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In the present study, we consider baryons as three-body bound systems according to the hypercentral constituent quark model in
configuration space and solve the three-body Klein-Gordon equation. Then, we analyze perturbative spin-dependent and isospin-
dependent interaction effects. To find the analytical solution, we use screened potential and calculate the eigenfunctions and
eigenvalues of some baryons. We consider exclusive semileptonic decays of bottom and charm baryons and apply the
differential decay width with the Isgur-Wise function and arrive at the rates for some semileptonic baryon decays. The results
prove more enhanced compared to recent works and comply well with the experimental data.

1. Introduction

Exact solutions have been of paramount importance in the
study of relativistic and nonrelativistic quantum systems as
they can yield useful information on these systems. Never-
theless, there are so few exact solutions that approximate
methods are often used to investigate quantum systems.
For instance, Schrödinger, Klein-Gordon, and Bethe-
Salpeter equations have been solved through proper approx-
imation [1–3] to the centrifugal term for a number of poten-
tials like Eckart [4], Manning-Rosen [5], Pusch-Terrel [6],
Hulthen [7], and Wei et al. [8] employed an approximation
to arrive at the approximative analytical l-wave scattering
solutions of the Schrödinger equation. Their findings closely
comply with other studies as for short-range potentials but
differ as for long-range ones. They also solved the Klein-
Gordon equation by the unequal scalar and vector Hulthen
potential via a creative approximation to the centrifugal
term [9].

In this study, the baryons are treated as spin-
independent three-quark systems and based on hyperspheri-
cal approach; a nonrelativistic quark model is presented for
them. Considering the significance of the analytical solution
for the qualitative analysis of the spectrum, we present ana-
lytical formalisms for wave functions and energy levels by
using the screened potential. In the 1980s, a screening mul-

tiplicative factor in the potential was presented [10, 11].
Accordingly for larger distances, the screened linear term
in the potential acts as the dominant term, so the most
excited states are supposed as confinement states, which
are determined by considering merely the screened linear
interaction. Also for short distances, due to the small linear
term, the Coulomb term is dominant. Therefore, screened
potential accounts for the behavior of quarks according to
the QCD rules [12]. Finally, we make use of spin-isospin
and flavor-dependent interactions to identify the baryon
energy spectrum more accurately.

In the next section of this paper, we examine the heavy-
to-light semileptonic decays of heavy baryons. These decays
are utilized to determine the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements. For this purpose, we use the
Isgur-Wise function (IWF). The IWF has provided physi-
cists with remarkable results for transitions of bottom
baryons into charm baryons [13]. The calculation of the
IWF yields useful information on the decay width, branch-
ing ratio, and CKM matrix [10, 14, 15]. Ivanov et al. studied
the semileptonic decays of bottom and charm baryons
within the relativistic quark model [16]. Recent measure-
ments and the pertinent theoretical approaches contribute
greatly to understanding the decays of bottom baryons. A
number of scholars have made attempts to study the struc-
ture of heavy-baryon transitions via IWF formalism. Ke
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et al. [17] investigated baryon weak decays in the light-front
quark model. Using the heavy diquark model for baryons,
Viet described the matrix elements of weak currents of
baryons through universal IWF [18]. Ebert et al. [19] used
the relativistic quark model to calculate the semileptonic
decay rates of heavy baryons. Cardarelli and Simula explored
the corresponding form factors of heavy baryons in a light-
front constituent quark model [20]. Körner et al. also studied
the heavy baryon transitions and analyzed the decay rates,
polarization effects, lifetimes and angular decay distribu-
tions [21].

In our previous works, we solved the Schrödinger equa-
tion for different potentials for few-quark systems [22–25].
In a more recent work, we investigated the relativistic
Klein-Gordon equation analytically for the Deng-Fan poten-
tial and Hulthen plus Eckart potential under the equal vector
and scalar potential conditions [26]. In this paper, we study
our three-body system and make use of the hyperspherical
coordinates and calculate the parameters of the IWF for
some baryons. The purpose of this study is to investigate
the heavy-baryon decays in hyperspherical coordinates. To
this end, we use the hyperradial Klein-Gordon equation in
configuration space in Section 2. Afterwards, in Section 3,
we solve the Klein-Gordon equation via screened potential.
Then, by analyzing the IWF corresponding to hyperspheri-
cal coordinates, we study the heavy-baryon decays and cal-
culate the decay width of these particles in Section 4. And
finally, the relevant conclusions are presented in Section 5.

