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Milling is the surface machining process by removing material from the raw stock using revolving cutters. )is process accounts
for a major stake in most of the Original Equipment Manufacturing (OEM) industries. )is paper discusses optimizing process
parameters for machining the AA 2014 T 651 using a vertical milling machine with coated cutting tools. )e process parameters
such as cutting speed, depth of cut, and type of the cutting tool with all its levels are identified from the previous literature study
and several trial experiments. )e Taguchi L9 Orthogonal Array (OA) is used for the experimental order with the chosen input
parameters. )e commonly used cutting tools in the machining industry, such as High-Speed Steel (HSS) and its coated tools, are
considered in this study.)ese tools are coated with TitaniumNitride (TiN) and Titanium AluminumNitride (TiAlN) by Physical
Vapor Deposition (PVD) technique.)e output responses such as cutting forces along the three-axis are measured using a milling
tool dynamometer for the corresponding input factors. )e input process parameters are optimized by considering the output
responses such as MRR, machining torque, and thrust force. Grey Taguchi-based Response Surface Methodology (GTRSM) is
used for multiobjective multiresponse optimization problems to find the optimum input process parameter combination for the
desired response. Polynomial regression equations are generated to understand the mathematical relation between the input
factor and output responses as well as Grey Relational Grade (GRG) values. )e optimum process parameter combination from
the desirability analysis is the HSS tool coated with TiAlN at a cutting speed of 270 rpm and a depth of cut value of 0.2mm.

1. Introduction

Modern-day cutting tools used in the machining industry
can be coated with combination of alloying elements, which
provides a wide range of advantages in improving the tool
life. )ese coated tools may reduce the manufacturing cost,
and thereby the cost of the manufactured part is significantly

reduced. )e majority of modern machining is done using
computer numerical control (CNC), which allows com-
puters to control mills, lathes, and other cutting machines.
Milling is a type of machining that removes material from a
work piece by advancing rotary cutters in a direction that is
at an angle to the tool’s axis. From small individual pieces to
huge, heavy-duty group milling processes, it encompasses a
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wide range of procedures and machinery. It is one of the
most widely utilized procedures for machining parts with
sufficient precision and tolerance control in industry and
machine shops today.

Milling operations performed using different milling
cutters may be grouped as peripheral milling and face
milling.)e action of a milling cutter to generate a machined
surface parallel to the cutter’s axis is known as peripheral
milling. )is sort of milling is considered for study in this
work. Commonly used milling cutters include end mill, ball
nose cutter, slab mill, side and face cutter, hob, thread mill,
face cutter, fly cutter, woodruff cutter, and hollow mill.
Materials used in those cutters include High-Speed Steel
(HSS), cemented carbides, tool steels, cast-tool material,
plain carbon tool steel, and stellite. High-Speed Steel (HSS)
mill tool is utilized in this work, which is widely used by
several manufacturing industries for affordable metal cut-
ting operations.

)e coatings applicable for the HSS end mill cutter are
Titanium Nitride (TiN), Titanium Aluminum Nitride
(TiAlN), Titanium Carbo-Nitride (TiCN), Zirconium Ni-
tride (ZrN), Diamond, and Black Oxide. TiN and TiAlN
coating are used in this research to coat the HSS tool in these
available coatings. Usually, these coatings can be provided
on the cutting tool using Physical Vapor Deposition (PVD)
or Chemical Vapor Deposition (CVD) techniques. In gen-
eral, PVD coating is a cost-effective solution for sputtering
applications. Hence, the PVD technique is used for coating
the HSS tool cutters in this work. )e TiN coating increases
the hardness of the HSS cutting tool and can withstand
higher oxidation temperature, while TiAlN coating provides
more surface hardened tool than TiN. It is because of the
presence of Al and Ti compositions. )is TiAlN coated tool
is a viable alternate option for high-speed machining and
high-temperature machining applications. )e formation of
the aluminum oxide layer provides better tool life for high
heat applications.

Aluminum Alloys are widely used in engineering
structures, because they are of lightweight and better cor-
rosion resistance [1]. )e most common alloying elements
for Aluminum Alloys is Copper (Cu), Magnesium (Mg),
Manganese (Mn), Silicon (Si), Tin (Sn), and Zinc (Zn).
Aluminum Alloy is the material of choice for several en-
gineering applications, which has good aesthetic and high
strength properties. )ese Aluminum alloys are available in
several series such as 1xxx, 2xxx, 3xxx, 4xxx, 5xxx, 6xxx, and
7xxx series. )is work uses AA 2014 as a working material
for the milling process. AA 2014 is an Aluminum-Copper-
based alloy widely used in aerospace, defense, and naval
engineering applications. )is AA 2014 is difficult to ma-
chine at particular tempers and has high strength next to
Aluminum-Zinc alloys.

)is work involves multiple input parameters and
multiple-output responses. Some of the commonly applied
methods for multiresponse optimization are Grey Relational
Analysis (GRA), Artificial Neural Network (ANN), Con-
volutional Neural Network (CNN), Fuzzy logic, Principal
Component Analysis (PCA), Simulated Annealing (SA),
Bio-inspired algorithms, and Nelder–Mead Simplex method

[2]. )is sort of optimization study is used by researchers in
various domains ranging from Civil Engineering [3] to
advanced Additive Manufacturing techniques [4].

