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ABSTRACT 
 

As a hypothetical approach, strong interaction without repulsive forces can be assumed to be 
equivalent to a large gravitational coupling. Based on this concept, strong coupling constant can be 
defined as a ratio of the electromagnetic force and the gravitational force associated with proton, 
neutron, up quark and down quark. With respect to the product of strong coupling constant and fine 
structure ratio, we review our recently proposed two semi empirical relations and coefficients 
0.00189 and 0.00642 connected with nuclear stability and binding energy. We wish to emphasize 
that- by classifying nucleons as ‘free nucleons’ and ‘active nucleons’, nuclear binding energy can be 
fitted with a new class of ‘three term’ formula having one unique energy coefficient. Based on the 
geometry and quantum nature, currently believed harmonic oscillator and spin orbit magic numbers 
can be considered as the lower and upper “mass limits” of quark clusters.  
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1. INTRODUCTION 
 

With reference to nuclear stability and binding 
energy, relationship between nuclear force and 
strong force is still a grey area and is a 
challenging task for field experts and young 
scientists [1,2]. It is well established that,  
 

1) Less than 0.8 femtometer (fm), strong 
force is mediated by gluons. 

2) At a range of 1 to 3 fm, strong force is 
mediated by mesons.  

3) Neutrons, protons, baryons and mesons 
are made up of quarks. 

4) Gluons interact with quarks and other 
gluons and mesons interact with neutrons 
and protons.  

5) Strong force that binds quarks into 
neutrons, and protons can be called as 
‘residual strong force’ or simply ‘nuclear 
force’. 

6) Within the quark surroundings, force is 
strong and distance independent.  

7) Nuclear force is weaker and rapidly 
decreases with increasing distance among 
nucleons (bound quarks).  

8) Even though nuclear force is weaker than 
the strong force, still it is very energetic in 
producing gamma rays and holding 
nucleons with large binding energy. 

9) Strength of strong interaction is 
parameterized by strong coupling constant, 

0.1181s   [3].       

 

By taking into account the published concept of 
large nuclear gravitational coupling [4,5,6,7,8] 
and our recent paper [9] and references therein, 
we make an attempt to understand the physical 
significance and applications of strong coupling 
constant with respect to nuclear stability and 
binding energy. 
 

2. PHYSICAL SIGNIFICANCE OF 
STRONG COUPLING CONSTANT 

 

Strong coupling constant  s can be defined as 

a ratio of the electromagnetic force and the 
gravitational force associated with proton, 
neutron, up quark and down quark. 
Mathematically, it can be represented as 
 

 

 

1
2

0

2

4 2

s p u d

s

s n u d

G m m me

G m m m





    
                           

(1) 

where 
sG  Large nuclear gravitational constant, 

 ,p nm m = Proton and neutron masses and 

 ,u dm m = Up and down quark masses. 

 
In our earlier published papers, we proposed that 

[9], 28 3 -1 -23.329561 10 m kg sec .sG    With reference 

to particle data group [3],  
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Based on these values, estimated 0.11333s 

and its recommended world average  

0.1181.s   
By refining the magnitudes of up 

and down quark masses and the
 
large nuclear 

gravitational constant, absolute value of s  
can 

be fixed. Conceptually, it seems better to 
understand that,  
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(2) 

 

3. TWO NEW COEFFICIENTS AND THEIR 
APPLICATIONS 

 

In our earlier publications, in a quantum 
gravitational approach [9], we have introduced 
two coefficients 0.00189 and 0.006423 pertaining 
to nuclear stability and binding energy.  
 

A) Coefficient connected with Stability 
 

We noticed that,  
 

1) As proton number increases, at stability 
zone, neutron number increases with 
square of the proton number.  

2) Proportionality coefficient seems to be 
close to a number 0.0064 [5,6,7]. 
Quantitatively it can be fitted with a relation 
of the form,  

 

 1 0.00644

where 0.1181

s s

s

k    



    


  

                    (3) 

 

Based on the coefficient, 0.00644,k    neutron 

number close to stability zone can be expressed 
as,  
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where, Proton number

Neutron number close to stabilitys

Z
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In terms of nucleon number,  
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With this kind of relation, by guessing the proton 
number, corresponding stable zone nucleon 
number can be estimated directly. With even-odd 
corrections and fine tuning the value of ,k better 

understanding is possible. Considering 

0.00644k   and by considering a simple 
quadratic equation, relation (5) can be derived.  
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With reference to observational data, it seems 
reasonable to assign the proposed relation (5) 

with mean stable mass number  mA .   

