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ABSTRACT 
 

Many malaria endemic nations are pursuing malaria elimination and these technical challenges 
require the development of integrated approaches, among which safe and effective malaria 
vaccines could be a crucial tool.  Due to non-availability of malaria vaccine, the control efforts rely 
heavily on treatment with new antimalarial agents preferably acting on newer targets.  In this study, 
the protected serum proteomics after garlic and arteether combination treatment of P.berghei 
infected mice has been analyzed by western blotting. One of the identified host parasites specific 
proteins, peptidyl-prolyl-cis-trans isomerase A (PPIA) is known to catalyze the interconversion of the 
cis and trans and mediate certain protein folding events both in in vitro and in vivo conditions. This 
study hypothesizes that, overexpressed PPIA might lead to misfold of the parasite protein which are 
needed for parasite multiplication and in turn lead to the parasite death or in the protection of 
combination drug treated samples. 
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1. INTRODUCTION 
 

Despite of continuing efforts to eradicate 
malaria, the global number of malaria cases 
increased from 211 to 219 million between 2015-
17, with a concomitant increase in deaths, 
especially in children below 5 years of age and 
approximately 97% are from Sub-Sahara Africa 
and Southeast Asia [1]. “The measures to 
control malaria have become less effective due 
to the emergence of multidrug-resistant 
parasites and insecticide-resistant mosquitoes” 
[2,3]. “Many malaria endemic nations are 
pursuing malaria elimination” [4] and “these 
technical challenges require the development of 
integrated approaches, among which safe and 
effective malaria vaccines could be a crucial 
tool” [5]. Due to non-availability of malaria 
vaccine, the control efforts rely heavily on 
treatment with new antimalarial agents 
preferably acting on newer targets. 
 
“The use of herbal plants as health promoters is 
gaining attention in recent years as they are 
proven to be a valuable source for the discovery 
of novel antimalarial therapeutic agents since the 
discovery of the first antimalarial drug in 1800s” 
[6]. “Garlic (Allium sativum) is one such 
traditional Ayurvedic medicine, widely used for 
various risk factors associated with several 
diseases. It has been proven beneficial 
treatment for several infection and inflammation” 
[7] “with its known anticoagulant, antibiotic, 
hypocholesterolemic, hypoglycemic and 
hypotensive activities” [8]. Garlics antimicrobial 
properties [9,10] have been recorded as early as 
1940s [11] and its effects against plant 
pathogens [12], pathogenic fungi [13] and 
human pathogens [14] have been well studied.  
Previous studies from our laboratory have 
proved, three oral dose of garlic pearl oil (for 
three constitutive days) in combination with 
intramuscular single dose of arteether, an 
artemisinin derivate given to 72 h post-infected 
mice with Plasmodium berghei (P.berghei) is 
completely protected from malaria [15]. This 
combination therapy also revealed the 
immunomodulatory activity via nitric oxide 
pathway in Plasmodium berghei-infected mice 
[16]. “In recent years, proteomic studies have 
thrown substantial contribution in understanding 
the host-pathogen relationship” [17,18] and 
reflecting potential changes occurring due to 
infection and infection-induced proteins [19], 
which will serve either as an early indicator for 
diagnosis or therapeutic targets.  There are 
reports which show specific proteins are 