2. The Three-Body Problem

Calculations of mass and energy of some heavy baryons have
been carried out through a simple semirelativistic quark
model. Assuming a dominant SU(6)-invariant spectrum in
the nonrelativistic hypercentral constituent quark model
which led to the apparent success in describing the mass
spectra and other observables motivates us to introduce a
spin-independent relativistic description to approximate
the problem and then deal the SU(6)-breaking interactions
perturbatively.

In this study, we investigate baryons using a semirelati-
vistic model based on the hypercentral quark constituent
model. Due to the significance of the relativistic analysis of
particles behavior within bound systems, we study baryons
as three-quark systems while taking relativistic effects into
account. Totally relativistic study of baryons demands solv-
ing the Dirac equation for each quark (while considering
interquark interactions). Totally relativistic solution to a
three-body problem is difficult. Thus, we have to apply a
few simplifications to solve this problem. As the first step
to simplify the particles’ spin and isospin, we introduce spin
and isospin effects perturbatively. The reason for the
assumption is the experimental baryon spectra has a SU(6)
symmetry for baryon resonances. Therefore, for the SU(6)-
invariance part, we can considerations as a three-quark sys-
tem of zero-spin and use a separate relativistic description of
spin for the baryon spectrum. The exact analytical formulas
for energy levels and wave functions have been obtained,
which can be used for a parametric analysis of the problem.

The three-body Klein-Gordon equation with equal scalar
and vector potentials in the natural unit h = c = 1 is of this
form [9]:

〠
3

i=1
p2i + m + εð Þ〠

3

j≠i
Vij + 3 m2 − ε2

� � !
ψij = 0, ð1Þ

where jψi denotes the total wave function of the three-body
system and 3ε is its total energy. Vij stands for the potential
of interaction between the i-th and j-th particles. We solve
the three-body spherical coordinates system and express
the spatial degrees of freedom in terms of Jacobian momen-
tums. Jacobi coordinates to define three-body basis states are
given by [27, 28]

ρ = r1 − r2ffiffiffi
2

p ,

λ = 1ffiffiffi
6

p r1 + r2 − 2r3ð Þ:
ð2Þ

Here ri (i = 1, 2, 3) denote coordinate of the i-th constit-
uent quark and m is the constituent quark mass. In the
numerical calculations we take the values of the quark
masses as ms = 0:483GeV, mu =md = 0:336GeV, mb =
4:950GeV, and mc = 1:550GeV. In hyperspherical coordi-
nates, the hyperradius and hyperangle are defined as in
Figure 1.

x =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2i + λ2i

q
= r212 + r223 + r213

3

� �1/2
, φ = arctan ρi

λi

� �
: ð3Þ

In addition to x and φ, four polar angles Ωρl and Ωλl

show the orientation of Jacobian vectors according to refer-
ence experimental frameworks. For Jacobian momentums,
P = ðp1 + p2 + p3Þ/

ffiffiffi
3

p
. In mass center framework, p = 0.

Accordingly, ∑3
i=1p

2
i for three particles in six dimensions is

〠
3

i=1
p2i = p2ρl + p2λl = − ∇2

ρl + ∇2
λl

	 

= ∇2

ξi
: ð4Þ

In hyperspherical coordinates in the D-dimensional
space, the Laplace operator for N particles generally
becomes

〠
N−1

i=1
∇2
ξi
= −

d2

dx2
+ D − 1

x
d
dx

+ L2 Ωð Þ
x2

 !

= −
1

xD−1
d
dx

xD−1
d
dx

� �
+ L2 Ωð Þ

x2

� �
:

ð5Þ

The term L2ðΩÞ/x2, as a generalization of the centrifugal
barrier for the six-dimensional space, involves the angular
coordinates Ωρ and Ωλ and the hyperangle ξ. In a three-
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body system,

L2 Ω5ð ÞY γ½ � Ω5ð Þ = γ γ + 4ð ÞY γ½ � Ω5ð Þ, ð6Þ

where λ is the polynomial order and λ = 2n + lρ + lλ. lρðlλÞ
where n is a positive integer and lρ and lλ denote the quan-
tum numbers of angular momentums related to λ and ρ
coordinates. According to the hypercentral hypothesis, the
interacting potential in equation (1) can be expressed as a
function of hyperradius x only:

V r1 − r2j jð Þ +V r2 − r3j jð Þ + V r1 − r3j jð Þ
≈V r1 − r2j j, r2 − r3j j, r1 − r3j jð Þ ≈V xð Þ:

ð7Þ

The potential VðxÞ is known as hypercentral, which is
invariant for any rotation in D-dimensional space spanned
by the coordinates and OðDÞ symmetry. Depending on the
hyperradius x implies that the potential has a three-body
character as the dependence on the single-pair coordinates
cannot be disentangled from the other particles. Accord-
ingly, the following three-body Klein-Gordon equation,

∂2

∂x2
+ 5
x
∂
∂x

−
γ γ + 4ð Þ

x2
+ 3 ε2 −m2� �

− ε +mð ÞV xð Þ
" #

ψν,γ xð Þ = 0,

ð8Þ

can be reduced to a six-dimensional time-dependent
Schrodinger-like equation:

H0 +Vð Þψ = Eψ, ð9Þ

where

H0 =
∂2

∂x2
+ 5
x
∂
∂x

−
γ γ + 4ð Þ

x2
, V = − m + εð ÞV xð Þ, E = −3 ε2 −m2� �

:

ð10Þ

3. Screened Potential

Screened potential is of the following form [12]:

V xð Þ = �σx
1 − e−μx

μx

� �
−
2
3 �αs

e−μx

x
: ð11Þ

The hat over the parameters in the potential distin-
guishes them from the nonscreened case; �σ corresponds to
the string tension of the confinement in screened case. �αs
is a parameter representing the Coulomb strength, and μ
stands for a screening parameter. By using the following
approximation to the first order,

e−μx ≃ 1 − μx + μxð Þ2
2! −

μxð Þ3
3! +⋯: ð12Þ

This potential turns out as

V xð Þ = �σx −
2
3
�αs
x

+ 2
3 �αsμ: ð13Þ

By using variable changes s = ð1/xÞ, β = 1/x0, and z = s
− β,

x = 1
s
= 1
z + β

= 1
β

1 − z
β
+ z

β

� �2
+⋯

 !

= 1
β

1 − s − β

β
+ s − β

β

� �2
+⋯

 !
:

ð14Þ
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Figure 1: The hyperradius and hyperangle.
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By simplifying the above equation, we arrive at

x = 1
β

3 − 3s
β

+ s2

β2

� �
= 3x0 −

3x20
x

+ x30
x2

: ð15Þ

x0 is supposed as a characteristic radius of the baryon.
The screened potential appears as

V xð Þ = 3�σx0 −
3�σx20 + 2/3�αs

x
+ �σx30

x2
+ 2
3 �αsμ,

ð16Þ

∂2

∂x2
+ 5
x
∂
∂x

−
γ γ + 4ð Þ

x2
+ 3 ε2 −m2� �

− ε +mð Þ
"

� 3�σx0 −
3�σx20 + 2/3ð Þ�αs

x
+ �σx30

x2
+ 2
3 �αsμ

� ��
ψν,γ xð Þ = 0,

ð17Þ
which can be reformulated as

∂2

∂x2
+ 5
x
∂
∂x

+ −A + B
x
−

C
x2

� �" #
ψν,γ xð Þ = 0, ð18Þ

where A, B, and C appear as the following.

A = ε +mð Þ −3 ε −mð Þ + 3�σx0 +
2
3 �αsμ

� �
,

B = ε +mð Þ 3�σx20 +
2
3 �αs

� �
,

C = γ γ + 4ð Þ + ε +mð Þ�σx30:

ð19Þ

By using Nikiforov-Uvarov (NU) method (see appen-
dix), we calculate the values for constant parameters αis, as
we calculated these parameters in [26]. They are shown in
Table 1. By introducing these values into equation (18),

2ν + 1ð Þ
ffiffiffiffi
A

p
− B + 2

ffiffiffiffi
A

p
×

ffiffiffiffiffiffiffiffiffiffiffi
4 + C

p
= 0⇒ A

= B

2ν + 1 + 2
ffiffiffiffiffiffiffiffiffiffiffi
4 + C

p
� �2

:
ð20Þ

By introducing the values of A, B, and C into equation
(17),

−3 ε −mð Þ + 3�σx0 +
2
3 �αsμ = ε +mð Þ 3�σx20 + 2/3ð Þ�αs

� �2
2ν + 1 + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ + 2ð Þ2 + ε +mð Þ~σx30

q� �2 :

ð21Þ

And new variables are defined as

~σ = 3�σx20 +
2
3 �αs,

~γ + 2 = γ + 2ð Þ2 + ε +mð Þ�σx30
� �1/2

:

ð22Þ

With the above variable changes and simple calculations
employed, the energy eigenvalues will be

Eν,γ =
2
3 �αsμ + 3�σx0 −

m~σ2

2 ν + ~γ + 5/2ð Þ2 : ð23Þ

As α3 = 0, then to calculate the wave function, the Logger
polynomial is used. Therefore, the wave function will be

ψν,γ xð Þ =Nν,γx
~γe−gxL2~γ+4ν 2gxð Þ: ð24Þ

Here, γ, the degree of the polynomial, is called the grand
orbital quantum number and is equal to 2n + lρ + lγ and υ

= 0, 1, 2,⋯ according to the hypercentral hypothesis. Also,
g = ð2/3Þαsðm + εÞ/ðν + ~γ + 5/2Þ and Nν,γ is a normalization
coefficient. The baryon masses are obtained via

Nν,γ =
ν!ð Þ 2gð Þ 2~γ+6ð Þ

2 ν + ~γ + 5/2ð Þ ν + 2~γ + 4ð Þ!

" #1/2
: ð25Þ

Similarly, we can repeat this iteration for other modes;
we obtain the energy and the corresponding wave function
for any arbitrary υ. We have plotted the distribution of
hyperradial wave function density for Ω−, Ξ0, Ξ+ in
Figure 2. As expected, the wave function peak height grows
larger as the baryon mass increases. By obtaining energy,
we calculate the mass of baryon according to the following
equation:

Mν,γ = E0 + Eν,γ + Hinth i, ð26Þ

where E0 is calculated for the ground state. Hint is the
perturbation Hamiltonian and depends on the spin, isospin,
and flavor degrees of freedom. Table 2 displays the fitted
values for calculating the energy eigenvalue.

Table 1: Constant parameters.

Analytical value Constant

5 α1

0 α2

0 α3

−2 α4

0 α5

A α6

−B α7

4 + C α8

A α9

1 + 2
ffiffiffiffiffiffiffiffiffiffiffi
4 + C

p
α10

2
ffiffiffiffi
A

p
α11

−2 +
ffiffiffiffiffiffiffiffiffiffiffi
4 + C

p
α12

−
ffiffiffiffi
A

p
α13
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Table 3 presents the results obtained for spinless ground
state of some baryons. These results are consistent with par-
ticle data group [29]. Even though the terms of tensor and
spin-orbit are small, to achieve higher accuracy, these terms
are considered as perturbation potentials and the perturba-
tion energy levels are calculated. The perturbation method
is helpful when the eigenstates cannot be obtained easily.
To obtain the first-order correction of the energy eigenstates,
we calculate the expected value of the perturbed potential
while the system is in the unperturbed state.

Hint rð Þh i =
ð
ψ∗
ν,γ rð ÞHint rð Þψν,γ rð Þr2dr, ð27Þ

where HintðrÞ =HS1,S2ðrÞ +HI1,I2ðrÞ +HS,IðrÞ. This inter-
action for a particle by total spin S and isospin T is of the fol-
lowing form:

H int rð Þ = AS S2 −
9
4

� �
+ AI T2 −

9
4

� �
+ ASI S2 −

9
4

� �
T2 −

9
4

� �� �
e−μr

r
,

ð28Þ

where AS = 35:46, AI = 33:49, ASI = −3:94 (all in
MeV·fm) and S is spin and T is isospin of the baryon. From
equation (28), it can be deduced that H int in baryons is non-
zero. Only for particles with S = T = 1:5 and S = T = 4:4 is
this perturbative energy of order 1 zero, and such particles
do not physically exist. Table 4 presents our results as com-
pared to the results from the nonrelativistic method [30] and
lattice QCD calculations [31, 32]. As observed, there is a
good agreement between the two sets of results. References

[33, 34] also determine the spectra of c quark and b quark
baryons, and they use the color coulomb plus power and
the hyper-Coulomb plus linear potentials, respectively, to
solve six-dimensional Schrödinger equation numerically
using the Mathematica method.