 

  2_ 2s mmean
A A A m Ze n kZa  

                  
(7) 

 

Best lower and upper limits for stable and 
relatively long living mass numbers can be 
approximated with the following relation. 
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Using these relations as guidelines, long living 
isotopes of super heavy elements can be 
estimated.  
 

With reference to the famous stability relation 
pertaining to semi empirical mass formula 
[10,11,12],  
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 (9) 

 

Based on the proposed quadratic relation (6) and 
relation(9), it is possible to show that, 
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Comparing relations (9) and (10), solution seems 
to be a relation of the form, 
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(11) 
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1 1kA    seems to be more appropriate than 

2 30.0153A 
   and it needs further study. With a 

curiosity, we noticed that,  
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See Table 1 for a comparison for estimated 
proton number starting from A=340 to 4. 
 

Based on the data presented in Table 1, 
workability of the proposed coefficient 

0.00644,k  can be validated.  
 

B) Coefficient connected with free 
nucleons 

 

It is known that,  
 

1) The nucleons not involving in nuclear 
binding energy scheme are called ‘free 
nucleons’.  

2) Number of free nucleons increases with 

increasing A ZN . 
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3) Nucleons that involve in nuclear binding 
energy scheme can be called as ‘active 
nucleons’. 

4) In finding the free nucleon number, with 
trial–error solutions, we are able to come 
across a number close to 0.00189 [9]. 

Quantitatively it can be fitted with a relation 
of the form,  
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where 0.1181

d
s
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s

m
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m
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Table 1. Proton number comparison estimated with relations (12A) and (12B) 

 
Mass 
number 

Proton number estimated 
with relation (12A) 

Proton number estimated 
with relation (12B) 

Difference in estimated 
proton number 

340 124 122 2 
332 121 120 1 
324 119 118 1 
316 117 115 2 
308 114 113 1 
300 112 111 1 
292 109 108 1 
284 107 106 1 
276 104 104 1 
268 102 101 1 
260 99 99 0 
252 97 96 1 
244 94 94 0 
236 91 91 0 
228 89 89 0 
220 86 86 0 
212 83 84 -1 
204 81 81 0 
196 78 78 0 
188 75 76 -1 
180 72 73 -1 
172 70 70 0 
164 67 67 0 
156 64 65 -1 
148 61 62 -1 
140 58 59 -1 
132 55 56 -1 
124 52 53 -1 
116 49 50 -1 
108 46 47 -1 
100 43 44 -1 
92 40 41 -1 
84 37 37 0 
76 33 34 -1 
68 30 31 -1 
60 27 28 -1 
52 23 24 -1 
44 20 21 -1 
36 17 17 0 
28 13 13 0 
20 9 10 -1 
12 6 6 0 
4 2 2 0 
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5) To a very good approximation, free 
nucleon number can be expressed with a 
relation of the form,  

 

0.001863fA Af A ZN ZN  
                  

 (15) 

 
6) Active nucleon number can be expressed 

with a relation of the form, 
   

  1 0.001863a fA A A A ZN                     (16) 

 
7) By considering the integer form of 

 1 0.001863aA ZN A   or  0.001863fA A ZN , 

to some extent, error can be minimized in 
the  estimation of binding energy.

  

4. PROPOSED NUCLEAR BINDING 
ENERGY SCHEME 

 
We propose that, nuclear binding energy 
[1,2,13,14,15] 
 

1) Can be understood with single energy 
coefficient and three simple terms. 

2) Decreases with increasing number of free 
nucleons. 

3) Increases with increasing number of active 
nucleons. 

4) Decreases with increasing radius. 
5) Of stable and unstable isotopic mass 

numbers can be estimated with mean 
stable mass number as a reference line of 
stability. 

Based on these points, for estimating nuclear binding energy (BE), we propose the following semi 
empirical relation for Z=3 to 118.

 
  

 

   

2

1 3
0,

2

1 3

1  

1 0.001863 1 10.1 MeV

m
az A

m

m

m

A A
BE A A B

A

A A
ZN A A

A

         
     


           
      

                                                   (17) 

 

   

 

0
0 0

2

0 2 2

2 2
where   

3
         10.245 MeV 10.1 MeV

2

2 2
        and 1.24 fm.

s p u d s n u d

u d

s p s n

G m m m G m m m
B

R R

m m c

G m G m
R

c c

 
 

   

  
 

 
In this relation (17),  
 

First term:   1 0.001863 10.1 MeVZN A  
                                                                       

(18) 

 

Second term: 1 3 10.1 MeVA                                                                                              (19) 
 

Third term:  
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 can be considered as a representation of ‘asymmetry’ about the mean line of stability. 