overexpressed due to P.berghei infection [20] 
which mimic P.falciparum–induced cerebral 
malaria in human [21]. In this study, we have 
compared P.berghei-infected and protected mice 
serum after garlic-arteether treatment, initially by 
western blot analysis and the unique protein 
expressed only in protected sample was 
subjected to MALDI-TOF/TOF mass 
spectroscopy and confirmed by semiquantitative 
RT-PCR and further analyzed its interacting 
proteins using STRING v.91 (search tool for the 
retrieval of interacting genes/proteins).  One of 
the identified parasite specific proteins in this 
study was turned out to be peptidyl-prolyl-cis-
trans isomerase A (PPIA).  The peptidyl cis-trans 
prolyl isomerase was first isolated by Fischer in 
1984 [22] and is found in both prokaryotes and 
eukaryotes [23]. “PPIA is known to catalyze the 
interconversion of the cis and trans isomers at 
the N-terminus site of Xaa-proline residues of 
the peptidyl-prolyl bonds in peptide and protein 
substrates and mediate certain protein folding 
events both in in vitro and in vivo conditions” 
[24,25]. “This conformational change of the 
peptide bond is necessary during protein folding” 
[26,27] and “it accelerates the rate-limiting steps 
in the refolding of several proteins in in vivo and 
hence called as peptidyl-prolyl cis-trans 
isomerase or cyclophilin or rotamase.  
Cyclophilins have been isolated from a variety of 
animal species, as well as from fungi, bacteria, 
plants, recently in the protozoan Toxoplasma 
gondii” [28] and P. falciparum [29]. This study 
will conclude that the malaria protection in garlic 
and arteether combination therapy is via PPIA 
and lead to possible drug target for malaria 
control. 
 

2. MATERIALS AND METHODS 
 
2.1 Drugs and Chemicals  
 
Commercially available antimalarial drug α-β 
arteether (E MAL™, Themis Medicare Ltd., 
Uttarakhand, India) and ayurvedic medicine 
garlic pearl oil (Sun Pharmaceutical Ind. Ltd., 
Mumbai, India) was procured locally. 

 

2.2 Animals  
 
Experimental animals used in this study were 
Swiss albino mice of 4-5 weeks old, obtained 
from the Central Animal Facility, Indian Institute 
of Science, Bangalore and were maintained on a 
12 h light-dark cycle with food and water ad 
libitium.  All the precautions were undertaken to 
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minimize suffering throughout the experiments 
and followed the guidelines of the “Committee 
for the Purpose of Control and Supervision of 
Experimental Animals (CPCSEA), Government 
of India (Registration No: 48/1999/CPCSEA) and 
as approved by the Institutional Animal Ethics 
Committee (IAEC) (CAF/ Ethics/282/2012 and 
585/2018).   

 

2.3 In vivo Infection and Drug Treatment 
Protocols 

 
The infections were initiated with 60-70% 
parasitized erythrocytes obtained from a 
passaged donor animal and injected 
intraperitoneally on the beginning of experiment 
(Day 0) with appropriate dilution. All the control 
mice died between Day 5 and Day 6 post 
infection. Drug treatment started after 72 h of 
post infection (Day 3), when the parasitemia was 
about 2-4%, with either single dose of 
intramuscular arteether (500 μg) and/or three 
oral doses of garlic pearl oil (100 μl/mouse) on 
Day 3, 4 and 5 to non-anesthetized mice both in 
mono and combination as shown in the 
treatment regimens (Table 1). Blood collected 
from tail vein and smears with Giemsa stain 
were checked for parasitemia progression or 
inhibition at regular time intervals and mortality 
of animals were monitored. In vivo antimalarial 
activity was examined in groups of ten male 
mice in three independent experiments.  
 

2.4 Serum Sample Preparation 
 
Blood was collected from different experimental 
groups by cardiac puncture before the death of 
the infected control mice. It was allowed to clot 
for 2 h at room temperature then centrifuged at 
5000 rpm for 20 min to separate the clotted 
material. Serum from normal mice without 

infection and with infection severs as our control. 
The pooled sera from two animals of each group 
were obtained and 100 μl aliquots were stored at 
-80°C until further analysis. 
 

2.5 Parasite Protein Lysate Preparation 
 
Soluble parasite proteins were prepared as 
described by Ang et al. [30]. “In brief, the 
parasites were collected from infected blood 
after saponin lysis and suspended in an 
appropriate volume of phosphate buffer saline 
followed by sonication (5 min at 4ºC) and 
centrifugation at 10,000 rpm for 10 min. The 
supernatant was stored at -80ºC until further 
analysis”.  
 

