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Abstract 

 
This paper aims at obtaining the optimum number of states for a hidden Markov manpower model, which, 

hitherto, has been chosen arbitrarily. A search procedure that attains this optimum number after a few steps 

across a series of N hidden Markov manpower models is proposed. The likelihood ratio statistic is employed 

to conduct pairwise model comparison tests on the N hidden Markov manpower models ordered according to 

their level of parsimony. The illustration shows the usefulness of the procedure in choosing the right number 

of states for a hidden Markov manpower model to avoid wrong specification of such models. The proposed 

procedure can be useful in other areas of research, such as in biological, medical and social sciences, where 

application of hidden Markov model may require the determination of number of hidden states based on 

unobserved data with latent heterogeneity. The procedure has a straightforward formulation and its 

application in other areas requires mainly the adaptation of the model specifications for the new area’s system 

dynamics.  
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1 Introduction  
 
Hidden Markov model (HMM) is an important stochastic model widely applied in different fields of research to 

represent systems whose internal dynamics are not completely observable, but possesses Markov property [1,2]. 

Such systems are in most cases viewed as having two parts: one observable part and one unobserved part. By 

the instrument of HMM the unobserved part can be studied through the observable part [3,4].  

 

HMM has been applied in the area of statistical manpower planning, see, for example, [2,4,5]. A manpower 

system is a system of personnel groups on the basis of existing ranks or carders of personnel in the system, 

where members of a group have the potential of moving to other groups according to some probability 

distribution [6-8]. Ugwuowo and McClean [9] emphasize that apart from the observable classes of a manpower 

system due to observable heterogeneity in personnel transitions there are hidden classes due to the problem of 

unobserved heterogeneity. Observable classes of a manpower system are determined by observing the 

manpower system structure and data, see, for example, [10,11]. The hidden classes cannot be chosen in the same 

way because the data from where they evolve are not observable. The practice has been for researchers to decide 

the number of hidden states subjectively. This is not good enough because it may lead to assigning wrong 

number of hidden states to a given manpower system; it may also lead to a given manpower system being 

assigned different number of hidden states by different researchers or manpower planners.  This paper aims to 

address these problems.   

 

A manpower system can be represented by a number of functional models, see, for example, [12-15], of which 

Markov model is one. In a classical Markov manpower model (CMMM) only the observable classes are 

considered, where personnel inter-class transition probabilities are realized according to a Markov chain [16]. In 

a hidden Markov manpower model (HMMM) however, both the observable and the hidden classes are 

considered, where each observable class is assumed to contain equal number of hidden personnel classes. The 

division of the hidden personnel classes within each observable class is assumed to be based on different sources 

of hidden heterogeneity influencing members’ transitions to other observable classes. Guerry [4] assumes that 

these sources of hidden heterogeneity lead to two groups of personnel: those that move more rapidly, called 

‘movers’, characterized by higher probabilities of such movement,  and those that move more slowly or do not 

move at all, called ‘stayers’, characterized by smaller values of probabilities of such movement. This 

assumption gives the number of hidden states to be two. Udom and Ebedoro [2] increased the number of hidden 

states in a manpower system to three to represent the class of ‘movers’, ‘mediocres’ and ‘stayers’. Ossai et al. 

[5], in an attempt to check whether the property of parsimony or homogeneity is more important in a manpower 

system, increased the number of hidden classes to five, representing the class of ‘high movers’, ‘movers’, 

‘above mediocres’, ‘mediocres’ and ‘stayers’, with the values of probabilities of moving to other observable 

classes decreasing in this order. The authors’ choices of the number of hidden classes in these cases are not 

guided by any rule nor are there any check whether they are the best choices to make. Again, all the authors, 

with the exception of [5], compared only their new HMMM with the CMMM and concluded on the superiority 

of their HMMM based on this. However, Udom and Ebedoro [2] emphasize the need to search for the optimum 

number of hidden states to be included in a HMMM. In the current paper, a search procedure that can lead to the 

realization of the optimum number of states in a HMMM is formulated.  