We are still working on understanding the physical significance of the third term [16,17,18] and it 
needs in-depth study.  Close to mean stable mass number, 
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See Table 2 and Fig. 1 for the estimated BE of isotopes of Z=50 estimated with relations (7) and (17) 
compared with standard semi empirical mass formulae (SEMF).  
 

Note: The numbers   and f k  can be considered as the characteristic outcomes of the combined 

effect of strong and electromagnetic coupling constants. With trial-error method, we noticed that,
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Table 2. Estimated BE of isotopes of Z= 50 
 

Z A N Estimated 
A_mean 

Estimated BE 
(MeV) 

SEMF-1 BE 
(MeV) 

SEMF-2 BE 
(MeV) 

50 100 50 116 836.6 810.1 813.0 
50 101 51 116 847.4 823.1 825.7 
50 102 52 116 858.0 838.0 840.2 
50 103 53 116 868.4 850.1 852.1 
50 104 54 116 878.6 864.1 865.7 
50 105 55 116 888.6 875.4 876.9 
50 106 56 116 898.5 888.6 889.8 
50 107 57 116 908.1 899.1 900.2 
50 108 58 116 917.6 911.5 912.4 
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Z A N Estimated 
A_mean 

Estimated BE 
(MeV) 

SEMF-1 BE 
(MeV) 

SEMF-2 BE 
(MeV) 

50 109 59 116 926.9 921.2 922.1 
50 110 60 116 936.0 932.8 933.6 
50 111 61 116 944.9 941.9 942.7 
50 112 62 116 953.7 952.8 953.6 
50 113 63 116 962.3 961.1 962.0 
50 114 64 116 970.6 971.4 972.3 
50 115 65 116 978.8 979.1 980.1 
50 116 66 116 986.9 988.8 989.8 
50 117 67 116 994.7 995.9 997.1 
50 118 68 116 1002.4 1004.9 1006.1 
50 119 69 116 1009.8 1011.4 1012.9 
50 120 70 116 1017.1 1019.9 1021.4 
50 121 71 116 1024.2 1025.9 1027.7 
50 122 72 116 1031.1 1033.8 1035.7 
50 123 73 116 1037.9 1039.3 1041.5 
50 124 74 116 1044.4 1046.7 1049.0 
50 125 75 116 1050.8 1051.6 1054.3 
50 126 76 116 1057.0 1058.5 1061.3 
50 127 77 116 1063.0 1063.1 1066.1 
50 128 78 116 1068.9 1069.5 1072.7 
50 129 79 116 1074.5 1073.5 1077.1 
50 130 80 116 1080.0 1079.5 1083.3 
50 131 81 116 1085.3 1083.2 1087.3 
50 132 82 116 1090.4 1088.7 1093.0 
50 133 83 116 1095.3 1091.9 1096.6 
50 134 84 116 1100.0 1097.0 1101.9 
50 135 85 116 1104.6 1099.9 1105.1 
50 136 86 116 1108.9 1104.6 1110.0 
50 137 87 116 1113.1 1107.1 1112.9 
50 138 88 116 1117.1 1111.5 1117.4 
50 139 89 116 1121.0 1113.6 1119.9 
50 140 90 116 1124.6 1117.6 1124.1 
50 141 91 116 1128.1 1119.4 1126.3 
50 142 92 116 1131.3 1123.0 1130.1 
50 143 93 116 1134.4 1124.5 1132.0 
50 144 94 116 1137.3 1127.8 1135.5 
50 145 95 116 1140.1 1129.0 1137.0 
50 146 96 116 1142.6 1131.9 1140.2 
50 147 97 116 1145.0 1132.8 1141.4 
50 148 98 116 1147.2 1135.5 1144.3 
50 149 99 116 1149.2 1136.1 1145.2 
50 150 100 116 1151.0 1138.5 1147.8 
50 151 101 116 1152.7 1138.8 1148.5 
50 152 102 116 1154.1 1140.9 1150.8 
50 153 103 116 1155.4 1140.9 1151.1 
50 154 104 116 1156.5 1142.8 1153.2 
50 155 105 116 1157.4 1142.5 1153.3 
50 156 106 116 1158.1 1144.1 1155.0 
50 157 107 116 1158.7 1143.7 1154.9 
50 158 108 116 1159.0 1145.0 1156.4 
50 159 109 116 1159.2 1144.3 1156.0 
50 160 110 116 1159.2 1145.4 1157.2 
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Fig. 1. BE of isotopes of Z=50 
 