2.6 SDS-PAGE and Western Blot 
Analysis 

 
For Western blot, 100 µg of parasite proteins 
were electrophoresed on a 10% SDS-PAGE gel 
under reducing conditions and transferred to 
nitrocellulose membranes (Bio-Rad). 
Membranes were cut in vertical strips, blocked 
with 5 % BSA dissolved in PBS-T (PBS with 
0.05% Tween 20) for 2 h at room temperature 
and probed with individual serum samples 
diluted to 1:50 in PBS, pH 7.4. Antibody 
responses were revealed with monoclonal 
secondary antibodies in dilution of 1:1000 
followed by incubation with AP-conjugated anti-
mouse antibodies (Dako, Hamburg, Germany). 
Western blots were performed with SDS-PAGE 
gels; all loaded with the same protein 
preparation and run under identical 
electrophoretic parameters. The strips shown 
are originated from a single blot. The blot was 
developed and visualized using a Pierce ECL 
Western Blotting Kit (Thermo Scientific).  

 
Table 1:.Treatment regimens for mice 

 

 
No.  

 
Animal Groups 

P. berghei   
Infection 

Treatment 
Type 

Treatment 
Day 

 
Purpose 

1 Uninfected   No - - Negative control 
2 Infected    Yes - - Positive control 
3 Infected + AE Yes AE D3 Arteether 

monotherapy 
4 Infected + G Yes G D3, D4, D5 Garlic monotherapy 
5 Infected + AE + G Yes AE+G D3, D4, D5 Garlic and arteether 

combination therapy 
AE - arteether; G - garlic 
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Table 2. MALDI-TOF analysis of Band 1 and 2 and proteins identified by employing Mascot 
(Matrix Science) with the respective protein sequence 

 

Sample Identified Protein Protein sequence coverage 
(Matched peptides shown in bold) 

Band 1 C-X-C motif chemokine 11 
(CXCL11) 
(Score:27) 

MNRKVTAIALAANWATAAQGFLMFKQGRC 
LCIGPGMKAV KMAEIEKASV IYPSNGCDKV 
EVIVTMKAHK RQRCLDPRSK QARLIMQAIE 
KKNFLRRQNM 

Band 2 Peptidyl-prolyl cis-trans 
Isomerase A (PPIA) 
(Score: 45) 

MVNPTVFFDI TADDEPLGRV SFELFADKVP 
KTAENFRALSTGEKGFGYKGSSFHRIIPGFMCQGGD
FTRHNGTGGRSIYGEKFEDENFILKHTG 
PGILSMANAGPNTNGSQFFICTAKTEWLDGKHVVFG
KVKEGMNIVEAMERFGSRNGKTS KKITISD CGQL 

 
2.7 Mass Spectrometry Protocol  

 
Unique protein bands appeared only in samples 
of mice undergone garlic and arteether 
combination therapy.  The corresponding protein 
bands in the western blot were excised manually 
from Coomassie stained gel and washed with 
50% acetonitrile (ACN), 50 mM ammonium 
bicarbonate, and incubated at room temperature 
for 15 min. The wash was repeated until the 
coomassie dye was completely removed. The 
gel was later dehydrated with 100% ACN for 5 
min. The gel was rehydrated with reduction 
solution containing 10 mM DTT and 100 mM 
ammonium bicarbonate for 30 min at 56°C. Next, 
the gel was treated with alkylation solution 
containing 50 mM iodoacetamide and 100 mM 
ammonium bicarbonate, incubated for 30 min in 
dark. The gel was subjected to another round of 
wash and dehydration. Later, the gel was 
rehydrated with protease digestion solution (20 
µg of trypsin in 1 ml of 50 mM ammonium 
bicarbonate) and incubated for overnight 
digestion at 37°C. Peptide fragments were 
extracted with 60% ACN and 0.1% Trifluroacetic 
acid (TFA) and resuspended with 50% ACN and 
0.1% TFA. 0.5 µl of the processed sample was 
spotted on MALDI plate followed by 0.5 µl of 
alpha-cyano-4-hydroxycinnamic acid matrix (10 
mg/ml in 50% ACN and 0.1% TFA). Calibration 
was done with internal tryptic peaks of 842.5 and 
2211.1 Da. The MALDI mass spectra were 
obtained using an ULTRA FLEXtreme MALDI 
TOF/TOF (Bruker Daltonics). 
 

