; left foot
and pelvis; right foot and pelvis; left foot, right foot and pelvis).
Post-hoc analysis showed the best performing combination was
found to be the left and right foot sensor features together. These
together gave a mean rank of 163.22 and an average accuracy
of 85.94%. In contrast the worst performance was given by
the pelvis features alone which had a mean rank of 13.00 and
an accuracy of 74.45%. The importance of the placement and
number of sensors, as given by the resulting accuracy, are given
in Table 5.

The importance of the feet sensors in predictions could be
explained simply because gait, which is heavily based on steps,
can be more easily deduced from the movement of the feet, than
the pelvis. Therefore, the accuracy of the model that uses a sensor
on each foot is significantly higher than the others. Furthermore,
it is interesting to note that the model that uses all three sensors
yields a significantly lower accuracy than the model that uses
only just two sensors—one on each foot. A potential reason
for this is that given the data from each foot sensor, the pelvis
sensor provides little additional useful information. Therefore,
this information does not enhance the performance of the model,
but could allow the model to identify trends that exist in the
training set (or a subset of it) but do not generalize to other cases,
causing the model to overfit to the training data.

The rest of the analyses (presented in this paper) used
only the sensors attached to the feet as these produced
the best performance. This analysis shows that when the
data from sensors is processed independently of each other,
sensors attached to participants’ feet are more informative for
making predictions.

These results of this analysis could not only be interesting to
clinicians, and other researchers aiming to build similar systems,
but also means that the sensor system can be truly unobtrusive
as it does not require a pelvis sensor that can cause discomfort,
thereby allowing its use in the wild. See the Discussion for more
information about this.

The Importance of Features
Further analysis of the models was conducted to better
understand how features from the gyroscope and the
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FIGURE 6 | The importance of the features for the Random Forest Classifier when predicting dementia. The features used were the windowed averages (number of

windows 8) of linear acceleration (blue bars) and angular acceleration data (orange bars) for both the left (left hand side) and right sensor (right hand side). Feature

importance was calculated as the reduction in impurity (or error) that each node (or partition) provides weighted by the probability of reaching that node in the tree and

then averaged over all trees.

accelerometer contributed to the overall prediction (Figure 6).
This was analyzed by looking at the feature importance, using
the tree-based models. Feature importance was calculated as the
reduction in impurity (or error) that each node (or partition)
provides weighted by the probability of reaching that node
in the tree and then averaged over all trees. A Kruskal-Wallis
H test showed that linear acceleration was statistically more
important than angular acceleration χ2(31)= 795.47, p < 0.001.
While there is no conclusive explanation for this it is possible
that this occurs because acceleration and velocity are directly
related. Therefore, acceleration provides the model with useful
information about the speed of a participant, the points when
the foot is at rest, and how quickly the participant progresses
through the trial. These have been identified by previous research
(Verghese et al., 2007; Cedervall et al., 2014; Carton et al., 2016;
Castrillo et al., 2016; Del Campo et al., 2016; Montero-Odasso,
2016) as factors that help distinguish participants with dementia
from those without.

Furthermore, it appears (Figure 6; Table 6) that if we divide
the trial into two halves (windows 1–4 and 4–8, respectively),
then the second half appears more important generally for the
model. To analyze this further the importance of the linear
accelerations and the angular accelerations for the 4 windows
in the two halves were summed together for each sensor and
each type of acceleration. A second Kruskal-Wallis H-test was
applied followed by pairwise post-hocDunn tests with Bonferroni
adjustments. Each of the pairwise comparisons was significant.
The importance of the linear acceleration in the second half of
the trial was found to be significantly greater than that of the first
(p = 0.014), which in turn was found to be significantly greater
than the angular acceleration in the last half (p < 0.001). The
angular acceleration in the first half was the least important and

TABLE 6 | Results of hypothesis testing comparing the linear and angular

acceleration in the first (windows 1–4) and second (windows 5–8) halves of the

trial.

First half (%) Second half (%) p-value

Linear acceleration 24.17 42.25 <0.001

Angular acceleration 19.20 14.37 <0.001

significantly less than the angular acceleration in the second half
(p= 0.014).