Table 3. Mean, lower and upper mass limits of quark clusters 
 

Principal quantum number Mean mass number Lower mass number Upper mass number 
1 1 ±1 0 2 
2 4 ±2 2 6 
3 11 ±3 8 14 
4 24 ±4 20 28 
5 45 ±5 40 50 
6 76 ±6 70 82 
7 119 ±7 112 126 
8 176 ±8 168 184 
9 249 ±9 240 258 
10 340 ±10 330 350 

 

5. MAGIC NUMBERS AND QUARK 
CLUSTERS 

 
Two observed series of magic numbers 2,8,20,… 
and 28,50,82,… can be understood with quarks 
in the following way. Based on the geometry [19] 
and quantum nature [20-28],  
 

1) Nuclear volume constitutes systematically 
arranged quark clusters.  

2) Currently believed harmonic oscillator and 
spin orbit magic numbers can be 
considered as the lower and upper “mass 
limits” of the assumed quark clusters. 

3) Each quark shell is associated with a 
principal quantum number, 1,2,3,...n    

4) As nucleon constitutes 3 quarks,  number 
of quarks that can be accommodated in 
thn  cluster can be represented by,  
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(24) 

 

5) Corresponding lower and upper limits of 
the nucleons can be represented by,  
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(26) 
 

See Table 3 and Fig. 2 for the lower, mean and 
upper mass limits of quark clusters. 
 

6) Gap between thn  cluster  n lower
A  and 

cluster  n upper
A  is    1 2 .n n    

7) Based on the beta stability relations (12A) 
and (12B) and on the capacity of the quark 
cluster and corresponding to the lower, 
average and upper limits of the nucleons in 
the quark cluster, even proton numbers (2 
to 4) can be inferred. These inferred even 
protons seem to have more number of 
isotopes and magic nature. Inferred                

proton number corresponding to the 
average mass number of any quantum 
cluster seems to have more                     
isotopes compared to minimum and 
maximum mass limits. 

8) At 6n  , quark cluster lower, average and 
upper  mass limits are 70, 76 and 82 
respectively and this mass range seems to 
be in-line with the whole isotopic mass 
range of Z=34. Corresponding even proton 
numbers seem to be 34 2 . See 
references [24,27,28]. 

9) At 7n  , quark cluster lower, average              
and upper  mass limits are 112, 119 and 
126 respectively and this mass                    
range seems to be in-line with the whole 
isotopic mass range of Z=50. 
Corresponding even proton numbers seem 
to be 50 2.   

10) At  8,9,10 ,n  inferred proton numbers 

are      70 to 74 , 92 to 96 and 120 to 124Z 

respectively. It needs further   
investigation. 

11) At 2n  , quark cluster upper mass limit is 

6 and at 3n  , quark cluster upper mass 
limit is 14. See references [21, 26]. 

 

 
 

Fig. 2. Estimated lower and upper mass limits of quark clusters 
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6. DISCUSSION 
 

1) Even though celestial objects that show 
gravity are confirmed to be made up of so 
many atoms, so far scientists could not find 
any relation in between gravity and the 
atomic interactions at quantum gravity 
level.  

2) When microscopic space time is highly 
curved than macroscopic space time 
curvature, it is natural to assign a large 
value to microscopic gravitational constant. 
Compared to particles having a structure, 
for point particles, magnitude of 
gravitational constant can be much higher. 
Based on this logic, for each atomic 
interaction, one different gravitational 
constant can be assigned. Thinking in this 
way, in our earlier publication [9] and 
references therein, with respect to three 
different atomic gravitational constants 
assumed to be associated with strong, 
weak and electromagnetic interactions,  we 
have proposed many interesting 
applications and finally we could able to 
estimate the Newtonian gravitational 
constant with the three atomic gravitational 
constant.   

3) Different interactions were assumed 
starting from electron rest mass to Planck 
mass as follows,  

 
2

X XG M c                                                      (28) 

 
where, 
 
Interaction dependent gravitational constant=

X
G  

Interaction dependent massive fermion =
X

M  
 
     To proceed further, we defined that,  
 

a) For electroweak interaction, 
 

2
w wG M c                                                       (29) 

 
where, 
 
Weak gravitational constant=

w
G  

Characteristic weak massive fermion =
w

M  
 

b) For strong interaction, 
 

2 1s
s p

s

e
G m c c

e 

 
   
 

                                (30) 

where, 
 
Nuclear or strong gravitational constant=

e
G  

Mass of proton =
p

m  
Strong elementary charge = s

e  
Ordinary elementary charge = e  
Strong coupling constant=

s
  

 
c) For electromagnetic interaction, 

 