 

The problem addressed in this paper is, therefore, how to choose the optimum number of hidden states for a 

HMMM. To tackle this problem, a search procedure for locating this optimum number is proposed for any 

manpower system data where HMMM is applicable. The proposed search procedure utilizes the likelihood ratio 

statistic in pairwise comparison test to locate the HMMM that has the optimum number of hidden states among 

a number of HMMMs ordered according to a desired property. Though there are many methods of model 

comparison, see, for example [17,18], the likelihood ratio test is chosen because it is considered as the only 

statistical test which can be used to directly compare the goodness-of-fit of two models [2,19]. The HMMM is 

first specified and estimated. It is then utilized in its varied types in the search procedure, where the estimated 

model parameters confirm the existence or otherwise of any of the types and the likelihood ratio test locates the 

most probable HMMM type that contains the optimum number of hidden states. 
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2 Specification of HMMM 

 
The formulation of HMM for manpower systems, HMMM in the current paper, has been done in a number of 

works in this area; see [2,4,5]. Here we specify and highlight important components of HMMM relevant to the 

current aim.  

 

For a HMMM, there are k observable classes           which form the states of a stochastic process     . Each 

class                of      is further subdivided into    hidden classes,   
       

  
  . The    hidden classes in 

each observable class again form the states of an underlying Markov chain    
  ; what    hidden states stand for 

depend on the type of HMMM. Ossai et al. [5] introduced the model type HMM   to represent a HMM for a 

manpower system with    hidden states in each observable class, where the states are described according to the 

personnel’s ability to move to other observable classes. In the current work we represent a HMMM with    

hidden states per observable class by HMMM  . 

 

For the process     , the following transition probabilities are defined, 

 

                         

for   = 1,… , k; j = 1,… , k+1                                                                                                               (2.1) 

 

The expression in (2.1) defines the transition probability that the next state of the process      is    given that its 

current state is    .      is the state of having left the manpower system; that is,      is the wastage state. For 

the hidden Markov chain    
  , the following transition probabilities are also defined, 

 

    
        

    
    

      
   ;             .                                                                              (2.2) 

 

The HMMM is established upon the distributional dependence of the two processes      and    
   such that the 

transition probability of a personnel moving from any hidden class   
               of     

   within the 

observable class    to another observable class    (           ) of      is given by  

 

   
                    

      
                

      
                                                         (2.3) 

 

Let   
      

  and        be the observed number of personnel who move from    to each of               

   with probability    
  within the time period   to    . Since     

    
      for the realizations 

                            then the random vector defined by    
                                has a 

multinomial distribution. That is, if  

 

         
      

          
    

   , where       is any realization of the observation vector 

                              at   and                 
    then  

 

                           
    

     

                     
      

        

   

   

 

                                                                                                                                                             

 

The specified parameters of HMMM   need to be estimated. For HMMM1 the maximum likelihood method is 

applied to obtain the estimator of     as  
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For HMMM  ,     , the Expectation-Maximization (EM) re-estimation algorithm is applied. Only the main 

results of the EM algorithm for the estimation of the parameters of HMMM   are specified in the current paper. 

For more details see [2,4,5].  

 

For            the joint likelihood of the manpower flows from                being a specified sequence of 

observations,   
              

       , is given by   

 

  
      

              
                                                                                                  (2.6) 

 

where    is some initial distribution vector of   
 ,             ;   

  is the initial probability distribution of 

  
         

      
    

              
         ;    is the transition probability matrix of    

  , that is the 

      matrix of    
 ; and    is the matrix of the vectors    . Expression of (2.6) gives 

 

  
        

    
         

         
       

    
      

    
          

       
          

    
         (2.7) 

                                                                                                                                         

The EM algorithm formulation for HMMM   is concluded by the maximization of the  expected log likelihood  

given from (2.7) by 

 

      
     

          

       
        

          
    

     
   

     
 
          

          

     
 
             

      (2.8) 

  

where   
         

      
      

      
    

              
          The  maximization of (2.8) with respect 

to the stochastic constraints on the parameters   
 ,    

  and         
 , through the method of the Lagrange 

multipliers results to the following formulas. 

 

   
    

                                                                                                                                                        

                 

     
  

    
     

   

     
     

   
   

   

                                                                                                            

and 

      
  

   
     

         

   
     

        
                                                                                      

 

Given the observed data of a manpower system,                , the algorithm is implemented through the 

formulas in (2.4), (2.9), (2.10) and (2.11) by first choosing initial values for   
 ,    

  and     
  and then using 

these values to obtain starting values for         
 . This iterative process continues until the convergence of the 

estimates of the parameters. This is utilized in Section 4 to obtain the estimates of the transition probabilities in 

the manpower data used for illustration.           