4. Isgur-Wise Function and Semileptonic
Decays of Baryons

The IWF may be parameterized in different ways [17, 35,
36]. In the approximation of infinite heavy quark masses,
the form factors Fi,Giði = 1, 2, 3Þ define the semileptonic
transition of Λb related to a particular universal IWF. These
form factors appear as

F1 q2
� �

=G1 q2
� �

= ξ ωð Þ, F2 = F3 =G2 =G3 = 0: ð29Þ

However, all the models similarly do this at the zero
recoil point as Taylor’s series as

ξ yð Þ = 1 − ρ2 y − 1ð Þ + c y − 1ð Þ2+⋯, ð30Þ

where ρ is the magnitude of the slope and c is the curva-
ture (convexity parameter) of the Isgur-Wise function at ω
= 1. The higher terms in the IWF may be negligible since
slope and curvature are the most dominant parameters.
The Isgur-Wise function for the weak decay of heavy
baryons transition in the HCQM can be written as an over-
lap integral of the baryon wave functions and is of the fol-
lowing form:

ξ yð Þ =
ð∞
0
16π2x5 ψν,γ xð Þ




 


2 cos ρxð Þdx: ð31Þ

Generally, the overlap integral which involves the final
and the initial wave function is used to calculate transition
matrix elements. In the above equation, only jψ0,0ðxÞj2
comes into the picture instead of the overlap integral of the
final and the initial state. This is because we have

0

Exact
Approximate

−500
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V
 (x

)
0
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Figure 2: Wave function of baryons.

Table 2: Fitted values of the potential.

Parameter Value

�αs 6:78
μ f m−1� �

0:15
�σ f m−2� �

1:08
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investigated the Isgur-Wise function near the zero recoil
point ω = 1, where the four velocities of the baryons before
and after transitions are identical.

If cos ðpxÞ is expanded, then

cos pxð Þ = 1 − p2x2

2! + p4x4

4! +⋯, ð32Þ

where p2 = 2m2ðω − 1Þ. p2 stands for the square of virtual
momentum transfer. Then,

ξ yð Þ =
ð∞
0
16π2x5 ψ0,0 xð Þ

 

2dx − 16π2m2 ω − 1ð Þ

×
ð∞
0
x7 ψ0,0 xð Þ

 

2dx + 8

3π
2m4 ω − 1ð Þ2

×
ð∞
0
x9 ψ0,0 xð Þ

 

2dx:

ð33Þ

𝜆

x

𝜉

𝜌

Figure 3: Differential decay width for c baryons.

Table 4: Calculated masses of some heavy baryons.

Baryon
Mass (MeV)

(ours)

Mass (MeV)
(relativistic method

[30])

Mass in QCD
lattice [31, 33]

Λb 5632:395 ± 5:27 5620 5641

Λc 2286:46 ± 0:14 2286 2275

Ωb 6046:1 ± 1:70 6064 6010

Ωc 2695:2 ± 1:70 2698 2677

Ξb 5797:49 ± 33:32 5803 5781

Ξc 2478:82 ± 30:87 2470.88 2646

Ξ++
cc 3615:01 ± 40:43 3622.40 3640

Table 5: Slope and curvature of IWF for some baryons.

Baryon ρ2 (our) ρ2 (other) Ref c (our) c (other) Ref.

Ξ0
b 1.85 1 [37] 0.93 1 [37]

1.5 [38] 0.88 [39]

Ξ+
c 1.75 1.77 [37] 0.84 0.81 [37]

1.81 [39] 0.71 [39]

Λ0
b 1.71 1.14 [37] 0.42 0.56 [37]

1.61 [38] 0.3 [38]

Λ+
c 1.44 [37] 0.53 [37]

1.39 1.03 [38] 0.49 0.25 [38]

1.47 [39] 0.47 [39]

Ω+
b 2.49 2.56 [37] 1.4 1.43 [37]

Ω+
c 2.2 2.25 [37] 1.2 1.10 [37]

Table 3: Calculated masses (MeV) and energies (MeV) for baryons.

Baryon E1
n E1

n + E0 JP , T , S
� �

Mass Mass in PDG [29]

Ω−(sss) +1.04 -5.764 (3/2+, 0, -3) 1683:44 ± 24 1672:45 ± 0:29
Σ−(dds) -0.207 -8.299 (1/2+, 1, -1) 1315:062 ± 7:30 1321:71 ± 0:07
Λ0(uds) -1.154 -3.8 (1/2+, 0, -1) 1135:648 ± 8:7 1115:68 ± 0:0006
Ξ+(uus) -0.552 -4.852 (1/2+, 1, -1) 1172:518 ± 323 1189:37 ± 0:07
Ξ0(uss) -0.27 -5.298 (1/2+, 1/2, -2) 1298:95 ± 16:37 1314:86 ± 0:2
Ξ− (dss) -0.271 -5.33 (1/2+, 1/2, -2) 1174:239 ± 16:375 1197:449 ± 0:07
Λ+

c (udc) -0.743 -9.993 (1/2+, 0, 0) 2271:158 ± 20:65 2286:46 ± 0:14
Σ++
c (uuc) -0.36 -10.18 (1/2+, 0, -1) 3615:132 ± 20:75 3621:2 ± 0:14