This analysis was conducted on all tree-based models (in both
the binary and multi-class settings) which provide easy ways to
calculate and analyze the importance of features, as well as being
among the best performing models, and the trends identified
across all these tree-based models were similar. Therefore, this
analysis identified the most informative components of the trial
for distinguishing participants with dementia from controls,
however, further research is required to provide an explanation
for why these trends occur.

The Effect of Traversal Direction
The analysis of the direction of traversal of the stairs that helps
distinguish people with dementia from controls is presented in
this section. The mean accuracy of the upward or downward
directions are given in Table 7. This suggested that for people
with dementia the binary models were more accurate in the
upwards direction as compared to the downwards direction.

To analyze this further, the same analysis was conducted in the
multiclass setting with accuracies split according to the class. The
results of this analysis are summarized in Table 8.
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TABLE 7 | Results of hypothesis testing comparing the prediction accuracies

attained in the upward and downward directions.

Model Upward accuracy (%) Downward accuracy (%)

Random forest 86.77 85.31

Gradient boosting 86.97 86.08

MLP 89.29 82.79

TABLE 8 | The average accuracies (across 25 samples) of the better performing

models for predicting dementia phenotype.

Model Upwards accuracy Downwards accuracy

Control PCA tAD Control PCA tAD

(%) (%) (%) (%) (%) (%)

Random forest 80.12 56.43 51.1 79.46 63.11 41.16

Gradient boosting 79.03 61.95 45.90 89.69 71.37 30.03

MLP 79.42 74.32 49.5 92.19 71.9 34.89

A Friedman’s Two-Way Analysis of Variance was conducted
which proved there was a significant difference between the
models and between up and down conditions χ2(17) = 415.41,
p < 0.001. Pairwise analysis across two independent variables
(models and up/down) was not conducted as it was thought to
be over analysis of the data. However, from Table 8 it can be
seen that in the multiclass tree-based models the percentage of
the trials that were correctly classified as PCA is generally higher
in the downward direction, which is in contrast to the results
found for classifying dementia with binary models. This could
be attributed to the fact that on the way down, the stairs are
not directly in participants’ line of sight when looking forward
and, therefore, it is harder for them to process this information.
Alternatively, it could be that descending stairs is less physically
demanding, but the consequence of falling is greater when
descending, causing anxiety in the participants.

While this analysis provides interesting insights into which
direction of traversal is more informative for predicting
dementia, the varied results across different models led to
this analysis being inconclusive. Moreover, further research is
required to provide an explanation for these differences.

The analysis of the importance of features and the direction
of traversal provides some initial insights into how the gait
of people with dementia (both PCA and tAD) could differ
from that of controls, which may be informative to healthcare
workers and patients. However, further analysis is required into
the varied results and generalizability of these findings to other
environments. See the Discussion for more details.

DISCUSSION

This section discusses the contributions made, current
limitations and future possible use cases of the STEP-UP system.

Detection and Discrimination of Dementia
While previous research has helped to identify the changes in
gait that occur during the decline into dementia, the research has
ignored two important factors that would allow such analyses
to be used in the real world. Firstly, previous research relies
heavily on experiments conducted in laboratory settings, using
technologies such as optical systems that cannot be used in the
real-world (Verghese et al., 2007; Wittwer et al., 2013; Callisaya
et al., 2017) and treadmills which constrain the way of walking
to a straight line. This limits the applications of this research
as people hoping to use this method to screen for early cues
of dementia would need to be subjected to these laboratory
tests. Secondly, previous research often ignores different types
of Alzheimer’s focusing instead on tAD. The use of low-cost
wearable technology offers the opportunity to gather data about
people’s ability to conduct everyday tasks, including climbing or
descending stairs as they go about their life. Previous research
(Plant and Barton, 2020) suggests that data from everyday life
are more informative about a person’s disease than data in
clinical assessment laboratory where people may attempt to
over control their behavior. In addition, as such sensors get
integrated into people’s clothes and accessories, early detection
of possible problems (especially rarer types of dementia like
PCA) could be detected before people purposely look for a
dementia assessment.

