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Abstract 

 
This study explores a predetermined inventory system for deteriorating items with a Weibull distribution, 

taking into consideration nonlinear demand and trade credit under inflation and allowing for shortages and 

partial backlogs. The reason for this study is to find the appropriate order and replenishment policy to actually 

reduce relevant costs. The model is built under two scenarios; case 1:        ). The consumer will be 

charged interest on the outstanding debt if he does not pay the provider by time M. and case 2:  
         if the consumer gets to sell all of his commodity as well as earns interest on the revenue until 

the account is settled. To demonstrate the use and performance of the model, numerical approach and 

sensitivity analysis are actually given. As a result, this model will assist retailer in determining the optimal 

replenishment cycles in a variety of situations, as well as provide an innovative management insight that will 

aid the industry reduce relevant cost. 

 

 

Keywords: EOQ, Quadratic demand; weibull distribution; shortages; trade credit; inflation. 

 

1 Introduction  

 
Inventory modeling is an important part of operation research which is used in solving variety of warehousing 

and storing problems. The primary purpose of the inventory modeling is to develop policies that will achieve an 
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optimal inventory investment. It plays a significant role in production and operations function of supply chain 

management in order to make it applicable and flexible in real life situation and also in the control of inventories 

of deteriorating items ever since the theories on Economic Order Quantity were first introduced.  

 

Harris [1], who investigated the Economic Order quantity (EOQ) model to find the optimum order quantity that 

minimizes the total cost, became the first to apply mathematical modeling to inventory control. One of the key 

assumptions of the EOQ model is that their products have an infinite life i.e. their value does not change. 

Deterioration of commodities in the form of immediate spoiling or progressive physical degradation in the 

course of time is a natural occurrence in several inventory systems, and it should be taken into account during 

inventory modeling.  Wee [2], described a deteriorated item as one that has rotted, been damaged, evaporated, 

expired, become invalid, or devalued over time. Many researchers have studied inventory challenges for 

deteriorating items in depth. Whitin [3], was the first to investigate how fashion items deterioratedat the 

completion of their storage span. Ghare and Schrader [4] devised an EOQ that deteriorated at a steady rate. 

Nevertheless, for a few goods such as, fruits, vegetables, the amount of deterioration increased over time. 

Furthermore, it has been empirically discoveredthat many items’ failure and life expectancy can be represented 

in terms of the Weibull distribution. Berrotoni [5]for instance, discovered that both leakage failure of dry 

batteries and life expectancy of ethical pharmaceuticals may be stated in terms of Weibull distributions when 

considering the challenge of fitting empirical data to mathematical distribution. When applied to economic order 

quantities, Weibull distribution will yields a probability density function that indicates the time for the order to 

deteriorate. Covert and Philip [6] expanding on the work of Ghare and Schrader [4], employed two – parameter 

Weibull distribution with no shortage to show the distribution of time to deterioration.In practice however, the 

two parameter Weibull distribution deterioration may not be useful because some items start deteriorating after a 

given time of storage, but not at an early stage. Rinne [7], proposed a three-parameter approach for some items 

that do not begin to deteriorate instantly but rather after a set amount of time called item’s lifespan which varies 

from item to item. By incorporating three parameters of Weibull deterioration, no shortages and a constant 

demand, Philip [8] expanded the model of Covert and Philip [6]. 

 

Various inventory items such as milk, meat, vegetables cannot be stored for a lengthy time due to their shelf life. 

Also some items, such as radioactive materials, volatile liquids are constantly losing value due to their chemical 

qualities or other intrinsic conditions. As a result, the assumption of a constant demand rate may not always be 

valid for many inventory items, as inventory age has a negative influence on demand due to the loss of 

consumer confidence in the quality of such products as well as actual material loss. Wee [2] proposed a 

deteriorating inventory in which demand falls exponentially over time. Covert and Philip [6]model was 

reviewed byJalan et al. [9]who extended it to include a time-dependent demand rate and inventory shortages. 