2.8 Peptide Mass Fingerprinting and 
Database Search 

 
The collected peptide mass data from MALDI-
TOF were processed and were searched against 
SwissProt database employing Mascot (Matrix 

Science) database for protein identification and 
for STRING v9.1 analysis (search tool for the 
retrieval of interacting genes), which is an 
application that aggregates available databases 
of known proteins. The search parameters 
included: consideration of probable 
modifications, such as carboxy methylation of 
cysteine residues and oxidation of methionine 
residues, and maximum missed cleavage of 1 
using trypsin as a cleavage enzyme. Peptide 
mass tolerance was set at +/-100 ppm. Protein 
matches with high score (p< 0.05) were 
considered as significant. 
 

2.9 RNA Extraction from Blood & 
Confirmation by RT-PCR 

 
The identified protein was further confirmed by 
semi-quantitative RT-PCR.  Total RNA from 
blood of different groups was extracted with 
Trizol reagent (Invitrogen, USA) and the 
extracted RNA samples were subjected to 
DNAse (Promega) treatment to avoid genomic 
DNA contamination. 2 µg of total RNA was used 
for cDNA synthesis using random primer. One 
tenth of the volume (20 µl) was taken and set up 
PCR for PPIA by using primers sequences - 
forward 5’-AGGGTGGTGACTTTACACGC3’ and 
reverse5’-CATTCCTGGACCCAAAACGC-3’ 
along with endogenous constitutively expressing 
GAPDH primer 5′-AGGGATGTATTCG CTTT 
ATTTAATGC-3′ and TCTTGTCCAAA CAA 
TTCATCAT ATC-3′ sequence. PCR conditions: 
initial denaturation at 95°C for 45 sec. annealing 
at 55°C (for PPIA) and 50°C (for GAPDH) for 40 
sec. and extension at 72°C for 40 sec, with a 
final extension for 10 min. Control reaction was 
included under the same conditions using DNAs 
treated RNA as template along with the different 
sample groups. Amplified products were loaded 
on 1% agarose gel electrophoresis and 
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visualized after ethidium bromide staining using 
Kodak EDAS120 system.  
 

2.10 ELISA Protocol 
 
The different serum samples from all the groups 
were further subjected to PPIA detection by 
ELISA technique, using commercially available 
PPIA ELISA kits (Life Span Bio Sciences LS-
F13411) and followed the protocol according to 
the manufacturer’s recommendations. The 
concentrations were calculated from standard 
curves established according to the protocol.  
The results observed were supportive towards 
higher level of PPIA in combination treated 
group serum as compared rest of the group.  

 
2.11 Statistical Analysis 
 
The data are presented as the mean ± SD or 
mean ± SEM (n=3).  Differences between groups 
were calculated by Student’s t-test using SPSS 
software (Version 13.0, SPSS, Chicago) and 
p<0.05 was considered as statistically 
significant.  
 

3. RESULTS  
 
3.1 In vivo Efficacy of Garlic, Arteether 

Mono and Combination Therapy 
 
It was interesting to examine the mechanism of 
action of garlic-arteether combination treated 
mice infected with P. berghei using a rodent 
model of malaria. Swiss mice infected with P. 
berghei were treated with single injection of 
arteether along with three oral doses of garlic, 
not only cleared parasite in the blood but also 
protected mice from malaria.  This is confirming 
the previous results from the laboratory. 
 