Our study has demonstrated the feasibility of deploying low-
cost sensors to measure gait patterns for predicting dementia
(both tAD and a rarer type of dementia: PCA) in everyday
tasks of climbing and descending stairs. We have achieved
this by focusing on low-level input features and investigating
their non-linear mapping onto types of dementia and controlled
groups with supervised classifiers. This is of critical importance
when it comes to low-cost systems being used in the real
world as calculating hand-engineered high-level gait features
(e.g., Verghese et al., 2007) is often infeasible and requires high
level controls. Also, low-level features used with artificial neural
networks have been shown repeatedly to have higher robustness
for other sensing modalities (Kostek et al., 2004; Cho et al., 2019).

In this research we analyzed the detection of dementia
as compared to healthy participants, however, real-world
deployment could enable larger datasets. This could further lead
to an improvement in the performance not only on the detection
of dementia cues but also on discriminating between different
types of dementia. Moreover, the inclusion of more varied data
such as that of participants with Mild Cognitive Impairement or
early stages of dementia could enable this system to be used by
these populations, allowing for early-stage detection. While we
did not look at these populations, previous research analyzing
gait using similar methods and measures has found that gait is
sensitive to early signs of dementia and can predict cognitive
decline (Marquis et al., 2002; Waite et al., 2005; Wang et al., 2006;
Verghese et al., 2007; Cedervall et al., 2014; Gwak et al., 2018;
Halloway et al., 2019; Schaat et al., 2020). Therefore, deployment
of this system in real-world settings could enable dementia
detection in everyday settings which could bring several use
cases and potential benefits. While in-depth analysis of this is
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left to future research, some of the potential future examples are
discussed below:

Screening Tool for Healthcare Workers and

Practitioners
A screening tool which could be deployed in clinical settings or as
an at-home test can be developed. The clinical tool could be used
by community healthcare workers as well as general practitioners
to enable easy detection of typical and atypical presentations of
Alzheimer’s disease. Carers’ wellbeing can often be neglected,
however they are often under considerable stress (Gilhooly et al.,
2016). The amount of stress carers experience decreases with
acceptance of the diagnosis and social support networks, and is
increased with wishful thinking, denial and avoidance strategies
(Gilhooly et al., 2016). An early diagnosis gives more time for
acceptance and support networks to be established. These benefit
the person diagnosed, their families and carers. It could be that
beyond the benefits of simple screening we could also investigate
ways of developing support tools for the carers, which could be
linked to the stage of dementia of the person for whom they are
caring.

General Self-Screening
As sensors are increasingly integrated into our daily activities
(e.g., sensor in shoes for running, imaging for fitness tracking)
and used to quantify our wellbeing (Cho et al., 2017; Cho, 2021),
such sensors could be used together to detect and identify cues
of decline and dementia. Our results provide some insights on
how the sensors could be used in the wild. Firstly, our research
found that the presence of dementia is more easily detected
during upwards stair climbing, suggesting that the gait of people
with dementia is more abnormal during upwards stair climbing.
The same sensors placed on the shoes could first detect upward
stair climbing (Formento et al., 2014) and data from this activity
can be prioritized for more accurate predictions. Similarly, the
sensors could also detect long periods of activity and even fatigue
or pain (Wang et al., 2019) and consider such variables when
evaluating the assessment tool outcome. Finally, as any motor
activity modeling suffers from people’s idiosyncrasy, such models
could take advantage of the long history of sensor data gathered
from the person to build personal models of what is a normal
pattern (given the physical ability including vision of the person)
and hence detect possible sudden declines that may indicate such
underlying causes of dementia and even atypical causes.

Support Tool for Patients
It would seem feasible to also develop the ability to classify
deteriorations in a person’s condition following diagnosis. This
would need a larger data set collected in the wild. Once developed
decline in gait such as those detected by lab-based studies (e.g.,
Verghese et al., 2007; Callisaya et al., 2017) could be detected
as people conduct their daily activities and be directly linked to
clinical care pathways. This would enable person-centered care
to be established, rather than simply asking people to return for
appointments based on standard time predictions of decline.