Ξ+
c (usc) -0.70 -10.866 (1/2+, 1/2, -1) 2478:823 ± 30:875 2467:93 ± 0:18

Ξ0
c (dsc) -0.71 -10.588 (1/2+, 1/2, -1) 2471:922 ± 28:325 2470:91 ± 0:25

Ω0
c (ssc) -0.34 -10.93 (1/2+, 0, -2) 2734:96 ± 36:00 2695:2 ± 1:7

Ξ++
cc (ucc) -0.72 -8.98 (1/2+, 1/2, 0) 3615:015 ± 40:43 3621:2 ± 0:7

Λ0
b(udb) -1.2 -13.33 (1/2+, 0, 0) 5632:395 ± 5:27 5619:60 ± 0:17

Ξ0
b(usb) -0.53 -12.95 (1/2+, 1/2, -1) 5797:497 ± 33:325 5791:9 ± 0:9

Ξ−
b (dsb) -0.49 -12.89 (1/2+, 1/2, -1) 5787:497 ± 33:325 5797:0 ± 0:9

Ω−
b (ssb) 0.362 -10.519 (1/2+, 0, -2) 6060:00 ± 33 6046:1 ± 1:7
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Comparing equations (30) and (33), we arrive at the
slope (ρ2) and curvature (c) parameters as

ρ2 = 16π2m2
ð∞
0
x7 ψ0,0 xð Þ

 

2dx, ð34Þ

c = 8
3π

2m4
ð∞
0
x9 ψ0,0 xð Þ

 

2dx: ð35Þ

The Isgur-Wise function mentioned by equation (35)
depends on the product of two terms: the first is the square
of the modulus of the wave function (jψν,γðxÞj2) and the sec-
ond is cos ðpxÞ. The value of the cosine term appeared in the
Isgur-Wise function becomes 1, when we put ω = 1. And the
remaining term (jψν,γðxÞj2) gives ξðω = 1Þ, while integrating
it for the ground state ðν = 0, γ = 0Þ wave function at the
zero recoil point. The obtained slope and curvature for Ξ+

c ,
Ξ0
b, Λ

0
b, Λ

+
c , Ωb, and Ωc baryons appear in Table 5. The

IWF presented in this section is the key to calculating the
decay width for heavy baryon transitions. Other works also
have employed this method, but they have used different
interaction potentials. For instance, [37] uses Cornell poten-
tial, [38] uses a Killingbeck potential. Reference [39] makes
use of the Hulthen plus linear to describe baryon interac-
tions. However, our findings are well consistent with theirs.
In Figure 3, we illustrate the behavior of dΓ/Adω in terms
of ω for a few baryons in two graphs. For example, for semi-
leptonic decay Λb ⟶Λc transition, we have calculated dif-
ferential decay width by

dΓ
dω

= 2
3m2

4m1Aξ
2 ωð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1

p
3ω η + η−1
� �

− 2 − 4ω2� �
,

ð36Þ

where

A = G2
F

2πð Þ3 Vcbj j2B Λ⟶ abð Þ, ð37Þ

where η =mΛb
/mΛc

and BðΛc ⟶ abÞ is the branching
ratio for the decay Λc ⟶ að1/2+Þ + bð0−Þ and ∣Vcb ∣ stands
for the Kobayashi-Maskawa matrix element. Alsom1 andm2
refer to the masses of Λb and Λc, respectively. To calculate
the total decay width, we have integrated equation (36) over
the ω as

ðωmax

1

dΓ
dω

dω = Γ: ð38Þ

The maximum of the ω values is calculated from

ωmax =
m2

Λb
+m2

Λc

2mΛb
mΛc

: ð39Þ

Figures 3 and 4 depict the variations of the differential
decay width for a few heavy-baryon decays. As expected,
the heavier the baryon, the larger the parameters ρ2 and c,
and the more quickly dΓ/Adω tends to zero. The semilep-
tonic decay of Λ0

b ⟶Λ+
c transitions is shown in Figure 5.

