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Abstract

In this article, we present the study on local convergence behaviour of Chebyshev’s method, which is a
third order iterative method used to solve a non-linear system in Banach space locale. In contrast to the
earlier works, we establish the convergence using restricted-majorant conditions. As a result, we get better
convergence radius and more tighter error estimates in comparison to the previous researches. Suitable
numerical examples complement the theory.
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1 Introduction

Finding a locally unique solution of the system of non-linear equations of the form

F (x) = 0 (1.1)

is a major problem with extensive applications in the field of mathematical and engineering sciences. In most
of the cases non-linear equations and systems arising from mathematical modeling of physical systems do not
have exact solutions. Because of this problem, scientists and researchers have focused on proposing iterative
methods for solving non-linear systems. Newton’s method is a popular iterative process for dealing with non-
linear equations. Many novel, higher-order iterative strategies for dealing with nonlinear equations have been
studied and are currently being used in recent years[1, 2, 3, 4, 5, 6, 7, 8, 9]. Also, numerous research articles
have been published recently which deals with the study of local and semi-local convergence properties of
various iterative methods and also give results on computable convergence domain and estimates on error
bounds[2, 3, 4, 5, 6, 7, 8, 9].

Chebyshev’s method is a well-known iterative method for solving equations of type (1.1) which is cubically
convergent to the root x∗. The method is given as

xn+1 = xn − [I + LF (xn)]βnF (xn), n ≥ 0 (1.2)

where
βn = F ′(xn)−1,

LF (xn) is defined by

LF (xn) =
1

2
βnF

′′
(xn)βnF (xn), xn ∈ B1,

F : Ω ⊂ B1 → B is a continuous Fréchet differentiable non-linear operator, Ω is a non-empty open convex set,
B1 and B are Banach spaces.

The method (1.2) has been well studied by distinct researchers for its local and semi-local convergence properties
using different strategies such as majorizing sequences, recurrent relations and many more as given in [8, 10, 11,
12, 9, 13]. The convergence properties of the Chebyshev’s method used for finding multiple polynomial roots
were studied by [14] and [15]. A new type of majorant conditions were introduced by [6, 7] and used to study the
local and semi-local convergence behaviour of the cubically convergent Halley’s method. Recently, [5] followed
the same criteria as in [6] and used the majorant functions to study the local convergence analysis of the method
(1.2).

In the present work, we have provided better convergence domains than in [5] by using a new type of restricted
majorant conditions. It is worth noting that the articles in [5, 6, 7] did not provide such formulas and locations
either. The originality and novelty of our work are derived from this fact. The same advantages can be obtained
if our methodology is applied to other single or multi-step methods using the inverses of divided differences or
derivatives along the same lines.

The other contents of this material can be summarized as follows: Section 2 discusses the development of
majorant functions for the method (1.2). Section 3 discusses the local convergence properties of the presented
method (1.2). Numerical testing of convergence outcomes are placed in Section 5. Concluding remarks are also
stated.

2 Majorant Functions

Let us consider that there exists x∗ ∈ Ω such that L = F ′(x∗)−1 ∈ L(B1, B) with F (x∗) = 0. Suppose R > 0 be
such that U(x∗, R) ⊂ Ω.
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Some majorant conditions are introduced and compared with each other.

Definition 2.1. The operator F
′′

satisfies the center-majorant condition on the ball U(x∗, R) if there exists a
function h0 : [0, R)→ R with h0 ∈ C2 [0, R) such that

‖L(F
′′

(x)− F
′′

(x∗))‖ ≤ h
′′
0 (‖x− x∗‖)− h

′′
0 (0) (2.1)

for all x ∈ U(x∗, R).

Suppose that the equation

h
′′
0 (t) = 0 (2.2)

has a smallest solution r ∈ (0, R).