However, the majority of the models discussed above are based on time-varying demands such as linear and 

exponential demand.Ghosh and Chaudhuri [10] investigated an economic order quantity (EOQ) model over a 

finite time horizon for a deteriorating item with a quadratic, time-dependent demand, allowing inventory 

shortages.Amutha and Chandrasekaran [11] investigated an EOQ model for deteriorating items using quadratic 

demand andtime dependentholding cost. Mishra [12] developed an inventory model for an item with a two-

parameter Weibull distribution and quadratic demand, with holding costs as a linear function of time.Smaila and 

Chukwu [13] proposed an EOQ model with Weibull,quadratic demand and shortages with three parameters. 

 

Other components, such as enabling shortages, are necessary during inventory management in addition to 

demand and deterioration rate. Shortages generally happen in one of two ways: when the shortage products are 

completely backlogged, or when they are partially backlogged. Various inventory models with entire backlog 

were described by; Amutha and Chandrasekaran [14] investigated a three-parameter Weibull inventory model 

for degrading items with price dependent demand, and defined various inventory models including the complete 

backlog.Chaudhary and Sharma [15] examined Weibull distribution and time-dependent demand inventory 

model for deteriorating items. Rai and Sharma [16] propose an inventory model for deteriorating items with a 

non-linear price-dependent demand rate and changing holding costs. However, in real-life situations, a 

customer's willingness to wait for items to decrease as the length of the wait increases. Chang and Dye [17] 

explored the EOQ model for deteriorating items with time-varying and partial backlog. Sana [18] investigated 

an ideal selling price and lot size with time varying deterioration and partial backlog. Roy et al. [19] investigated 

an Economic Order Quantity Model of Imperfect Quality Items with Partial Backlogging.  

 

Most researchers believe that the customer must pay for the things purchased as soon as they are received in 

traditional inventory economical order quantity (EOQ) models. The most usual approach is for the supplier to 
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provide a credit period to the buyer so that he can finish his bill before the deadline. In terms of finance, 

inventory is a capital investment that must compete with other assets for a company's limited capital funds. 

Because most people believe that inflation will have no impact on inventory policy, the consequences of 

inflation are rarely considered while examining an inventory. The majority of studies have yielded helpful 

results for the inventory model for deteriorating items with trade credit under inflation without giving due 

considerationshortages, which would be more accurate. Based on studies in this area of research; Buzacott [20] 

developed an EOQ model that included inflation and other pricing regimes. 

 

Misra [21] established a discount cost model that takes into account both inflation and the time value of money. 

Chandra and Bahner [22] developed a model to study the effects of inflation and the time value of money on 

optimal order policies. Goyal [23] devised an economic order quantity in which the supplier agrees to a certain 

period of time to settle the amount owing to him. Aggarwal and Jaggi [24] devised a methodology to calculate 

the optimal order quantity for deteriorating items with a reasonable payment delay. 

 

Chang et al. [25] studied an inventory model with a variable rate of deterioration and a condition of acceptable 

in payment, with the restricted assumption of constant and a linear demand trend. Chang and Dye [26] proposed 

an inventory model for deteriorating items with a permissible payment delay, taking into account the 

phenomena of physical goods deterioration and a vendor who may provide clients a specified credit time to clear 

the account. Singh and Panda [27] investigated an inventory model for generalized Weibull deteriorating items 

with price-dependent demand and allowable payment delays under inflation. 

 

In this study, an inventory model with a three-parameter Weibull distribution under inflation was developed, 

taking into account quadratic demand and trade credit and partially backlogged. 

 

2 Assumptions 

 
The followings are the assumptions used in deriving the model. 

 

 The rate of demand is a quadratic function of time that is deterministic. 

 The lead time is zero. 

  The rate of deterioration is represented by a three parameter weibull distribution. 

  Replenishment is instantaneous and infinite. 

 The rate of inflation is constant. 

 Shortage were allowed and partially backlogged. 

  During the cycle, no deteriorating items will be repaired or replaced. 

 The account is not cleared during this time, and the buyer pays off all sold units and continues making 

payments on the products in stock. 

 

3 Notations 
 

The followings notations are used in the model’s development: 

 

A : Ordering cost of inventory per order. 

 

 R t : The nonlinear demand rate, i.e.,   2R t a bt ct   , 0, 0, 0a b c    where a, b and c are the 

initial demand rate , increasing demand rate and change demand rate respectively . 

 

 Z t  
1
,0 1, 0t


   


     & 0 1  . Here ,  &  are called the scale parameter, the 

shape parameter and the location parameter respectively. 