In this transition, b quark converts to c quark and a virtual
W [40], which becomes a charged lepton and neutrino.
Using the decay rates of baryons in Table 6 and integrating
equation (36), we obtain function Γ and calculate its error.
To identify the error of equation (38), we applied the natural
logarithm to both sides of equation (38) and then derived
from it. By considering each term’s error, we determined
the absolute error of Γ. Also from the obtained decay width
and decay lifetime of each baryon adopted from PDG, we
found the branching ratio values for semileptonic decay.
The values obtained for Λ0

b and Λ
+
c comply with PDG values.

The branching ratio for other decay channels is not given in
PDG, and we indeed propose branching ratio values and
present them in the last column of Table 6. Using our calcu-
lations for the decay width of Λ0

b ⟶Λ+
c e

−ν−e and Λ+
c ⟶

Λ0e+ν−e and the values τΛ0
b
= 1:471 ± 0:009 and τΛ+

c
=

0:2024 ± 0:0031 for the Λ0
b and Λ+

c mean life, we get BrðΛ0
b

⟶Λ+
c e

−ν−e Þ = 5:546 and BrðΛ+
c ⟶Λ0e+ν−e Þ = 2:307,
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Figure 4: Differential decay width for b baryons.
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which is acceptable when compared with the result of PDG,
which reported BrðΛ0

b ⟶Λ+
c e

−ν−e Þ = 6:2 and
Br(Λ+

c ⟶Λ0e+ν−e Þ = 3:63, respectively.

5. Conclusions

In this study, we formulated a simple three-body quark
model for some baryons. The present model, therefore, has
a main SU(6)-invariant part and a perturbative SU(6)-break-
ing interaction for the splitting within the multiplets. Such a
structure may also emerge from lattice QCD calculations.
Thus, first we switched off spin and isospin degrees of free-
dom for the SU(6)-invariant part of the spectrum and con-
sidered the baryon as a spin-independent three-body
bound system and suggested a semirelativistic quark model
for baryons based on the spin-independent three-particle
Klein-Gordon equation. We calculated the observable prop-
erties of semileptonic decays of bottom and charm baryons,
i.e., Isgur-Wise functions, decay rates, and distributions too.
Finally, we found the branching ratio values for semileptonic
decay. The computed results are compared with other theo-
retical predictions as well as with the available experimental
observations. It can pave the way for further studies, includ-
ing double heavy quark baryons and their decays. Such stud-

ies are important as the current interest in heavy-flavor
hadron physics is growing.

Appendix

A. Review of Nikiforov-Uvarov (NU) Method

The Schrödinger equation can be converted into a second-
order differential equation as

σ′′ sð Þ + d2Ψ sð Þ
ds2

+ σ sð Þ~τ sð Þ dΨ sð Þ
ds

+ ~σ sð ÞΨ sð Þ = 0, ðA:1Þ

where σðsÞ and ~σðsÞ denote polynomials at most of the
second degree and ~τðsÞ is a first-degree polynomial. We
use the following form to find the solution:

Ψ sð Þ = ψ sð Þφ sð Þ: ðA:2Þ

By introducing equation (A.2) into equation (A.1), we
arrive at

σ sð Þ d
2φ sð Þ
ds2

+ τ sð Þ dφ sð Þ
ds

+ λφ sð Þ = 0, ðA:3Þ

Table 6: Rates of some heavy baryon decays and branching ratios calculated by using decay width obtained and experimental mean lives
τΞ0

b
= 1:480 ± 0:03, τΞ+

c
= 0:456 ± 0:005, τΛ0

b
= 1:471 ± 0:009, τΛ+

c
= 0:2024 ± 0:0031, τΩ−

b
= 1:64+0:18−0:17 (mean life values in 10−12s) [29].

Channel Γ (ours) Γ (others) Branching ratio Branching ratio
in 1010s−1
� �

in 1010s−1
� �

%ð Þ (ours) %ð Þ
Ξ0
b ⟶ Ξ+

c e
−ν−e 8:44 ± 0:422 8.22 [37], 7.2 [41] 12:493 ± 0:878 —

Ξ+
c ⟶ Ξ−e+ν−e 8:72 ± 0:018 8.5 [41], 8.16 [16], 7.4 [42] 3:976 ± 0:052 —

Λ0
b ⟶Λ+

c e
−ν−e 3:77 ± 0:185 3.52[43], 5.12 [39], 4.11 [44] 5:546 ± 0:306 6:2+1:4−1:3

Λ+
c ⟶Λ0e+ν−e 11:4 ± 0:023 11.2 [45], 9.8 [41], 13.2 [46] 2:307 ± 0:040 3:63 ± 0:38 ± 0:2