Definition 2.2. The operator F
′′

satisfies the restricted-majorant condition on the ball U(x∗, r) if there exists
a function h : [0, r)→ R with h ∈ C2 [0, r) such that

‖L(F
′′

(y)− F
′′

(x))‖ ≤ h
′′

(‖y − x‖+ ‖x− x∗‖)− h
′′

(‖x− x∗‖) (2.3)

for all x, y ∈ U(x∗, r), ‖y − x‖+ ‖x− x∗‖ < r.

Definition 2.3. The operator F
′′

satisfies the majorant condition on the ball U(x∗, R) if there exists a function
h1 : [0, R)→ R with h1 ∈ C2 [0, r) such that

‖L(F
′′

(y)− F
′′

(x))‖ ≤ h
′′
1 (‖y − x‖+ ‖x− x∗‖)− h

′′
1 (‖x− x∗‖) (2.4)

for all x, y ∈ U(x∗, r); ‖y − x‖+ ‖x− x∗‖ < R.

Remark 2.1. It follows by these definitions that for all t ∈ [0, r)

h0(t) ≤ h1(t) (2.5)

h(t) ≤ h1(t), (2.6)

since r ∈ (0, R). The functions h0 and h1 were used in [5] to show the local convergence of the method (1.2).
Notice that h0 = h0(Ω), h1 = h1(Ω), but h = h(Ω, [0, r)). It follows that the tighter function h can replace h1

in all the results in [5]. That is why we report only the extended results, omit the proofs and focus on the effect
of this modifications in the numerical examples. It is expected that the convergence radius will be at least as
large and the error distances ‖xn − x∗‖ at least as tight, since the estimates (2.5) and (2.6) hold.

The following conditions are used:

(A1) h
′′
0 (0) > 0, h

′
0(0) = −1, h

′′
(0) ≥ 0.

(A2) h
′′
0 is convex in [0, r), h

′′
0 and h

′′
are strictly increasing in [0, r).

(A3) h
′
0 has zeroes in (0, r).

Denote by ρ0 the smallest such zero.

(A4) ‖LF
′′

(x∗)‖ ≤ h
′′
0 (0).

The following auxiliary results are needed.

Lemma 2.1. Suppose that the conditions (A1)-(A4) hold. Then, the following assertions hold:

(i) h
′
0 is strictly increasing and strictly convex in [0, r)

and

(ii) h
′
0(t) ∈ (−1, 0) for all t ∈ (0, r).

Proof. Simply replace the function h1 by the function h in the proof of the Lemma 2.1 in [5].
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Lemma 2.2. Suppose that ‖x−x∗‖ ≤ t < r and (2.1) holds on the interval [0, r). Then, the following assertions

‖F ′(x)−1F ′(x∗)‖ ≤ − 1

h
′
0(‖x− x∗‖)

≤ − 1

h
′
0(t)

and

‖F ′(x∗)−1F
′′

(x)‖ ≤ h
′′
0 (‖x− x∗‖) ≤ h

′′
0 (t).

Proof. The proof is given in the Lemma 2.2 in [5] with h1 replacing h0.

Notice that the weaker assertion (2.1) is used in Lemma 2.2. If (2.4) is used as in [5], then we get the less tight
estimate

‖F ′(x)−1F
′
(x∗)‖ ≤ − 1

h1(‖x− x∗‖) ≤ −
1

h1(t)
.

3 Local Convergence

3.1 Analysis

Define the functions on the interval [0, r) by

δ1(t) = (2 + h
′
0(t))h

′′
0 (t)t− 2(h

′
0(t))2,

δ2(t) =
(2 + h

′
0(t))h

′′
0 (t)t

2(h
′
0(t))2

,

δ3(t) =
1

1− δ2(t)
,

δ(t) = −1

2
δ2(t)

h
′′
0 (t)

h
′
0(t)

[
2δ2(t) + δ2(t)2

t
− 1

2

h
′′
0 (t)

h
′
0(t)

]
and δ4(t) = δ(t)t2 − 1.