 

3 Likelihood Ratio Search Procedure for Optimum     

 
The likelihood ratio test is a statistical test widely applied in different areas of research; see, for example, 

[20,21]. It compares the performance of two models on the basis of the ratio of their likelihoods. For two hidden 

Markov manpower models HMMMl and HMMMm, according to [2,4,5], the likelihood ratio statistic,   , is 

given as follows:   

 

              
      

      

     
 
                                                                                                                          

 

The statistic,    has the chi square distribution with   degrees of freedom. The hypothesis being tested is that the 

two models, HMMMl and HMMMm, fit the data equally well. This hypothesis of equality of fit is rejected if 

      
 
    ; the rejection implies that the second model, HMMMm, fits the data better. This is applied in the 

following procedure for obtaining the optimum value of   .        
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3.1 The procedure 

 
Step 1: Set           ;    may be adequate for Markov manpower models; see [5]                                 . 

 

Step 2: Assume HMMM  exists for all    (          ) and estimate the transition probabilities for each 

HMMM  , using the EM algorithm and formulas in Section 2, to confirm the existence of the models.  

 

Step 3: Obtain the log likelihood for each HMMM  . 

 

Step 4: Arrange HMMM  s in descending order or decreasing level of parsimony (see [5]) based on the value 

of   ; following this order, carry out pairwise    comparison test of the form: HMMM1 versus HMMM2, 

HMMM2 versus HMMM3, HMMM3 versus HMMM4 and HMMM4 Versus HMMM5, and so on. 

 

Step 5: Mark the pair where equality of model performance first occurs; choose the    of the first model in this 

pair as the optimum number of hidden states for the manpower system considered. Note that the search is 

stopped at the first occurrence of model equality since this is ordered comparison, ordered according to a 

decreasing level of a desired property. 

 

Step 6: If HMMM1 versus HMMM2 happen to be the pair where equality of model performance first occurs 

then     is the optimum, which implies that there is no need to use HMMM for the system in the first place; 

that is, there exists no significant hidden heterogeneity in the manpower system considered.   

 

Two values need to be computed for each paired comparison in the procedure for optimum value of number of 

hidden states of a HMMM. These are the values of    and  . The computation of   , in equation (3.1), is 

straightforward after obtaining the likelihoods of the models. The computation    is undertaken in the following 

subsection.  

 

3.2 Computation of the degrees of freedom for    tests   

 
The value of the degrees of freedom,  ,  for the    tests is given by 

 

                                                                     
  

We obtain general formulas for   in three model comparison cases. These cases cover all cases that may be of 

interest in the current likelihood ratio search procedure for optimum   . For any   and    the following results 

are obtained. 

 

Case 1: HMMM1 versus HMMM   

 

Under this case, the general formula for   can be obtained as 

 

                                                                                                                                   (3.2) 

 

To show how the result in (3.2) is obtained: each of the k observable classes of the HMMM1 contributes 

          free parameters. This gives    free parameters  for the k observable classes in HMMM1. In the 

HMMM  , each                has    unobserved classes from where transitions can originate and     

destination classes to where transitions can be made. This gives               free parameters for   

probabilities of transiting to the observable classes. Also, there are          and        free parameters from 

transitions within the unobserved classes and the initial states respectively. Hence,   becomes 

 

                                                                                                               (3.3) 

 

Equation (3.3) results to the given general formula for    as 

 

                    .     
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Case 2: HMMM       versus HMMM   

 

Under this case, the general formula for   can be obtained as 

 

                                                                                                                                         (3.4) 

 

In this case  equation (3.4) is obtained as follows: 

 

For HMMM       

 

No. of free parameters from each                            

No. of free parameters from hidden classes in                 

No. of free parameters from the initial states for              

 

Combining these results and those for HMMM   in Case1,   becomes 

 

                                                                                              

 

 The simplification of (3.5) results to the general formula for   given in (3.4). 

 

Case 3: HMMM       versus HMMM   

 

Under this case, the general formula for   can be obtained as 

 

                                                                                                                                                      (3.6) 

 

In this case  equation (3.6) is similarly obtained as follows: 

 

For HMMM       

 

No. of free parameters from each                            

No. of free parameters from hidden classes in                 

No. of free parameters from the initial states for              

Combining these results and those for HMMM   in Case1,   becomes 

 

                                                                                             

 

Simplifying (3.7) gives the general formula for   in (3.6). 

 

The general formulas for   in the cases considered above are utilized to obtain some specific formulas that may 

be needed in executing the likelihood ratio search procedure for optimum   . These specific formulas are given 

in Table 1. 