Ω−
b ⟶Ω0

c e
−ν−e 1:36 ± 0:068 1.55 [37], 1.87 [16] 2:230+0:356−0:343
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Figure 5: Semileptonic decay of Λ0
b ⟶Λ+

c transitions.
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where φðsÞ in terms of Rodriguez formula appears as

φn sð Þ = Bn

ρ sð Þ
dn

dsn
σn sð Þρ sð Þ½ �: ðA:4Þ

The weight function ρðsÞ holds in the following formula:

dψ sð Þ
ds

+ σ sð Þ
ρ sð Þ

dρ sð Þ
ds

= τ sð Þ: ðA:5Þ

The other solution factor is defined as

π sð Þ = 1
2 σ′ sð Þ − ~τ sð Þ
h i

± σ′ sð Þ − ~τ sð Þ
h i2

− ~σ sð Þ + kσ sð Þ
� �1/2

:

ðA:6Þ

In this method, the polynomial πðsÞ and parameter k are
defined as

k = λ − π′ sð Þ, ðA:7Þ

where ψðsÞ is defined as

1
ψ sð Þ

dψ sð Þ
ds

= π sð Þ
ψ sð Þ : ðA:8Þ

By substituting k into equation (A.6)

τ sð Þ = ~τ sð Þ + 2π sð Þ, ðA:9Þ

and λ is defined as

λ = λn = −nτ′ −
n n − 1ð Þσ′′
h i

2 , n = 0, 1, 2,⋯: ðA:10Þ

The general form of the Schrödinger equation including
any potential is

d2ψ sð Þ
ds2

+ α1 − α2s
s 1 − α3sð Þ
� �

dψ sð Þ
ds

+ −As2 + Bs − C

s2 1 − α3sð Þ2
 !

ψ sð Þ = 0:

ðA:11Þ

Comparing equation (A.1) with equation (A.11), we get
the parameters

~τ sð Þ = α1 − α2, σ sð Þ = s 1 − α3sð Þ~σ sð Þ = −As2 + Bs − C:

ðA:12Þ

Based on the equations, the constant parameters are

defined as

α4 =
1
2 1 − α1ð Þ, α5 =

1
2 α2 − 2α3ð Þ,

α6 = α25 + A, α7 = 2α4α5 − B,
α8 = α24 + C, α9 = α3α7 + α23α8 + α6,

α10 = α1 + 2α4 + 2 ffiffiffiffiffi
α8

p
 α11 = α2 − 2α5 + 2 ffiffiffiffiffi

α9
p + α3

ffiffiffiffiffi
α8

pð Þ,
α12 = α4 +

ffiffiffiffiffi
α8

p , α13 = α5 −
ffiffiffiffiffi
α9

p + α3
ffiffiffiffiffi
α8

pð Þ:
ðA:13Þ

The energy equation is obtained from

α2n − 2n + 1ð Þα5 + 2n + 1ð Þ ffiffiffiffiffi
α9

p + α3
ffiffiffiffiffi
α8

pð Þ + n n − 1ð Þα3
+ α7 + 2α3α8 + 2 ffiffiffiffiffiffiffiffiffi

α8α9
p = 0:

ðA:14Þ

Now we consider the eigenfunctions of the problem with
any potential. We obtain the second part of the solution
from equation (A.3).

φn sð Þ = P α10−1, α11/α3ð Þ−α10−1ð Þ
n 1 − 2α3sð Þ: ðA:15Þ

From the explicit form of the weight function obtained
from equation (A.4), we arrive at

ρ sð Þ = sα10−1 1 − α3sð Þ α11/α3ð Þ−α10−1: ðA:16Þ

Pðα,βÞ
n ð1 − 2α3sÞ is a Jacobi polynomial. From equation

(A.5), we arrive at

ψ sð Þ = sα12 1 − α3sð Þ−α12− α13/α3ð Þ: ðA:17Þ

Then, the general solution ΨðsÞ = ψðsÞϕðsÞ becomes

ψ sð Þ = sα12 1 − α3sð Þ−α12− α13/α3ð Þ × P α10−1, α11/α3ð Þ−α10−1ð Þ
n 1 − 2α3sð Þ:

ðA:18Þ
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