It was shown in [5] that the functions δ1 has a smallest solution r1 ∈ (0, ρ0) and that the function δ4 has a
smallest solution r∗ ∈ (0, r1). Hence, we reach the local convergence result for the method (1.2).

Theorem 3.1. Suppose that the conditions (A1)-(A4) hold. Then, the method (1.2) for x0 ∈ U(x∗, r∗) is well
defined in the ball U(x∗, r∗), remains in U(x∗, r∗) for all n ≥ 0 and converges to x∗. Moreover, the following
assertions hold

‖xn+1 − x∗‖ ≤ δ(r∗)‖xn − x∗‖3 for all n = 0, 1, 2, . . . . (3.1)

Remark 3.1. The special cases in Section 5 extend immediately along the same lines.

Our technique determines a ball U(x∗, r) where the iterates lie that is more precise than the ball U(x∗, R) used
in [5]. This also allows the construction of the restricted function h that replaces the function h1 in [5] leading
to the aforementioned advantages.

Next, we present a second way of replacing h1 by a tighter function that may give better results.

Definition 3.1. The operator F
′

satisfies the center-majorant condition on the ball U(x∗, R) if there exists a
function h̄0 : [0, R)→ R with h̄0 ∈ C2[0, R] such that

‖L(F
′′

(x)− F
′′

(x∗))‖ ≤ h̄
′
0(‖x− x∗‖)− h̄

′
0(0). (3.2)
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Suppose that the equation

h̄0(t) = 0 (3.3)

has a smallest solution r̄ ∈ (0, R). Set

ρ = min{r, r̄}. (3.4)

Moreover, suppose that (2.3) holds but for some function h̄
′′

as h
′′

but defined on the interval [0, ρ).

If

r̄ ≤ r and h̄
′′

(t) ≤ h
′′

(t) for all t ∈ [0, ρ) , (3.5)

then the obtained results can be rewritten with ρ, h̄ replacing r, h and the new radii and error bounds shall be
at least as better than our earlier ones.

It is worth noticing that the iterates xn exist and belong in U(x∗, r0) and

‖F ′(x)−1F ′(x∗)‖ ≤ − 1

h̄
′
0(‖x− x∗‖)

≤ − 1

h̄
′
0(t)

(3.6)

for ‖x− x∗‖ ≤ t < ρ0 by using (3.2) instead (2.1).

Remark 3.2. If the function h0(t) is replaced by h̄0(t) in the conditions (A1)-(A4), and also in the definitions
of the functions δ1, δ2, δ3, δ and δ4, we then denote the resultant functions as δ̄1, δ̄2, δ̄3, δ̄ and δ̄4 respectively.
Moreover, r, r1 and r∗ are replaced by ρ, r̄1 and r̄∗.

Thus we arrive at the following theorem:

Theorem 3.2. Suppose that the conditions (A1)-(A4) hold. Then, the method (1.2) for x0 ∈ U(x∗, r̄∗) is well
defined in the ball U(x∗, r̄∗), remains in U(x∗, r̄∗) for all n ≥ 0 and converges to x∗. Moreover, the following
assertions hold

‖xn+1 − x∗‖ ≤ δ̄(r̄∗)‖xn − x∗‖3 for all n = 0, 1, 2, . . . . (3.7)

That is, Chebyshev’s method (1.2) is cubically convergent to x∗.

4 Discussion

The local convergence of the Chebyshev method has also been discussed in [5], where it was achieved using

majorant type conditions on the operator F
′′

. In the present paper, we deal with the local convergence
of the Chebyshev method and extend the convergence domain using restricted majorant conditions. These
extensions become possible without additional conditions and under weaker conditions than in [5]. This allows
the determination of a more precise region where the iterates are located. The confirmation of our convergence
findings can be observed from the numerical illustrations in Section 5. Also, it is worth noticing that this
approach does not take into account the method itself. Hence, we can extend the same technique to obtain the
same benefits on other iterative methods using inverses of linear operators. The method discussed in this paper
find applications in the problems listed in [16, 17, 18, 19, 20, 21].