2 w
e e

p

M
G m c

m

 
  
 
 

                                              (31) 

 
where, 
 
Electromagnetic gravitational constant=

e
G  

Mass of electron =
e

m  
 
Based on these relations, it is possible to arrive 
at,  
 

2

2
e e w

s p e p w p

G m Mc c

c G m m m G m

 
   
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 


                (32) 

 
Out of the three  , , ,

e s w
G G G  if anyone is known, 

other two can be estimated. With reference                 
to their approximate magnitudes, we noticed  
that,  
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where, 
 
Newtonian gravitational constant=

N
G  

 
4) In this context, readers are encouraged to 

see our recent paper [18]. Newtonian 
gravitational constant can be addressed 
with a relation of the form, 
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37 3 -1 -2

28 3 -1 -2

22 3 -1 -2

where,

2.374335 10  m kg sec

3.329561 10 m kg sec

2.909745 10  m kg sec

e

s

w

G

G

G

 

 

 
 

 
Strong coupling constant can be addressed with 
a relation of the form,   
 

10

4 6
0. 5

1
11 2s

s e w

G

G G

 
  

 
                                     (37) 

 
Weakly interacting massive fermion can be  
expressed as,   
 

2584.725 GeV/w
w

c
M c

G
 


                       (38) 

 
5) Our proposed ‘4G model’ of final 

unification is still under its budding stage 
and we are working on it.  

6) We would like to emphasize the fact that, 
high energy physics is failing in explaining 
the basic mechanism of nuclear binding 
energy scheme and magic numbers. 
Scientists should consider this as a major 
shortcoming of the current quark model of 
particle physics.   

7) When ordinary (low energy scale) nuclear 
material is used as an input for high  
energy nuclear experiments, it is important 
to review low energy and high                 
nuclear physical concepts in a unified 
approach.    

8) Without explaining the low energy scale 
structure of nucleus with quarks,         
focussing on high energy scale quark 
properties seems to be ambiguous and 
incomplete.  

9) After establishing a harmony in between 
low and high energy nuclear physics with 
quarks and gravity, issues pertaining to 
other branches of physics like 
understanding the behaviour of stars, 
formation of compact objects, inferring 
baryon acoustic oscillations and origin of 
dark energy can be studied in a better way.      

10) By extending our ideas to high energy 
physics, it may be possible to study low 
energy physics and high energy physics in 
a unified approach.  

11) So far we could find three definitions for 
the strong coupling constant. Our basic 
idea is that, there exists a strong 

interaction elementary charge in such a 
way that, it’s squared ratio with normal 
elementary charge is close to inverse of 
the strong coupling constant. Using this 
charge, proton magnetic moment and 
nuclear binding energy coefficient can be 
estimated. Another interesting application 
is that, based on strong charge 
conservation [29] and super symmetry 
[30], fractional charge quarks can be 
understood.  

12) Asymptotic freedom [31,32] is a peculiar 
feature of quantum chromodynamics 
(QCD) at high energy scale. Clearly 
speaking,  
 

a) Quarks interact strongly at low energies 
and weakly at high energies.  

b) Strength of interaction decreases with 
increasing energy logarithmically.  

 
Qualitatively, to some extent, this concept can be 
understood with relativistic speed of proton. With 
reference to velocity of proton and based relation 
(1), it is possible to have a similar idea of the 
form,   
 

 
 

1

2 21

p
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m

v c
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
 
 
  
                                   

(39) 

 
where, v  Velocity of proton. 

 
With reference to velocity of proton, relativistic 
strong coupling constant can be expressed as, 
    

   
2

20
1s sv v

v

c
 



 
   

                                

(40) 

 

where,    
0

0.1181s sv
 


   

 
Based on this relation and starting form 

  0.9v c   to   0.999624v c  ,  we tried to 

estimate the magnitude of  s v
  . See the 

following Fgure-3. This may not be the exact 
case as suggested by the field experts and Nobel 
laureates Wilczek, Politzer and Gross. We are 
working in this direction. By considering other 
characteristic physical parameters associated 
with strong interaction, it may be possible to 
understand the mystery of strong interaction 
strength at basic level.  
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Fig. 3. Relativistic magnitude of strong coupling constant 
 

7. CONCLUSION 
 

With reference to the data presented in Tables 1, 
2 and 3, our proposed concepts and relations 
can be recommended for further investigation.  

By refining the values of  , , ,s u dG m m

magnitudes of  0, , ,s f k B can be refined.  
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