Recently, multiresponse optimization is a major interest
for industries and academicians to find the optimum process
parameters. Maiyar et al. used Grey Relational Analysis to
explore the parameter optimization of end milling operation
for Inconel 718 superalloy [5] using multiresponse criteria
based on Taguchi L9 Orthogonal Array. )e input param-
eters such as cutting speed, feed rate, and depth of cut are
optimized by considering multiple output responses such as
average surface roughness (Ra) and Material Removal Rate.
Cutting velocity (75m/min), feed rate (0.06mm/tooth), and
depth of cut were identified to be the best cutting parameters
combination for machining by the authors (0.4mm). )e
authors also observed that theMaterial Removal Rate (MRR)
is increased by 64.8%, and surface roughness is decreased by
9.52%. Grey Relational Grade obtained is used for Analysis
of Variance (ANOVA) calculations. Das et al. used an
improved optimization approach by combining Taguchi L25
Orthogonal Array design and Grey-Fuzzy logic technique
for optimizing machining parameters of the CNC milling of
Al–4.5% Cu–TiC Metal Matrix Composites [6]. )e opti-
mum process parameter combination found in this study
has a cutting speed (600 rpm), feed (40mm/min), and depth
of cut (0.30mm) by considering the output responses such
as cutting force (Fc), average surface roughness (Ra), and an
average maximum height of the profile (Rz). )e optimum
process parameter combination has a high grey fuzzy rea-
soning grade (0.8191). Durakbasa et al. extended further
study of the effect of coating on the tool and found that the
coating in the cutting tool is the predominant factor affecting
the surface quality of the machined parts [7]. )e authors
have coated the carbide tools with AlTiN, TiAlN, and ZrN to
study the cutting parameter implications on machining AISI
H13 hot work steel. Taguchi L27 Orthogonal Array is used to
study the relationship between the input process parameter
and output responses. Cutting tool tip radius and coating
type are the significant input process parameters affecting
the average surface roughness (Ra) of the machined surface
besides feed rate, depth of cut, and cutting speed. Lu et al.
used a hybrid approach by coupling the performance index
Grey Relational Grade (GRG) with Principal Component
Analysis (PCA). On the rough cutting of SKD61 tool steel,
the authors discovered the optimal combination of cutting
parameters such as milling type, spindle speed, feed per
tooth, radial depth of cut, and axial depth of cut for high-
speed end milling [8]. For high-speed milling of SKD61 tool
steel, the down milling procedure with a spindle speed of
12000 rpm, feed rate of 0.04mm/tooth, axial depth of cut
(0.8mm), and radial depth of cut (1mm) is regarded the
ideal cutting parameter combination.

)e Response Surface Methodology (RSM) was used by
Elsen et al. to study the end milling process parameters for
multiobjective optimization [9]. )e authors used stir cast
Alumina reinforced Aluminum Metal Matrix Composites
(AAMMC) and found that the cutting speed (1750 rev/min),
feed rate (0.3mm/rev), and depth of cut (0.2mm) are the
optimum parameters for end milling operations. Shaik and
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Srinivas used the neural network-based RSM to find the
optimum process parameter combination [10] for end
milling operations in AA-6061 work material using a
multiobjective approach. )e authors found that the cutting
speed of 1800.954 rpm, feed rate of 41.826mm/min, and
axial depth of 0.799mm are the optimum combination for
machining the AA-6061 material. Ren et al. presented a
multiobjective optimization problem [11] using the Taguchi
method for experimental design and Grey Relational
Analysis to obtain the optimum process parameter com-
bination in the end milling Ti–5Al–5Mo–5V–1Cr–1Fe ti-
tanium alloy. )e authors considered multiresponse such as
cutting forces, surface roughness, and acceleration on var-
ious tools with varying tool geometry. )ey found that the
fluting rake angle of 4°, gash angle of 35° helix angle of 45°,
gash rake angle of 2°, and pitch angle difference of 4° are the
optimal controllable factors in the study. Adalarasan et al.
considered the Taguchi L18 Orthogonal Array for designing
the experimental order and extended RSM by using a hybrid
approach such as Grey Taguchi based Response Surface
Methodology (GT-RSM) for optimizing the process pa-
rameters [12]. )e authors optimized the plasma arc cutting
parameters such as arc current, torch stand-off, cutting
speed, and gas pressure by considering the responses such as
surface roughness and kerf width.)e authors proposed that
the optimized results provide better desirability for finding
the optimum process parameters using GRG values. Similar
multiobjective optimization to study the milling parameters
for machining Ultrahigh-Strength Steel was introduced by
Xu et al. using RSM equations. )e authors used a Pareto-
optimal solution to obtain the optimum process parameter
combination using Non-Dominated Sorting Genetic Algo-
rithm-II (NDSGA-II). )e authors mentioned that the RSM
could not deal with the multiresponse problem [13], and this
sort of multiobjective optimization provides optimum
process parameter combination. According to the literature
review, more research into the influence of coated tools on
milling AA 2014 is needed, taking into account the Material
Removal Rate (MRR) and the impact of cutting pressures
during the material removal process. As a result, the quality
of the milled surface is explored experimentally in this paper
in order to discover a relationship between the range of
forces andMaterial Removal Rate (MRR) for the appropriate
input process parameters.

2. Materials and Methods

Grey Relational Analysis provides a better solution for
multiresponse optimization problems [14]. Engineering
judgement, assignment of weight, Regression analysis, data
envelopment based Ranking approach, fuzzy multiple at-
tribute decision making, fuzzy logic, Grey Relational
Analysis, Artificial Neural Networks, goal-programming
approach, and desirability function analysis are the available
methods for multiobjective multiresponse problems [15]. In
this study, Grey Taguchi-based Response Surface Method-
ology (GT-RSM) is used to analyze the factor-response
relationship. )e full factorial Taguchi L9 Orthogonal Array
experimental design is selected to conduct the experiment in

an organized manner. In the current study, the operating
cutting speed considered in this study ranges from 90 to
450 rpm. )e depth of cut varies from 0.2mm to 0.6mm,
while the feed rate is kept constant at 40mm/min. )e work
material is the Aluminum Alloy AA 2014 T 651 condition, a
heat-treated solution, stress relieved by elongation, and
artificial ageing. )e chemical composition test is performed
to confirm the presence of alloying in the right proportions
and hardness tests to study the characteristics of the alloy. In
addition, microstructural studies are carried out to visualize
the AA 2014 microstructure using Optical Microscope. )e
cutting forces in three dimensions are measured using strain
sensors placed on the work piece holding fixture using
Milling Tool Dynamometer.

2.1. Material Selection. Aluminum Alloy AA 2014 can be
easily machinable at a specific temperature, and it is one of
the strongest available Aluminum Alloys with high hardness
and better tensile properties. )e density value of the chosen
AA 2014 is 2.8 gm/cm3.

2.1.1. Microstructure Characterisation. )e AA 2014 speci-
mens are polished using Silicon Carbide abrasive papers of
various grid sizes (200#, 400#, 600#, 800#, 1000#, and 1200#)
before microstructure characterization is shown in Figure 1.
)ese specimens are then subjected to cloth polish using a
diamond abrasive size 0.5 μm–1 μm to obtain mirror polish.
)e polished specimen surface is etched with Keller’s reagent
[16] of composition (1%HF+ 1.5%HCl + 2.5%HNO3 + 95%
water). )e surface has dispersed dots of particles (mostly
copper), which shows a uniform distribution of alloying
elements.