 

Table 1. Formulas for the degrees of freedom ( ) for some specific    tests 

 

Models Compared Formula for   

HMMM1 vs HMMM2       
HMMM1 vs HMMM3        
HMMM1 vs HMMM4         
HMMM1 vs HMMM5         
HMMM2 vs HMMM3       
HMMM3 vs HMMM4       
HMMM4 vs HMMM5       
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4 Numerical Illustration  

 
The developments in this paper are illustrated using the manpower data presented by Ossai et al. [5]. The 

manpower data are shown in Table 2 and contain senior academic personnel inter-class flow numbers for a 

university system for 8 periods of time,             In Table 2,   ,   ,    and    represent the class of senior 

lecturers, readers, professors, and leavers respectfully. The values in the table represent the number of personnel 

involved in moving from the given row class to the given column class for the given period of time. For 

example,  the first value, 807, is the number of senior lecturers who remained as senior lecturers after time   
 . The last value in the same row, 25, is the number of senior lecturers who left the system after time    . 

Similarly, the first value, 0, in row       means that no reader moved to the rank of senior lecturer after time 

   . The second value in the same row, 182, is the number of readers who remained in the same rank after 

time    . The third value in the same row, 31, is the number of readers who moved to the rank of professor 

after time    , and so on. For the current illustration, let there be four investigators or researchers R1, R2, R3 

and R4 interested in modelling the manpower system using hidden Markov model approach. Assume R1 

chooses two hidden classes for the system (i.e. HMMM2), R2 chooses three hidden classes for the system (i.e. 

HMMM3), R3 chooses four hidden classes for the system (i.e. HMMM4) and R4 chooses five hidden classes 

for the system (i.e. HMMM5). The problem is that of knowing the optimum number of hidden states for the 

system.   

 

Following the steps of the proposed search procedure we assume the existence of all the HMMM   for all    

(          5). This is confirmed by estimating the parameters of the models through the EM formulas in 

Section 2, and then observing the estimated transition probabilities to ensure the hidden classes are actually 

represented by their different transition probabilities. This has been done for the data of Table 2 by Ossai et al. 

[5], and they show that all the five HMMM exist for the manpower data. For example, the transition probability 

matrices for CMMM (i.e. HMMM1) and HMMM5, as obtained by Ossai et al. [5], are shown below as     and 

   respectively. Next, the log likelihood for each HMMM   is obtained. The log likelihoods are shown in the 

second column of Table 3.  

 

Table 2. A university senior academic manpower flow data 

 

                 
        
          
          
          
        5 
        6 
         
        

807 

801 

788 

794 

820 

815 

826 

840 

50 

102 

81 

32 

72 

42 

61 

55 

40 

20 

18 

34 

27 

36 

30 

45 

25 

34 

20 

41 

37 

52 

45 

30 

        
          
          
          
        5 
        6 
         
         

0 

0 

0 

0 

0 

0 

0 

0 

182 

201 

194 

198 

211 

190 

185 

205  

31 

30 

28 

30 

35 

21 

42 

37 

10 

10 

12 

12 

21 

15 

26 

28 

        
          
          
          
         5 
        6 
         
         

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

560 

534 

521 

550 

578 

570 

540 

548 

56 

50 

54 

46 

32 

64 

93 

71 
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Next, HMMM    is arranged in increasing order of the value of   ; following this, pairwise    comparison tests 

are carry out. The results of these steps are shown in Table 3. Table 3 also includes the results for the 

comparison of HMMM1 and all the other four HMMMs for further emphasis on the choice of the four 

researchers, as contained in the discussion section.    

 

 
 

  
 
 

1 2 3 4

1

1 2

3

0.863   0.066    0.033    0.038

  0   0.801   0.130   0.069

  0       0   0.904  0.096

C C C C

C

P C

C

 

  





1 2 3 4

1

5 2

3

0.859   0.063    0.031    0.047

0.858   0.075    0.028  0.039

0.871   0.055   0.045   0.029

0.852   0.098   0.020   0.029

0.872   0.040   0.038   0.050

  0   0.746   0.151   0.103

0   0.841   0.0

C C C C

C

P C

C



93   0.066

0  0.828   0.123   0.049

0   0.790   0.131   0.079

0   0.824   0.131   0.045

  0       0   0.853  0.147

0       0     0.892   0.108

0       0    0.910   0.090

0       0    0.948  0.052

0       0    0.923   0.0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 77

 

 