 

 B t : The backlogging rate which was given as    
, 0

T t
B t e




 
  where  is called the backlogging 

parameter. 
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 : The constant backlogging parameter where 0 1  . 

R : Inflation rate 

M : Allowable time for the account to be settled. 

T : The predetermined length of each ordering cycle: 

 1I t : On-hand inventory at time t when t 0 . 

pC : The purchase cost per unit. 

hC : Total holding cost per cycle. 

1t :  The point at which inventory drops to zero. 

TRC : The overall cost per unit of time for all relevant cost. 

Q:   Ordering quantity per cycle. 

 

4 Model Formulation 
 

The inventory I(t) at time t (0 ),t T   is describe as shown in the figure below. 

 

 
 

The inventory system works as follow: at 0,t  a certain lots size, certain units are entered into the system. In 

the interval  10, t , the inventory level continually drops due to demand during the interval and evaporates at 

time 1t t . Then,during the interval shortages are enabled to exist  1,t T and shortages decline in part owing to 

deterioration, and all the demand during the shortage period  1,t T is partially backlogged. As a result, the 

differential equations which explain the instantaneous states of   I t  at any time t during the period  10, t are 

 
 1 2

1,0
dI t

a bt ct t t
dt

     
                                                                                              

(4.0) 

 

with the boundary condition 1 1(0)I Q
 

 

The solution of equation (4.0) becomes 

 

 
2 3

1 1 ( )
2 3

bt ct
I t Q at    , 10 t t 

                                                                                      
(4.1) 

 

The differential equation that explains the decline inventory level as a result of the demand and deterioration 

was given by 
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 
     2

2 1 2,
dI t

Z t I t R t t t t
dt

    
                                                                                     

(4.2)     

  

with boundary conditions at 2 )(  0I t  and 2( )I T Q   

The solution of equation (4.2)     becomes 

 

 
2 2 3 3

2 2
2 2

( ) ( )
( ) ( ) ,

2 3

b t t c t t
I t K a t t t  

  
      

                                                   

(4.3) 

 

considering the continuity of  I t at 1t t , it follows from the equation (4.0) and (4.2) 

 

1 1 2 1( ) ( )I t I t
 

 

2 3

1 1
1 1( )

2 3

bt ct
Q at    

2 2 3 3

2 1 2 1
2 1 1

( ) ( )
( ) ( )

2 3

b t t c t t
K a t t t  

  
     

            

(4.4) 

 

For each cycle, the maximum inventory level is determined by. 

 

2 3 2 2 3 3

1 1 2 1 2 1
1 1 2 1 1

( ) ( )
( ) ( ) ( )

2 3 2 3

bt ct b t t c t t
Q at K a t t t  

  
         

                 

(4.5) 

 

Putting equation (4.5) into equation (4.2), we have 

 

 1I t 

2 3

1 1
1

2 2 3 3

2 1 2 1
2 1 1

2 3

( )
2 3

( ) ( )
( ) ( )

2 3

( )
2 3

bt ct
at K

b t t c t t
a t t t

bt ct
at

 

 
   

 
   
      

  
 
   
 

10 t t 
                              

(4.6) 

 

During the shortage interval  1,t T , the demand at time ' 't  is partially backlogged at rate 

 
( )e T t 

. The differential equation governs that the amount of demand backlog is given by 

 

 
 3 ( ) 2

2e ,T t
dI t

a bt ct t t T
dt

      
                                                                             

(4.7) 

 

with boundary conditions at 2 )(  0I t  and 2( )I T Q   

 

The solution of equation (4.7) becomes 
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 3I t 

2 2 3 3 2 2

2 2 2
2 2

2 2 3 3 3 3 4 4

2 2 2 2

( ) ( ) ( )
( ) ( )

2 3 2

( ) ( ) ( ) ( )

2 3 3 4

b t t c t t t t
a t t a T t t

t t t t t t t t
b T c T



 

      
         

    
       
       
     

, 2t t T 
    

(4.8) 

 

The maximum amount of demand backlogged every cycle calculated by Substituting t T in equation 4.8). 