In addition to this microstructure analysis, chemical
composition and hardness tests are also performed to ex-
amine the material property characteristics. )e results are
discussed in the upcoming sections.

2.1.2. Chemical Composition Analysis. )e chemical com-
position test results of the purchased material are provided
in Table 1. Copper is the primary alloying element in the AA
2XXX series.

Since there is a presence of 3.9 to 5% copper in this
particular material, this indicates that it is Aluminum Alloy
AA 2014 [17]. )e purchased material is strengthened to get
T651 condition by solution heat-treated, stress-relieved by
stretching, and artificial ageing in controlled environmental
conditions [18].

2.1.3. Hardness Test. )e hardness of the AA 2014 material
subjected to machining is tested using Brinell Hardness
testing machine and Vickers microhardness tester.

(1) Brinell Hardness Test. )e hardness of the AA 2014
work material is tested at various loads ranging from 1 kg to
3 kg using the Brinell scale, which is provided in Table 2.)e
details of the load application, diameter of impression, and
specimen surface area are presented.
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In addition, a sample calculation is provided below to
find BHN.

Brinell HardnessNumber(BHN) �
F

As

, (1)

where As � π D(D −
�������
D2 − d2

√
)/2

)e specimen surface area for the first trial is
As � π ∗ 10(10 −

��������
102 − 3.22

√
)/2, where the value of speci-

men surface area is 8.26mm2. )e BHN is the ratio of load
applied to the calculated specimen surface area. )e value of
BHN for the first set is found to be 121.06.

(2) Vickers Microhardness Test. )e Vickers microhardness
test employs a square-shaped pyramid diamond indenter
with a vertex angle of 136°, which is driven into the surface of
the selected AA 2014 material at a predefined force, F. )e
initial application of force takes 2 to 8 seconds, and the force
is sustained for 10 to 15 seconds during the test.)e diagonal
indentation lengths are measured when the applied force is
removed to get the Vickers Hardness Number (VHN) with
1N application of force [19]. In the chosen AA 2014, the
VHN on the Vickers scale is 158, 155, and 154.

2.2. Tool Selection. High-Speed Steel (HSS) tools are com-
monly used in medium scale and small scale industries. )is
affordable HSS tool can withstand more cutting force and
better tool life compared to carbide tools. HSS material is
widely used in various segments in the manufacturing in-
dustry as drill bits, reamer tools, side and face mill cutters,
slab mills, end mills, and straddles milling cutters. In the
current work, High-Speed Steel (HSS) tool and the HSS tool
with coatings are used to study the milling operations.

Table 3 shows the specifications of the HSS tool used in this
study.

)e manufacturer of the HSS mill tool is Sandvik
Coromant, which is supplied by ProSol, Ambattur, Chennai,
India. )is HSS tool is highly suitable for intermittent
cutting applications.

2.3. Coating Method. )e tool’s surface hardness will be
increased by using coatings.)ese coatings will improve tool
life and be enabled for faster cutting speeds and feeds [20].
)is work uses two coating materials: Titanium Nitride
(TiN) and TitaniumAluminumNitride (TiAlN).)e coating
on the HSS tool was done at Oerlikon friction systems
(India) Private Limited, Irungattukottai, Chennai, India.)e
coating of these tools is done based on the sputtering
principle using the PVD technique.

3. Experimental Details and Data Analysis

All the experiments in this study are conducted in the vertical
milling machine supplied by S. M. Engineering works, Punjab,
India, shown in Figure 2. )e HSS end mill tool with and
without coating is used to machine the AA 2014 by performing
experiments as per the experimental order in this machine.

)e cutting forces acting in three dimensions are
measured using Milling Tool Dynamometer (M/S Tamil-
nadu Engineering Instruments, Chennai, India). )is device
has four arms bounding strain gauge component bridge
sensors to measure the three-dimensional axis forces. )ree
readings for each set of forces are calculated at the start of the
cutting operation, half the cutting toolpath length, and near
the end of the milling operation. )e average of the three

(a) (b)

Figure 1: Microstructure of the chosen AA 2014 (black dots represent copper).

Table 1: Percentage of elements distribution in the chosen AA 2014 material.

Type of element Cr (%) Cu Fe (%) Mg Mn Si Ti (%) Zn (%) Al
% contribution 0.1 3.9%–5% 0.7 0.2%–0.8% 0.4%–1.2% 0.5%–1.2% 0.15 0.25 Rest

Table 2: Brinell hardness test on AA 2014 material.

Trial no. Applied load (gm)
Diameter of

impression (mm) Specimen surface area (mm2) BHN
D d

1 1000 10 3.2 8.26 121.06
2 2000 10 4.3 15.26 131.06
3 3000 10 5.0 21.04 142.58
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readings for each measured force is used to calculate Torque
and thrust force. Machining is carried out at various process
parameter settings mentioned in Table 4. )e notations of
the end mill cutter tools are the High-Speed Steel tool
(HSST), High-Speed Steel tool coated with Titanium Nitride
(HSST-TiN) tool, and High-Speed Steel tool coated with
Titanium Aluminum Nitride (HSST-TiAlN).

Several factors affect the production rate in the
manufacturing industry. )e major factors such as cutting
speed, feed rate, and depth of cut are the predominant process
parameters in any machining industry [21]. )is study pro-
vides the influence of tool coating on the output responses
such as Torque, thrust force, and Material Removal Rate. For
improved visualization, response surface and contour graphs
are supplied, which are also utilized to appropriately identify
the input process parameters for the required output response.

3.1. Input Process Parameters and "eir Levels. )e number
of experiments to identify the relationship between the input
parameters and output responses is significantly reduced by
implementing the Taguchi Orthogonal Array technique [22].
In this work, L9 (33) Orthogonal Array design shown in
Table 5 is used to find the influence of the input factors over
the measured responses.

)e experimental machining is done on the AA 2014
material using individual blocks for each set as per the
orthogonal array design. Figure 3 shows the images of the
machined work pieces as per the experimental order.