3.2 Western Blot and MALDI Analysis 
 
The sera collected from different groups were 
tested against P. berghei total protein by 
Western blotting. The results showed that the 
unprotected sera (un-treated and mono therapy 
group) did not recognize any parasite-specific 
proteins, whereas sera from the protected 
(combination therapy) mice interestingly showed 
two parasite-specific proteins with molecular 
weight of 90kDa and 110kDa(marked by arrow) 
(Fig. 1). The corresponding protein bands of 
western blot were identified in Coomassie 
stained SDS-PAGE gels, excised and subjected 
MALDI-TOF/TOF analysis and one of the bands 

identified was a very interesting protein, 
Peptidyl-prolyl cis-trans isomerase A (Band 2-
PPIA) and the other one turned out to be C-X-C 
motif chemokine 11 (Band 1-CXCL11). We have 
done further analysis only with PPIA since this 
protein showed significant higher scorein Mascot 
(Matrix Science) analysis (Table 2). 
 

 
 

Fig. 1. Western blot analysis of parasite 
proteins reacted with different sera samples 

(pooled sera from two animals of each 
group), UNINF-Uninfected; INF-Infected; G-
Garlic treated; AE-Arteether treated; AG-
Arteether and garlic treated; M-Molecular 

weight marker; Band 1 & 2 – parasite specific 
proteins detected only in combination treated 

protected mice sera 
 

3.3 RT-PCR Results 
 
Semi-quantitative RT-PCR carried out for 
constitutively expressed endogenous control, 
GAPDH with 390 bp and specific PPIA with 550 
bp PCR product and the results confirmed the 
overexpression of PPIA in combination treated 
group along with the basal values in the other 
group samples. Relative mRNA expression 
levels were normalized with GAPDH levels. This 
result gave us an important validation that PPIA 
is significantly upregulated in combination 
treated samples as compared to other groups 
(Fig. 2).  
 

3.4 The Protein-protein Interaction 
Networks of PPIA 
 
The PPIA protein identified by MALDI analysis 
was further subjected to functional association 
networks (Fig. 3) by STRING database. Results 
of protein-protein interaction analysis of PPIA 
revealed several predicted protein interactions, 
which are known from curated data bases and 
some of them are experimentally determined. 
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The predicted interactions depend on gene 
neighbourhood, co-occurrence or fusions and 
other interactions like co-expression of proteins 
and also by studying protein homology. Most of 
these results proves that the involvement of 

PPIA in any biological and molecular processes 
is by binding to other proteins or by its catalytic 
activity.  Table 3 shows the identified protein and 
their functional interaction depending on the 
interaction network analysis. 

 

 
 

Fig. 2. PPIA mRNA expression confirmed by semi-quantitative RT-PCR analysis of different 
groups. Relative mRNA expression levels of PPIA from blood of P. berghei-infected and 

treated animals. UNINF, uninfected; INF - infected; G - garlic treated; AE - arteether treated; AG 
- arteether + garlic treated (*p < 0.05; **p < 0.01; ***p < 0.001) (one-way ANOVA) 

 

 
 

 
 

Fig. 3 The protein-protein interaction networks of PPIA constructed by STRING Analysis 
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Table 3. Predicted Functional partners of PPIA 
 

 
 

Fig. 4. PPIA detection in different sera samples.  Mean (SD) PPIA concentration (ng/ml) was 
highest in arteether and garlic combination treated sera compared to the normal range in rest 

of the groups. Data is the mean value of the three independent experiments 
 

3.5 PPI A detection by ELISA 
 
The different serum samples from all the groups 
were further subjected to PPIA detection by 
ELISA technique, using commercially available 
PPIA ELISA kits (Lifespan Biosciences LS-
F13411) and followed the protocol according to 
the manufacturer’s recommendations. The 
concentrations were calculated from standard 
curves established according to the protocol 
(Fig. 4).  The results observed were supportive 
towards higher level of PPIA in combination 
treated group serum as compared rest of the 
group.    
 