 

2Q 

2 2 3 3 2 2

2 2 2
2 2

2 2 3 3 3 3 4 4

2 2 2 2

( ) ( ) ( )
( ) ( )

2 3 2

( ) ( ) ( ) ( )

2 3 3 4

b t T c t T t T
a t T a T t T

t T t T t T t T
b T c T



 

      
         

    
       
       
       

 

2 2

2 2

3 3 4 4

2 2

1
(1 )( ) ( )( )

2

1 1
( )( ) ( )

3 4

a T t T b a b T t T

c b c T t T c t T

  

  

 
      

  
      
                                                                   

(4.9) 

 

Byadding (4.5) and (4.9), the total order quantity Q every cycle was obtained as 

 

Q 
2 3 2 2 3 3

1 1 2 1 2 1
1 2 1 1

( ) ( )
( ) ( ) ( )

2 3 2 3

bt ct b t t c t t
at K a t t t  

  
        

   

 

2 2

2 2

3 3 4 4

2 2

1
(1 )( ) ( )( )

2

1 1
( )( ) ( )

3 4

a T t T b a b T t T

c b c T t T c t T

  

  

 
      

  
      
                                                                  

(4.10) 

 

The following are the costs associated with the inventory system: 

 

 Ordering cost 

 Holding cost 

 Shortage cost 

 Deterioration cost 

 

We derive the associated cost as follows: 

 

Ordering Cost  OC A
                                                                                                                           

(4.11) 

 

Holding cost  HC : 

 

2 1 2

1

1 2

0 0

( ) ( ) ( )

t t t

Rt Rt Rt

t

HC I t e dt I t e dt I t e dt         (See appendix)                                                    (4.12) 

Shortages Cost: 
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SC 

2 2

2 2 3( ) ( )

T T

Rt Rt

t t

c I t e dt c I t e dt   
 

 

2

2 2 3 3 2 2

2 2 2
2 2

2
2 2 3 3 3 3 4 4

2 2 2 2

( ) ( ) ( )
( ) ( )

2 3 2

( ) ( ) ( ) ( )

2 3 3 4

T

Rt

t

b t t c t t t t
a t t a T t t

c e dt
t t t t t t t t

b T c T



 



       
          

     
                  

       



 
 

4 3

2 2

2 2

2

3 2

2

2 2

10 8
( 4 8 ) 4 )

3 3

(3 (( 4 3 ) 8 ) (10 5 ) 5 10 )

14 8 16
2

3 3 3( )

40 20 10 20 20 40 40
10

3 3 3 3 3 3

Rc t Rc T Rb c Rc t

c RT c Rb Rc T b Ra Rb c t

c RT Rb c Rc T
T t c

b Ra c Rb T Ra b a

  

  

 

 

  
     
 

        

   
     

    
   
         

  

2

4 3 27 4 8 25 10 10
5

3 3 3 3 3 3

40 20 40
20

3 3 3

t

c RT Rb c Rc T Ra b c Rb T

a b Ra T a

  



 
 
 
 
 
 
 
 
 
 
  
  

 
       
              

       
  
      
                     

(4.13) 

 

Deterioration Cost: 

 

DC 
2 1 2

1

2 2 2

1 1

0 0

( ) ( ) ( )

t t t

Rt Rt Rt

p p

t

c Q a bt ct e dt c Q a bt ct e dt a bt ct e dt  
  

           
      

  
 

 

   

 

1 2 2

1 2 1 1 2 1

1 1 2 2
3 3 2 1 2 1

1 2 1

3 3
4 3 22 1
1 1 1

4 4 3 3

1 2 1 2 1

1
(1 ) (1 )

2

( ) ( )1
(1 )

3 1 2

( ) 1 1 1
( ) ( )

3 4 3 2

1 1
( ) ( )( )

4 3

1
(

2

p

a t t t b t t t

a t t b t t
c t t t

c t t
c cRt bR c t aR b t

at cR t t bR c t t

aR

   

   
 

 

   

 
 

 





 

   


 

    

 
   

 


        



      

   2 2

2 1 2 1)( ) ( )b t t a t t

 
 
 
 
 
 
 
 
 
 
 
 
   
 
                                                        

(4.14) 

 

In this study, we considered two cases; interest paid and interest earned. Case I: 2(0 )M t  and Case II:

2(0 ).t M 
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CaseI: 2(0 )M t  : The retailers earns interest on sales revenue up to M. interest is earned during the period 

M to 2t . The interest earned was obtained as; 