All thework piecematerial used in this study has a standard
size of 60mm× 60mm× 30mm. )e mill tool plunges in the
work piece and performs machining for a length of 40mm.

3.2. OutputMeasured Parameters. )e Torque and MRR are
calculated using the following measured forces and ma-
chining time in Table 6, where Tm represents the actual
machining time.

A mill tool dynamometer is used to measure the forces
operating on the work piece, and the machining time for
each input process parameter combination is recorded.

4. Results and Discussion

)e output response parameters considered in this study are
the thrust force, Material Removal Rate (MRR), and Torque.
Machining Torque is calculated with the help of cutting force
and diameter of the tool, and Metal Removal Rate is cal-
culated using the volume of material removed and

Table 3: Tool description of the HSS mill tool.

Type of cutter End mill cutter
Diameter of the cutting tool 10mm
Length of the cutting tool 100mm
Flute length 40mm
Number of flutes 4

Type of cutting tool

Uncoated HSS tool (HSST) HSS tool - TiN coated (HSST-TiN) HSS tool - TiAlN coated (HSST-TiAlN)

Speed
controller

Work piece

Spindle

Milling tool
dynamometer

Machine vice

Figure 2: Vertical machining center used for experimentation in
this research work.

Table 4: Input parameters and their levels.

Input parameters Level 1 Level 2 Level 3
Cutting speed (rpm) 90 270 450
Depth of cut (mm) 0.2 0.4 0.6
Type of cutting tool HSST HSST-TiN HSST-TiAlN

Table 5: L9 Orthogonal array for fitting the input process
parameters.

Experimental
order

Cutting speed
(rpm)

Depth of cut
(mm) Type of cutting tool

1 90 0.2 HSST-TiAlN
2 90 0.4 HSST
3 90 0.6 HSST-TiN
4 270 0.2 HSST
5 270 0.4 HSST-TiN
6 270 0.6 HSST-TiAlN
7 450 0.2 HSST-TiN
8 450 0.4 HSST-TiAlN
9 450 0.6 HSST
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machining time. For torque calculation, the following
equation is used for the experimental order combination:

Torque(Nm) �
Cutting force(N) × Dia. of mill tool(mm)

2000
.

(2)

MRR is calculated by comparing the starting weight of
the work piece before to machining with the final weight of
the work piece after the material has been removed.
Equation (3) provides the information to calculate the
material removal rate in this experimental study:

MRR
mm3

s
􏼠 􏼡 �

(Initial weight of workpiece(gm) − Final weight of workpiece(gm))

Density gm/mm3
􏼐 􏼑 × Machining time(sec)

. (3)

)e calculatedMRR, torque, and thrust force are given in
Table 7. )ese responses are used for the input for the Grey
Relational Analysis.

To find the mathematical models link between the input
process parameters and output response, second-order
polynomial regression equations are produced. )ese
equations are used to generate the response and contour plot
for better visualization of the response-process parameter
relationship and predict the proper set of the process pa-
rameter combination. All the regression analyses in this
study are analyzed using Minitab software. )e 3D response

and 2D contour are plotted using MATLAB software from
the equations obtained from regression analysis.

4.1. Second-Order Polynomial Regression Analysis for MRR.
)e second-order polynomial regression equation is gen-
erated for the MRR by varying the process factors such as
cutting speed, cutting tool type, and depth of cut. In addition
to these factors, several other process parameters affect the
MRR, torque, and thrust force. It may differ by material,
machine setting, and machining application. )is regression

Figure 3: Machined work pieces of AA 2014 material.

Table 6: Measured response for the corresponding input process parameter set.

Exp. order Cutting speed (rpm) Depth of cut (mm) Type of cutting tool Fx (N) Fy (N) Fz (N) Tm (sec)
1 90 0.2 HSST-TiAlN 78.48 93.2 117.72 127
2 90 0.4 HSST 58.86 78.48 78.48 165
3 90 0.6 HSST-TiN 73.58 103.005 88.29 151
4 270 0.2 HSST 68.67 88.29 39.24 98
5 270 0.4 HSST-TiN 83.39 78.48 125.57 82
6 270 0.6 HSST-TiAlN 88.29 122.63 78.48 56
7 450 0.2 HSST-TiN 107.91 117.72 103 43
8 450 0.4 HSST-TiAlN 117.72 176.58 264.87 38
9 450 0.6 HSST 80.44 127.53 147.15 45
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equation is used to visualize the output response variation by
plotting surface plots in three dimensions using response
and contour surface plots by mapping the input process
parameter information.

4.1.1. Regression Analysis forMRR (Cutting Speed vs. Depth of
Cut). )e second-order polynomial regression equation to
find the MRR is shown in Table 8 by considering the effect of
cutting speed and depth of cut.)e value ofR2 represents the
randomness in the generated statistical model. )is R2 value
is around 0.9964, representing that the equation is statis-
tically fit with the considered parameter levels of the cutting
speed and depth of cut.

)e three-dimensional response surface plot shown in
Figure 4(a) represents the relation between the response
such as MRR and the input process parameters (cutting
speed, depth of cut). MRR value is more during machining
the AA 2014 material at high cutting speed and depth of cut.

)e variation and the values of the MRR are visualized in
Figure 4(b). With an increase in cutting speed and depth of
cut, the MRR rises steadily.

4.1.2. Regression Analysis for MRR (Cutting Speed vs. Type of
Cutting Tool). )e second-order polynomial regression
value of MRR is given in Table 9.)e R2 value, in this case, is
found to be 0.9656. )is value represents a significant re-
lation between the cutting speed and the cutting tool type
impacting the MRR.)e equation fits appropriately with the
statistical model with a good variation of the output response
for the given input process parameters.

)e three-dimensional response surface plot shown in
Figure 5(a) represents that the MRR increases steeply with
the increase in the cutting speed. MRR is more for milling
the AA 2014 material using the TiAlN cutting tool.
Figure 5(b) shows the two-dimensional contour plot of MRR
by varying the process parameters such as cutting speed and
Type of cutting tool.

)e MRR significantly determines the amount of ma-
terial removed from the raw material during machining
processes. In general, cutting speed has a significant relation
in the calculation of MRR. And the results also proved that
the MRR is directly proportional to the cutting speed.