5 Numerical Illustrations

Example 5.1. Choose B1 = B = R, Ω = Ū(x∗, R) = Ū(0, 1). Define F on Ω by

F (x) = (ex1 − 1,
e− 1

6
x32 + x2,

x33
6

+ x3)T
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for x = (x1, x2, x3)T . We have that x∗ = (x∗1, x
∗
2, x
∗
3)T = (0, 0, 0)T is a zero of F . We obtain the first and second

Fréchet derivative as follows:

F ′(x) =

e
u1 0 0

0 (e−1)
2

u2
2 + 1 0

0 0
u2
3
2

+ 1


and

F
′′

(x) =

 eu1 0 0 0 0 0 0 0 0
0 0 0 0 (e− 1)u2 0 0 0 0
0 0 0 0 0 0 0 0 u3

 .
Now, we can observe that F ′(x∗) = F ′(x∗)−1 = diag(1, 1, 1). Thus, we have L = F ′(x∗)−1 = diag(1, 1, 1) and
‖L‖ = 1. Now, we can easily calculate the parameter values as:

‖F ′(x∗)−1(F
′′

(x)− F
′′

(x∗))‖ ≤ (e− 1)‖x− x∗‖,

so we have h
′′
0 (t) = (e− 1)t, r = 1

e−1
< R = 1. Also,

‖F ′(x∗)−1(F
′′

(y)− F
′′

(x))‖ ≤ e
1

e−1 ‖y − x‖,

hence we get h
′′

(t) = e
1

e−1 t < h
′′
1 (t) = et.

Therefore, we get

r = 0.581977, r1 = 0.320365 and r∗ = 0.308453.

Now, using the center-majorant condition on F ′, we get

‖F ′(x∗)−1(F ′(y)− F ′(x))‖ ≤ e
1

e−1 ‖y − x‖.

Thus, we have h̄
′′

(t) = e
1

e−1 = h
′′

(t) and r = r̄ = ρ = 1
e−1

. Hence, we get

ρ = 0.581977, r̄1 = 0.385386, and r̄∗ = 0.371669.

Example 5.2. Next, we consider the non-linear integral equation of the Hammerstein-type given by

F (x)(γ) = x(γ)− 5H(x)(γ),

where H is any function such that

H ′(x)(γ) = γ

∫ 1

0

φx3(φ)dφ

defined on B1 = B = C[0, 1], the space of all continuous functions on the interval [0, 1] and let Ω = Ū(x∗, R) =
Ū(0, 1). Then, we get the Fréchet derivative F ′ as

F ′(x(χ))(γ) = χ(γ)− 15γ

∫ 1

0

φx2(φ)χ(φ)dφ for all x ∈ Ω.

We can observe that x∗ = x∗(γ) = 0 is solution of F (x). Then, by applying the conditions (A1)-(A4), we have

h
′′
0 (t) = 7.5t. Also, observe that r = 0.579796 < R = 1. Moreover, we get h

′′
(t) = 2t < h

′′
1 (t) = 15t. Therefore,

we get

r = 0.579796, r1 = 0.157198, and r∗ = 0.151331.

Again, by using the center-majorant condition on F ′, we get h̄
′′

(t) = h
′′

(t) = 2t and r = r̄ = ρ = 0.579796.
Thus, we get

r̄1 = 0.193937 and r̄∗ = 0.187046.
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6 Conclusions

The local convergence behaviour of the Chebyshev’s method under restricted majorant conditions is presented in
this paper. On comparing the results obtained in the numerical illustrations, we can conclude that new technique
presented in our work determines a more precise convergence ball than obtained in earlier works. Also, we can
observe that more tighter error estimates are obtained in comparison to the earlier works. The technique used
in the analysis does not really depend on the method. Therefore, it can be used on other single and multi-step
methods using inverses of divided differences or derivatives along the same lines. This will be the topic of our
future research.
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