4. DISCUSSION 
 
“Many pathogens will use the host machinery for 
its propagation or inhibition of immune system 

for their survival.  In malaria parasites, because 
of the high replication rate and less machinery of 
its own, it depends on host for its need of 
protein. One such host protein identified in this 
study, PPIA is known to play a critical role in cell 
process such as protein secretion, RNA 
processing and cell cycle regulation to 
pathogenicity” [31].  It interacts with several 
proteins as shown in Table 2 to reach the target 
action.  Many PPIA interacting proteins are 
involved in accelerating the protein folding 
(FKBP1A) or helping the host to modulate the 
cytoskeleton structure for in/out transport of 
proteins via microtubule and membrane 
associations (GAPDH) or the proteins (H2AX) 
involved in DNA replication, DNA repair, 
chromosomal stability, or a complex set of 
posttranslational modifications. In viruses and 
some other obligate parasites, it is known that 
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the use of host PPIA for their own protein 
modification as an essential step for the 
pathogen multiplication.  In this case these 
modified host PPIA might suppress the 
pathogenesis and turn out to be a potential 
target for gene therapy [32]. “General activity of 
PPIA and their phenotypic impact is 
experimentally difficult to define but several 
characteristics of PPIA can be linked to their in 
vivo pivotal roles. The contribution of PPIA to 
cellular physiology is thought to be very specific 
and dependent on different conditions and the 
niche in which a cell resides. PPIA are highly 
conserved abundant protein that originate in 
eukaryotic and prokaryotic cells based on the 
drug specificity and primary sequence 
homology” [33,34]. “This type of PPIA functional 
role was identified as the major cellular target for 
CsA” [35] and same kind of upregulation of PPIA 
protein was also observed by many other 
conditions like stress factors [36,37] or infection 
[38,39] or as a part of repair process [40] which 
are the conditions might lead to misfold proteins.  
In malaria parasites, protein quality control is 
potentially important because of the high 
replication rate and the rapid transformations of 
the parasite during life cycle progression. This 
study hypothesizes that this over expressed 
PPIA might lead to misfold of the parasite 
specific protein and quality check in the host, 
which are needed for parasite multiplication and 
in turn lead to the parasite death or the 
protection in combination drug treated samples.  
To understand the development of novel 
strategies against malaria parasites, it is 
important to investigate the therapeutic targets, 
and molecular mechanisms to control the 
infections caused by plasmodium parasite.  This 
study, for the first time provides new insights into 
the role of PPIA in malaria prevention and 
control of Plasmodium pathogenicity and guides 
to understanding of the regulation in pathogenic 
parasite. This identification of PPIA in malaria 
animal model might lead to our understanding 
the roles of this protein in cellular biochemistry, 
host-parasite interaction and the antiparasitic 
mechanism of the drugs that bind to them. 
Regarding protection by the host PPIA in this 
combination drug treatment has opened new 
perspectives and support the need for a 
thorough understanding of the involvement of 
PPIA in infectious diseases. Understanding the 
exact mode of action during infection still 
requires extensive research to know the 
association with malarial pathogen and this 
renders the new group of virulence factor as an 
attractive drug target. 

5. CONCLUSION 
 
To understand the development of novel 
strategies against malaria parasites, it is 
important to investigate the therapeutic targets, 
and molecular mechanisms to control the 
infections caused by plasmodium parasite. All, 
these results may provide valuable information 
for designing the controlling infections of malaria. 
Our study, for the first time provides new insights 
into the role of PPIA in malaria based on 
prevention and control of Plasmodium 
pathogenicity and guides to understand the 
regulation in another pathogenic parasite. This 
study also provides a novel approach for new 
promising control strategies with the new 
combination drugs target for designing the 
antimalarial drugs. This finding will allow                
further characterization of PPIA cyclophilins 
leading to new insights into the malaria               
parasite biology and a novel target for malaria 
control. PPIA shows general enzymatic activity 
and its impact in in vivo role, is difficult to                 
define. This identification of PPIA in                  
parasites and the animal model might                    
lead to our understanding of the functional roles 
of this protein in cellular biochemistry, host-
parasite interaction and the antiparasitic 
mechanism of the drugs that bind to                   
them. 
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