4.1.3. Regression Analysis for MRR (Depth of Cut vs. Type of
Cutting Tool). )e relationship of MRR with the type of

cutting tool and depth of cut is given in Table 10. )e R2

value of 0.8554 represents a less significant impact for
milling AA 2014 using the depth of cut and type of cutting
tool as the input parameters combination.

)e three-dimensional surface plot and the two-di-
mensional contour plot are shown in Figures 6(a) and 6(b).
)ere is an uneven variation of MRR by varying the depth of
cut, and it exhibits more minor surface curve data variation.
MRR is less affected by the depth of cut in this study.

)e depth of cut results is not statistically significant, but
those values significantly impact the machining materials.
)is process factor has less impact on the selected process
parameter over machining AA 2014 material.

4.2. Second-Order Polynomial Regression Analysis for Torque.
Torque plays a vital role to predict the power requirement for
machining in an efficient manner. )is section provides a
detailed analysis of Torque based on the forces measured
during milling AA 2014 with the coated cutting tools.

4.2.1. Regression Analysis for Torque (Cutting Speed vs. Depth
of Cut). )e following R2 value of 0.8427 in Table 11 rep-
resents that the Torque has a moderate impact on the cutting
speed and depth of cut.

)e three-dimensional surface plot and two-dimensional
contour plot are shown in Figures 7(a) and 7(b) respectively.
)e machining torque increases steeply with the increase in
cutting speed. )e results show that there is a surge of force
at a higher cutting speed. )e coating in the tool provides a
better solution for milling the AA 2014 irrespective of
controlling the depth of cut.

)e contour graphs show that the cutting speed has a
direct relation with the Torque. )e parametric levels for
depth of cut in this study are less adversely affecting the
machining torque. )e following section provides the de-
tailed analysis of Torque by varying the cutting speed and
type of coated cutting tools.

Table 7: MRR, Torque, and )rust force values for the corresponding input factor.

Exp. order Cutting speed (rpm) Depth of cut (mm) Type of cutting tool MRR (mm3/s) Torque (nm) )rust force (N)
1 90 0.2 HSST-TiAlN 4.781 0.3924 93.2
2 90 0.4 HSST 5.628 0.2943 78.48
3 90 0.6 HSST-TiN 5.203 0.3679 103.005
4 270 0.2 HSST 9.111 0.3434 88.29
5 270 0.4 HSST-TiN 10.453 0.4170 78.48
6 270 0.6 HSST-TiAlN 12.755 0.4415 122.63
7 450 0.2 HSST-TiN 18.272 0.5396 117.72
8 450 0.4 HSST-TiAlN 19.737 0.5886 176.58
9 450 0.6 HSST 22.222 0.4022 127.53

Table 8: Regression model and summary results for MRR.

Model

MRR� 4.19 + 0.00039 speed−

2.30 doc + 0.000058 speed ∗

speed + 3.0 doc ∗ doc + 0.02450
speed ∗ doc

Summary results S value R2 value
0.652535 0.9964

Advances in Materials Science and Engineering 7
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Figure 4: (a)Response surface graph for MRR (cutting speed vs. depth of cut). (b)Contour surface plot for MRR (cutting speed vs. depth of
cut).

Table 9: Regression model and summary results for MRR.

Model MRR� 6.03 + 0.0147 speed− 3.59 tool + 0.000058 speed
∗ speed + 1.06 tool ∗ tool− 0.00228 speed ∗ tool

Summary results S value R2 value
2.01489 0.9656
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Figure 5: (a)Response surface graph for MRR (cutting speed vs. type of cutting tool). (b)Contour surface plot for MRR (cutting speed vs.
type of cutting tool).

Table 10: Regression model and summary results for MRR.

Model MRR� 8.0 + 17 doc− 1.6 tool + 3 doc ∗ doc +
1.06 tool ∗ tool− 6.4 doc ∗ tool

Summary results S value R2 value
4.5562 0.8554
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4.2.2. Regression Analysis for Torque (Cutting Speed vs. Type
of Cutting Tool). )e following R2 value of 0.9880 in Table 12
represents that the torque impacts the cutting speed and type
of cutting tool.

Figures 8(a) and 8(b) depict the three-dimensional
surface plot and two-dimensional contour plot, respectively.
It was discovered that when the cutting speed increases, the
machining torque also increases.)e type of cutting tool also
plays a vital role in developing the machining torque. )e

torque value rises steeply for any cutting tool and attains a
maximum value of 0.6Nm at a cutting speed of 450 rpm
using the TiAlN coated HSS cutting tool.

4.2.3. Regression Analysis for Torque (Type of Cutting Tool vs.
Depth of Cut). )e following R2 value of 0.8040 in Table 13
represents that the Torque has a low impact on the type of
cutting tool and depth of cut.
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Figure 6: (a)Response surface graph forMRR (type of cutting tool vs. depth of cut). (b)Contour surface plot forMRR (type of cutting tool vs.
depth of cut).

Table 11: Regression model and summary results for torque.

Model Torque� 0.224 + 0.00025 speed + 0.53 doc + 0.000001 speed
∗ speed− 0.47 doc ∗ doc− 0.00078 speed ∗ doc

Summary results S value R2 value
0.0904253 0.8427
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Figure 7: (a)Response surface graph for torque (cutting speed vs. depth of cut). (b)Contour surface plot for torque (cutting speed vs. depth
of cut).
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)e TiN coating enhances the machining torque irre-
spective of the depth of cut. But TiAlN coating still increases
the machining torque resulting in a better milling process.

)e response and contour graphs for machining torque
by varying the input process parameters such as type of
cutting tool and depth of cut are shown in Figures 9(a) and
9(b), respectively.)rust force is also calculated in the study,
and it is used for analyzing the impact of coated cutting tools
at higher cutting speeds. )e results of the thrust force are
discussed in the next section.

4.3. Second-Order Polynomial Regression Analysis for "rust
Force. By managing the tool wear rate, the thrust force
controls the tool life of the cutting tool under defined op-
erating conditions. Hence, this response is considered in this
study to understand its impact on the coated cutting tools.

4.3.1. Regression Analysis for "rust Force (Cutting Speed vs.
Depth of Cut). )e following R2 value of 0.8294 in Table 14
represents that the thrust force moderately impacts the
cutting speed and depth of cut. Figures 10(a) and 10(b) show
the three-dimensional response surface plot and two-di-
mensional contour plot, respectively.