 

Interest earned per cycle: 

 

1IE  2

0

e

M

Rt

epI t a bt ct dt  
 

 

5 4 3 21 1 1 1
( ) ( )

5 4 3 2
epI cRM bR c M aR b M aM
 

        
                                       

(4.15) 

 

Interest payable per cycle after the due period M: 

 

1IP
2

( )e

t

Rt

p

M

cI I t dt  (See appendix)                                                                                          (4.16) 

 

During a cycle, 1 2( , )C t T the overall cost per unit time consists of the following: 

 

 1 2 1 1

1
( , )C t T OC HC DC SC IP IE

T
     

                                                                  

(4.17) 

 

The total cost for case I was calculated by substituting equations (4.2-4.6) into equation (4.7). 

 

Equation (18) is differentiated with respect to T and 1t and equates to zero: 

 

1 2( , )
0,

C t T

T




  

1 2

1

( , )
0

C t T

t





                                                                                                

(4.18) 

 

The optimal cycle length was found as T T  and 2 2t t  by calculating equation (4.8)for T and 2t , assuming 

that it satisfied the equation 

 

2

1 2

2

( , )
0,

C t T

T






2

1 2

2

1

( , )
0

C t T

t





and

2 2 2

1 2 1 2 1 2

2 2

1 1

( , ) ( , ) ( , )
0

C t T C t T C t T

T t T t

     
    

           

(4.19) 

 

Case II: 1(0 )t M  Interest is accrued until the allowable delay time is reached, after which no interest is 

due. 

 

Interest accrued until the allowable delay time: 

 

2IE      
1 2

1

2 2 2

2 2

0

e e ( )

t t

Rt Rt

e

t

pI t a bt ct dt t a bt ct dt a bt ct t M t 
 

          
  
 
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 

5 5 4 3

1 1 1 1

5 5 4 4 3 3

2 1 2 1 2 1

2 2 2

2 1 2 2 2

1 1 1 1
( ) ( )

6 5 4 3

1 1 1
( ) ( )( ) ( )( )

5 4 3

1
( ) ( )

2

e

cRt bR c t aR b t at

pI cR t t bR c t t aR b t t

a t t a bt ct t M t

 
       

 
          
 
 
     
                                                  

(4.20) 

 

The total cost per unit during a cycle, 2 2( , )C t T consist of the following: 

 

 2 2 2

1
( , )C t T OC HC DC SC IE

T
    

                                                                         

(4.21) 

 

Substituting the equations (4.2, 4.3, 4.4, and 4.0) into equation (4.1) the total cost for case II was obtained. 

Differentiating equation (4.1) with respect to T and 2t and equate it to zero: 

 

2 2( , )
0,

C t T

T





and 2 2

2

( , )
0

C t T

t





                                                                                         

(4.19) 

 

By solving equation (4.2) for T and 1t   , the optimal cycle length was obtained T T   and 
2 2t t  

Provided it satisfy the equation 
 

2

2 2

2

( , )
0,

C t T

T






2

2 2

2

2

( , )
0

C t T

t





and

2 2 2

2 2 2 2 2 2

2 2

2 2

( , ) ( , ) ( , )
0

C t T C t T C t T

T t T t

     
    

          

(4.22) 

 

5 Numerical Example 
 

To illustrate the models numerically, the following parameters and inventory data taken from Raman and Veer 

[28] were used.  A = 100,=25, p =40, pI =0.15, eI =0.12, M =0.08 years, a =1000, b =0.05, c =0.01, C2 = 8, C3 

= 2, R =0.01, backlogging parameter δ= 0.8, and t1 = 0.05. In addition to the data we let scale parameter α = 

0.04, shape parameter β = 2, location parameter γ = 0.5. 

 

Case I: 

For this case, the optimal value of   
2t


 = 0.6052, T 
=1.0843, the optimal total cost 1 2( , )C t T  = 865.1502 and 

the optimum order quantity Q
= 301.523 are obtained. 

 

Case II: 

 

For this case, the optimal value of   2t


 = 0.6843, T 
=1.0451, the optimal total cost 2 2( , )C t T * = 624.541 and 

the optimum order quantity Q
= 204.21are obtained. 