5 Results and Discussion 

 
The estimates of the transition probabilities of the manpower personnel making various movements across the 

classes of the manpower system of Table 2, for the different HMMMs, are contained in their transition 

probability matrices. All the transition probability matrices for the five HMMMs can be seen in [5]. The 

matrices    and    included in the current paper are for HMMM1 and HMMM5 respectively, and are obtained 

using the EM algorithm and the specified formulas in Section 2. The matrices    and     show enough evidence 

that hidden classes exist in the manpower data up to      since probabilities of the classes of high movers, 

movers, above mediocres, mediocres and stayers can be distinctly identified. For example, in    the probability 

of a senior lecturer moving to the rank of a professor is             ; but in    this same probability has five 

values, corresponding to the five hidden classes in decreasing order of magnitude. These five values are: 

            ,             ,             ,             ,             . These are interpreted as 

follows: the probability of a senior lecturer in the high movers class moving to the rank of a professor is 0.045; 

the probability of a senior lecturer in the movers class moving to the rank of a professor is 0.038; the probability 

of a senior lecturer in the above mediocres class moving to the rank of a professor is 0.031; the probability of a 

senior lecturer in the mediocres class moving to the rank of a professor is 0.028; and the probability of a senior 

lecturer in the stayers class moving to the rank of a professor is 0.020. It can be seen that, for this particular 

transition, the probability of high movers is more than double that of the stayers.      
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Each of the independent researchers needs only    and one other relevant transition probability matrix to verify 

the existence of his model; R1 needs    and   , R2 needs    and   , R3 needs    and    and R4 needs    and   . 

And from the results obtained by the application of the likelihood ratio search procedure of sections 3 and 3.1, 

shown in Table 3, each of the four researchers would conclude that his chosen HMMM is adequate (superior to 

CMMM). This is because for R1:              
    
            ; for R2:               

    
      

      ; for R3:               
    
            ; and for R4:               

    
              . 

However, by the use of the proposed procedure, only R1 chose the optimum number of hidden states for the 

manpower data, which is     . This is because by the likelihood ratio search procedure the pair where equality 

of model performance first occurred is HMMM2 versus HMMM3 (Table 3), giving the optimum    to be equal 

to 2 as HMMM2 is the first model in this pair. In other words, even though R1, R2 and R3 can conclude 

independently that their models are adequate for the data, that of R1 is the best specified model.               

 

Table 3. Results of pairwise model comparison tests 

 

Models 

Compared 

Log likelihood      Chi-square 

Value at  

         

Decision by the four 

researchers   

Decision  

Based on the 

search 

procedure 

HMMM1 vs 

HMMM2 

-207.16303 

(-167.61626) 

79.0935 18 28.869 R ’s model is superior HMMM2 better 

HMMM1 vs  

HMMM3 

-207.16303 

(-157.02183) 

100.2824 42 55.758 R ’s model is superior Not needed 

 HMMM1 vs 

 HMMM4 

-207.16303 

(-148.68615) 

116.9538 72 90.531 R ’s model is superior Not needed 

HMMM1 vs  

HMMM5 

-207.16303 

(-138.29987) 

137.7263 108 113.145 R ’s model is superior Not needed 

HMMM2 vs 

HMMM3 

-167.61626 

(-157.02183) 

21.1889 24 36.415 Not applicable Perform 

equally 

HMMM3 vs  

HMMM4 

-157.02183 

(-148.68615) 

16.6714 30 43.773 Not applicable Perform 

equally 

HMMM4 vs 

HMMM5 

-148.68615 

(-138.29987) 

20.7726 36 55.758 Not applicable Perform 

equally 
(Note: The second model has the value in bracket in the second column) 

       

6 Conclusion 

 
In this paper, a procedure for choosing the optimum number of hidden states in a hidden Markov manpower 

model has been proposed and formulated. The proposed likelihood ratio search procedure has shown to be 

useful in preventing the choice of models which can be judged through a statistical test to be significantly 

adequate for a given manpower data,  but which may not be the best in terms of parsimony in parameter 

inclusion. The procedure, therefore, leads to the selection of the best hidden Markov manpower model for a 

given manpower data. 

 

The procedure is easy to apply, and with the general formulas obtained in Section 3.1  it is applicable to any 

manpower system and extendable to other areas of application outside statistical manpower planning. What is 

needed for its general application may be the redefinition of what constitutes the classes, especially the hidden 

states, of the system being studied.       

 

For further research, the sensitivity of the proposed search procedure can be considered. The desired property 

upon which the manpower models are ordered and compared as possible candidates for yielding the optimum 

number of hidden states can be varied.     
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