It was discovered that as the cutting speed increases, the
thrust force also increases. )e thrust force increases as the
cut depth increases. It was discovered that, with higher
cutting speeds and deeper cuts, the maximal value of thrust
force was recorded.

4.3.2. Regression Analysis for "rust Force (Cutting Speed vs.
Type of Cutting Tool). )e following R2 value of 0.8662 in
Table 15 represents that the thrust force has a high impact on
the cutting speed and cutting tool type.

It is evident from the response plots in Figures 11(a) and
11(b) that the maximum thrust force is obtained using
TiAlN coated cutting tool at 450 rpm. )e milling efficiency
is higher, and the tool wear is lower at these controlled
process parameters.

4.3.3. Regression Analysis for "rust Force (Depth of Cut vs.
Type of Cutting Tool). )e depth of cut considered in this
study has the least significant difference to impact the thrust
force.)e R2 value of 0.8303 in Table 16 represents that there
will be some additional factors or higher order levels of
depth of cut to understand this process parameter study
better.

Table 12: Regression model and summary results for Torque.

Model Torque� 0.1847− 0.000308 speed + 0.1551 tool + 0.000001 speed;
∗ speed− 0.0311 tool ∗ tool + 0.000123 speed ∗ tool

Summary results S value R2 value
0.0165464 0.9880
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Figure 8: (a)Response surface graph for Torque (cutting Speed vs. type of cutting tool). (b)Contour surface plot for Torque (cutting Speed
vs. type of cutting tool).

Table 13: Regression model and summary results for Torque.

Model Torque� 0.138 + 0.35 doc + 0.193 tool− 0.47 doc
∗ doc− 0.0311 tool ∗ tool− 0.012 doc ∗ tool

Summary results S value R2 value
0.116786 0.8040

10 Advances in Materials Science and Engineering



)e response surface plot in Figure 12(a) is almost flat for
the depth of cut axis. )e thrust force values mentioned in
Figure 12(b) show similar near-net values. )us, there is a

most negligible impact on the levels of depth of cut, and its
contribution over the output responses is minimal in this
study.
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Figure 9: (a) Response surface graph for Torque (type of cutting tool vs. depth of cut). (b)Contour surface plot for Torque (type of cutting
tool vs. depth of cut).

Table 14: Regression model and summary results for )rust force.

Model )rust force� 77.7− 0.191 Speed + 94 DOC+ 0.000606
Speed ∗ Speed− 61 DOC ∗ DOC+0.000 Speed ∗ DOC

Summary results S value R2 value
30.9372 0.8294
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Figure 10: (a) Response surface graph for )rust force (depth of cut vs. cutting speed). (b) Contour surface plot for )rust force (depth of
cut vs. cutting speed).

Table 15: Regression model and summary results for )rust force.

Model )rust force� 145.9− 0.286 Speed− 55.4 tool + 0.000606
Speed ∗ Speed + 14.7 tool ∗ tool + 0.0477 Speed ∗ tool

Summary results S value R2 value
18.5875 0.8662
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4.4. Calculation of GRG Using Grey Relational Analysis.
)e Signal-to-Noise (S/N) ratio for MRR, Torque, and
)rust force is calculated using the Larger the Better char-
acteristic. )e formula to calculate the S/N ratio is given in
equation (4) for the output responses.

S

N
ratio � −10log10

1
r
. 􏽘

n

k�1

1
yi

􏼠 􏼡

2

k

⎛⎝ ⎞⎠, (4)

where yi is the measured output response; r represents the
experiment replications; n is the number of output responses
considered in this study; n is the maximum number of
experiments carried out by varying the input process pa-
rameters; k is the experimental order value, which ranges
from 1, 2, 3, . . .n.

)e experimental trials’ normalized S/N ratio (Zi) values
modify the S/N ratio values restrained on a separate scale to a
standard scale.)e normalized S/N ratio values are fitted to a
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Figure 11: (a) Response surface plot for)rust force (cutting tool-type vs. cutting speed). (b) Contour surface plot for)rust force (cutting
tool-type vs. cutting speed).

Table 16: Regression model and summary results for )rust force.

Model )rust force� 90 + 119DOC− 38 tool− 61DOC
∗ DOC+14.7 tool ∗ tool− 12DOC ∗ tool

Summary results S value R2 value
41.5864 0.8303
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Figure 12: (a) Response surface plot for )rust force (depth of cut vs. cutting tool type). (b) Contour surface plot for )rust force (depth of
cut vs. cutting tool type).
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scale ranging from 0 to 1. )e normalized S/N ratio for the
larger the better characteristic condition is calculated using

Zi �
yi − min yi, i � 1, 2, . . . , n( 􏼁

max yi, i � 1, 2, . . . , n( 􏼁 − min yi, i � 1, 2, . . . , n( 􏼁
.

(5)

)ese normalized S/N ratio values are used to find the
relationship from the output responses by calculating the
Grey Relational Coefficient (GRC) values, calculated using

GRC �
Δmin + ζΔmax
Δ(i) + ζΔmax

. (6)

In the above relation, Δmin and Δmax represent the
minimum and maximum of the normalized S/N ratio, re-
spectively. Δi is the normalized S/N ratio for the ith ex-
perimental order in the set of executed experiments. )e
final step is calculating the Grey Relational Grade (GRG) by
amalgamating the effect of all the individual measured re-
sponses (MRR, Torque, and )rust force) into a single re-
sponse. Equation (7) represents the formula to calculate the
GRG for the set of experiments:

GRGi �
1
m

􏽘

m

i�1
GRCi, (7)

where m is the total number of experiments.
)e GRG results are used to construct the quadratic

polynomial regression equation to map the relationship
between the input process parameter and output response.
)e GRG values provide the quality characteristic for the
multiresponse considered in this study. )e higher value of
GRG represents the experimental order offers more accurate
and optimized results for the given input set of process
parameters in this study. )e calculated GRG values are
shown in Table 17 for each set of the input process pa-
rameters in the experimental order. )ese numbers are
examined to determine the best set of process parameter
combinations for achieving the desired result.