An important perspective is on the effect of different
combinations of sensors on the detection performance. Our
research found that of all combinations of the sensors, models

using only the sensors attached to the feet performed best.
This led to us dropping the pelvis sensor from further analyses.
Additionally, a sensor constantly attached to a person’s pelvis
may cause discomfort. Therefore, our research suggests that a
truly unobtrusive system could be built simply with sensors
attached to people’s shoes. Furthermore, the support tool could
be further developed to be predictive of decline, providing further
support to people with dementia and their care givers.

Limitations
Despite promising results, there is room for improvement. We
discuss points to help the deployment of such a system.

Discriminating Type
While the model has shown a good performance (from LOSO
cross-validation) in themulti-class classification (Control vs. tAD
vs. PCA), we have found lower performance in discriminating
the two types of dementia when samples from the controlled
group are not considered in the classification task. This can
provide insights. First, this could be related to the fact that
the gait of the two subtypes of dementia was very similar to
each other, suggesting that gait is sensitive to dementia as a
whole, but less sensitive to the type of dementia. This could
suggest that different measures may be required to provide a
more comprehensive diagnosis. For example, in PCA vision
is predominantly affected with memory often being (initially)
unaffected. Second, the data from healthy participants could play
an essential role in discriminating patterns associated with each
dementia type. Third, when it comes to the dementia detection
task (dementia vs. control), the proposed system results in a very
high accuracy of 87.02%.

Generalization Issues and Dataset
Another potential limitation in this study is that models might
be overfit to the data, reducing its ability to generalize to unseen
data. While we prevented this as much as possible by using LOSO
validation, ensuring themodel was not only tested on unseen data
but on data from an unseen participant. However, all the data
from all participants was collected on the same staircase using the
same system setup to collect the data. Therefore, these models
may not generalize to other environments, other staircases or
other IMU systems. This may limit the direct application of
this system to the real-world diagnosis of dementia. Therefore,
further research is required to prove the generalizability of this
research to other environments and system implementations.

Another related issue was that it was more difficult to achieve
a high degree of control in the task especially in people with
dementia. This may have resulted in patients taking breaks in
the middle of the task, not initially standing in the correct start
position, etc. Therefore, the model might use these artifacts
to discriminate patients from controls rather than their gait.
Nevertheless, these behaviors are symptoms of dementia that
should generalize across patients.

Furthermore, in this study we only compared the gait of
participants with dementia to healthy age-matched controls.
Therefore, this model may be overfit to distinguishing healthy
and unhealthy participants and may not be able to distinguish
dementia from other diseases with similar presentations or
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people with a bad physical condition. Therefore, this requires
further research and fine-tuning of this issue. We believe that
the deployment of this system in the real-world would enable
overcoming these overfitting issues by allowing more varied data
to be tested.

CONCLUSION

This research demonstrates the feasibility of automatically
detecting both the more typical Alzheimer’s Disease (tAD) as
well as a rarer and distinct form of dementia—Posterior Cortical
Atrophy (PCA)—based on gait in a real world-environment.
To this end, we propose the use of low-level features based
on windowed averaging of data from a low-cost, unobtrusive
IMU system. These features are easy to calculate from a
small number of IMU sensors, enabling their use in a real-
world system. We also demonstrate that these features can be
used with Machine Learning models to predict dementia with
87.02% accuracy. Furthermore, we demonstrate that a sensor
placed on each foot is sufficient for this analysis. Lastly, we
demonstrate the models are better able to discriminate people
with dementia from healthy controls when they are climbing
up stairs, suggesting that people with dementia find it harder to
climb up stairs.

Therefore, this research concludes that machine learning
analysis of IMU data, gathered from a person’s gait in a real-
world environment, could unobtrusively be used to assess the
risk of having dementia. Once further researched, a system
such as this could provide an initial assessment of the risk
of having a certain type of dementia before conducting any
clinical tests, thereby streamlining and enhancing the diagnostic
process. Therefore, not only are these results interesting from
a research perspective, but also have potential real-world
applications.
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