 

6 Sensitivity Analysis 

 
The sensitivity analysis is done in regard to certain connected parameters. This is accomplished by altering one 

parameter while keeping the others constant. Only two cases were subjected to a sensitivity analysis. 

 

 

pc
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Case I: M ≤ t2 

 

Table 1. Sensitivity Analysis for Case I 
 

Parameters % t2 T Cost Q 
p  +50% 0.0532 1.049 844.5 280.6 

+20% 0.1253 1.0729 798.3 295.3 

-20% 0.1556 1.0924 793.6 295.4 

-50% 0.1753 1.1525 678.5 300.4 
  +50% 0.0456 1.0271 890.4 320.4 

+20% 0.1552 1.0294 856.3 302.5 

-20% 0.0765 1.0458 798.6 301.2 

-50% 0.0835 1.0734 769.2 300.7 

  +50% 0.1172 1.0353 672.2 245.3 

+20% 0.1178 1.0247 740.2 265.5 

-20% 0.1182 1.0287 798.5 268.2 

-50% 0.1192 1.0399 845.8 285.3 

M +50% 0.1263 1.1875 709.5 301.2 

+20% 0.1248 1.1801 742.5 315.5 

-20% 0.5130 1.1824 765.4 322.3 

-50% 0.5342 1.1860 780.2 331.7 

R +50% 0.1986 1.1370 824.1 336.5 

+20% 0.1820 1.1401 822.3 325.4 

-20% 0.2462 1.1440 800.3 320.1 

-50% 0.4562 1.4820 794.5 306.3 
 

Case II: M ≥ t1 

 

Table 2. Sensitivity Analysis for Case II 

 

Parameters % t2 T Cost Q 
p  +50% 0.5863 1.8854 709.2 277.3 

+20% 0.4583 1.1712 543.1 286.2 

-20% 0.4355 1.1799 519.4 328.5 

-50% 0.3501 1.5598 511.1 348.0 
  +50% 0.8346 1.1444 611.5. 384.21 

+20% 0.1409 1.3076 618.3 251.5 

-20% 0.5512 1.8333 678.4 299.7 

-50% 0.6065 1.6664 775.2 363.52 

  +50% 0.7067 1.7045 621.8 229.24 

+20% 0.6160 1.1046 770.7 252.15 

-20% 0.0125 1.4254 678.2 363.65 

-50% 0.2745 1.9635 688.4 316.24 

M +50% 0.0255 1.0481 500.8 333.8 

+20% 0.3596 1.9908 528.7 335.69 

-20% 0.7630 1.8240 587.8 348.95 

-50% 0.9197 1.4880 691.1 397.52 

R +50% 0.7033 1.0360 760.2.3 298.14 

+20% 0.8095 1.4061 771.4 307.56 

-20% 0.9253 1.9785 624.8 338.74 

-50% 0.2535 1.8235 569.2 357.62 
 

6.1 Observations  

 
From the above results, the followings are observed: 

 

1.  When the selling price (p) rises, and the overall system total cost increases it is very sensitive to the 

selling price inboth scenarios 1 and 2.  
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2.  In both scenarios 1 and 2, as the demand parameter (α) rises, the total cost of the system rises as well. 

3.   For both scenarios, it was discovered that as the parameter (β) increases, the overall value price drops. 

4.  For both scenarios, it was revealed that if the value of M increases or falls, the overall price and quantity 

reduces or increases. 

5.  An increase in the inflation parameter (R) corresponds to an increase in the total cost. 

 

7 Conclusion 
 

In this study, a three-parameter Weibull distribution inventory model for deteriorating items with nonlinear 

demand and trade credit under inflation was proposed.Shortages were permitted and there was a partial backlog. 

The sensitivity analysis revealed that the parameters p , ,  , M , & R are more sensitive to changes in 2t

, T , Q and total cost 

 

8 Recommendation 
 

There are several approaches to expand the presented model. For instance,we can make it more realistic by 

including non-zero lead time and stochastic demand. Furthermore, the model's parameters can be regarded of as 

fuzzy variables. 
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APPENDIX 

 

The results below were obtained with the help of a software Mathematica 11 version 11.3.0.0  

Holding Cost: 

 

1.  HC
2 1 2

1

1 2

0 0

( ) ( ) ( )

t t t

Rt Rt Rt

t

I t e dt I t e dt I t e dt      
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