)ese GRG values represent the output response such as
MRR, Torque, and)rust force into a single value. )is data
provides the relationship between all the responses over the
input process parameter values. Table 18 provides the
Analysis of Variance (ANOVA) results for the selected
factors and their effect on the interaction between the
process parameters combination. )e normalized S/N ratio
is calculated for the eta value of 0.8. )e larger the better
characteristic is considered for all output responses con-
sidered in this study.

Linear interaction, square interaction, and two-way
interaction are considered in this study to understand the
impact of the input process parameters over the desired
output response. )e percentage contribution of the model
values for each input process parameter is given in Table 18.
)e individual factor contribution (linear model) accounts
for 97.05%. )e cutting speed variation significantly impacts
the MRR, and a more significant amount of thrust force is
needed to achieve the required machining torque. )e
coated cutting tool is the second predominant factor,

contributing 13.99% in this process parameter optimization
study. )e depth of cut values are limited to a minimum
value. )is work can be extended to study the same milling
process parameter setting at a higher depth of cut in the same
AA 2014 material.

All the interaction terms (square and 2-way interaction)
contribution is minimal, and the F-ratio value represents
that these values are less significant in this study. )e
ANOVA table is calculated for 95% confidence interval and
5% significance level for the control factors over the GRG
values calculated from the desired output responses. Fig-
ure 13 maps the percentage contribution of individual
characteristics and their interaction values in the form of a
three-dimensional pie-chart.

)e variation of GRG values for the L9 experimental
matrix considered in this study for the corresponding
process parameter setting is displayed in Figure 14. )ese
means of the GRG values are analyzed further to find the
optimum process parameter setting for milling AA 2014
material using the coated cutting tools.

4.5. Grey Taguchi-Based Response Surface Methodology.
)e second-order polynomial regression equation is derived
to find the GRG values at a particular process parameter
setting. Equation (8) shows the final derived result for the
input process parameters:

GRG � 0.9702 − 0.001070 Speed + 0.618DOC

+ 0.025 Tool − 0.00 Speed∗ Speed

− 1.225DOC∗DOC − 0.0244 Tool∗Tool

+ 0.000756 Speed∗DOC.

(8)

)e formulated regression equation is statistically fitted
with the measured experimental data values. )e R2 and
adjusted R2 values are calculated for this derived model to
check the efficacy of the proposed GRG polynomial re-
gression equation.

)e R2 value (0.9970) is of near unity in Table 19, for the
predicted GRG model, representing no intervention of ex-
ternal factors in the fitted model. )e adjusted R2 value
reasonably agrees with the predicted R2 value, indicating that
the experimental data fit adequately in the proposed second-
order polynomial regression model.

4.5.1. Regression Analysis for GRG (Cutting Speed, Depth of
Cut). )e GRG model equation is derived for the cutting
speed and depth of cut with an R2 value of 0.8549. Table 20
depicts the regressionmodel and the summary results for the
input process parameter combination (Cutting speed and
Depth of Cut).

)is response and contour graph in Figures 15(a) and
15(b) represent the impact of cutting speed and depth of cut
over the combined effect of all the measured output re-
sponses. Larger depth of cut and higher cutting speed need
robust machine structure and holding fixture for proper
machining accuracy and better surface finish in the ma-
chined parts. )e mean range value of cutting speed

Advances in Materials Science and Engineering 13



Table 17: Calculation of Grey Relational Grade (GRG) values.

Exp. order
S/N ratio Normalized S/N ratio GRC

GRG
MRR Torque )rust force MRR Torque )rust force MRR Torque )rust force

1 13.5904 −8.1254 39.3883 0 0.415 0.2119 1 0.6584 0.7906 0.8163
2 15.0071 −10.624 37.8952 0.106 0 0 0.883 1 1 0.961
3 14.3251 −8.6854 40.2572 0.055 0.322 0.3353 0.9357 0.7129 0.7047 0.7844
4 19.1913 −9.2840 38.9182 0.4197 0.223 0.1452 0.6559 0.782 0.8464 0.7614
5 20.3848 −7.5973 37.8952 0.509 0.5028 0 0.6112 0.614 1 0.7417
6 22.1136 −7.1014 41.7719 0.639 0.585 0.5504 0.556 0.5776 0.5924 0.5753
7 25.2357 −5.3586 41.4170 0.873 0.875 0.5 0.4782 0.4776 0.6154 0.5237
8 25.9056 −4.6036 44.9388 0.923 1 1 0.4643 0.444 0.444 0.4508
9 26.9357 −7.9112 42.1122 1 0.4506 0.5987 0.444 0.6397 0.5720 0.5519
Min. 13.5904 −10.624 37.8952
Max. 26.9357 −4.6036 44.9388
Delta 13.3453 6.0206 7.0436
∗)e larger the better–material removal rate, torque, and thrust force.

Table 18: ANOVA to investigate the input factor contribution for milling AA 2014.

Source DF Adj. SS Adj. MS F-value P-value % contribution Remarks
Model 7 0.222295 0.031756 47.40 0.111
Linear 3 0.215735 0.071912 107.34 0.071 97.05 Significant
Speed 1 0.178641 0.178641 266.66 0.039 80.36 Significant
DOC 1 0.006004 0.006004 8.96 0.205 2.70 Less significant
Tool 1 0.031090 0.031090 46.41 0.093 13.99 Significant

Square 3 0.005657 0.001886 2.81 0.407 2.54 Insignificant
Speed ∗ Speed 1 0.000262 0.000262 0.39 0.644 0.118 Insignificant
DOC ∗ DOC 1 0.004802 0.004802 7.17 0.228 2.16 Insignificant
Tool ∗ Tool 1 0.000593 0.000593 0.89 0.519 0.267 Insignificant

2-Way Interaction 1 0.001480 0.001480 2.21 0.377 0.6658 Insignificant
Speed ∗ DOC 1 0.001480 0.001480 2.21 0.377 0.6658 Insignificant

Error 1 0.000670 0.000670 0.3 Insignificant
Total 8 0.222965
∗DOC–depth of cut.

81%

3%

14%
0%

Speed
Depth of cut
Type of cutting tool

Square Interaction
2-way Interaction
Error

Figure 13: Percentage contribution of the input process parameters and their interactions.
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considered in this study will provide better results in the
milled parts of AA 2014 material.

4.5.2. Regression Analysis for GRG (Cutting Speed, Type of
Cutting Tool). )e R2 value (0.9440) is close to unity, which
indicates that the cutting speed and the type of cutting tool
have a more significant contribution to the output response
than DOC values. Table 21 shows the regression model and
the fit efficiency test results.

)e three-dimensional plot in Figure 16(a) shows a flat
plane, where there is a steep and unidirectional variation in
the output response for the type of cutting tool and cutting
speed. )is process parameter combination holds the most
significant stake in the output response value.

4.5.3. Regression Analysis for GRG (Type of Cutting Tool,
Depth of Cut). )e R2 value of 0.8891 in Table 22 indicates
that the model is statistically fit. )ere is a possibility that the
inclusion of error terms in the model may increase the fit R2

value. Since the Aluminum alloy AA 2014 is highly mal-
leable, the cutting tool may plunge quickly into the material
resulting in good machinability.

)e coated cutting tool with different coating conditions
is the second most dominant factor in milling AA 2014
material. )e three-dimensional response surface and two-
dimensional contour plots in Figures 17(a) and 17(b) show a
limited variation of the GRG over the change in the DOC

values. In addition to these significant parameters, the feed
rate is also a parameter considered usually in the machining
parameter optimization. )is parameter is regarded as a
constant in this study to better understand the implications
of coated cutting tools. Similarly, there are a lot of external
factors affecting the machining of AA 2014 material. )ose
parameters are considered as residuals or errors in the study.
Residual analysis is discussed in the next section, providing a
clear-cut idea of the influence of unconsidered process
parameters in this experimental study.

4.6. Residual Analysis Study. )e residual plots to analyze
the error distribution [23] are plotted in Figure 18 as normal
probability plot, error fit values, and histogram sorting for
the corresponding experimental order considered in this
study.

In the main effect plots of Figure 19, the maximum
values for each input process parameter (cutting speed,
depth of cut, and kind of coated cutting tool) imply a su-
perior process parameter level setting for the relevant factor.
But these parameters need to be optimized further by de-
sirability analysis for better-optimized process parameter
setting values.

)e mean of GRG values is consistently increasing with
the increase in the cutting speed, thereby better milling
operation at 450 rpm in this study. But the vibration in the
structure has a significant impact on the surface roughness
in the machined surfaces.)emean GRG values for depth of
cut has minor variation, because there is no significant
impact at a considered depth of cut parameter level values.
)e TiAlN coating substantially impacts the considered
output responses over the uncoated and TiN coated HSS end
mill cutter. )e TiAlN coated cutting tool, cutting speed of
450 rpm, and depth of cut of 0.6mm have the higher mean of
GRG values in this process parameter optimization study.

4.7. Predicted vsActualGRGValues. )e regression model is
validated by plotting the actual and predicted GRG values
using the Design-Expert software (version 13).)e closeness
in the values is observed at two locations in the graph, as
shown in Figure 20. )e predicted GRG values are obtained
from the polynomial second-order regression equation.

4.8. Process Parameter Optimization Using Desirability
Analysis. )e desirability analysis test is carried out to
predict the optimum input process parameters based on
GRG values. Figure 21 shows the overall map of the input
process parameter with the desirability and GRG values. )e
process capability index, Cpk function, is used for the pre-
dicted GRG values.)e process parameter set containing the
maximum desirability value is preferred to be the optimal
process parameter setting values [24]. )e variation of the
input factors over the desirability function and predicted
GRG values is represented in the form of line graphs.

)e ramp function plot in Figure 22 shows the optimized
process parameter setting value for the corresponding GRG
desirability value. )e blue dot in Figure 22 (use web
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Figure 14: GRG values for the corresponding experimental order.

Table 19: Model summary result.

S value R2 value R2 value (adj.)
0.0258829 0.9970 0.9760

Table 20: Regression model and summary results for GRG.

Model

GRG� 0.871− 0.00093 Speed +
0.71DOC− 0.00 Speed
∗ Speed− 1.22

DOC ∗ DOC+0.00042
Speed ∗ DOC

Summary results S value R2 value
0.103847 0.8549
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Figure 15: (a) Response surface plot for GRG (cutting speed vs. depth of cut). (b)Contour surface plot for GRG (cutting speed vs. depth of
cut).

Table 21: Regression model and summary results for GRG.

Model GRG� 1.112− 0.000889 Speed− 0.100 Tool− 0.00 Speed
∗ speed + 0.0029 Tool ∗ tool + 0.000061 Speed ∗ Tool

Summary results S value R2 value
0.0644990 0.9440
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Figure 16: (a) Response surface plot for GRG (cutting speed vs. type of cutting tool). (b) Contour surface plot for GRG (cutting speed vs.
type of cutting tool).

Table 22: Regression model and summary results for GRG.

Model GRG� 0.707 + 0.90DOC− 0.068 Tool− 1.22DOC
∗ DOC+0.003 Tool ∗ Tool− 0.039DOC ∗ Tool

Summary results S value R2 value
0.245496 0.8891
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Figure 17: (a) Response surface plot for GRG (depth of cut vs. type of cutting tool). (b) Contour surface plot for GRG (depth of cut vs. type
of cutting tool).
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Figure 18: Residual plot analysis for milling AA 2014 material.
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version) represents the desired process capability index
value (1.89387) with its corresponding GRG value
(0.637067).

In accordance with the index value, the optimized
process parameters obtained in this study are cutting speed
(270 rpm), depth of cut (0.2mm), and HSS cutting tool
coated with TiAlN material [25]. To validate the results, a
confirmation experiment is carried out for this best process
parameter combination.

5. Conclusion

)e impact of TiN and TiAlN coating on the HSS tool was
studied by analyzing output response parameters such as
MRR, Torque, and )rust force.

)e ANOVA table results show that the cutting speed
has 80.36% contribution, followed by the type of coated
cutting tool with 13.99% contribution. )e percentage
contribution indicates that the input factor selection and
level setting values are correctly designed in this experi-
mental study.

)e output response parameters are analyzed using Grey
Relational Analysis, and the results are plotted in the form of
response surface and contour surface graphs for better
visualization.

)e process factors such as cutting speed of 270 rpm,
depth of cut of 0.2mm, and TiAlN coated HSS cutting tool
have the highest process capability index value of 1.89387
and desirability value of 0.637067. Hence, this process pa-
rameter setting is considered the optimized results for
milling AA 2014 material in this study.
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