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Abstract

This note proves a theorem about i.i.d. i.e. independent and indentically distributed processes,
when the index space is a measure space. The statement of the problem corresponding to the
theorem proved in this paper appears in [1], in which the concept of a sample distribution limit
corresponds to the concept of a perfect i.i.d process in this paper.
Theorems proved in this theme, regarding existing and non-existence, have been shown in the
economics literature, when the index set is [0, 1], in [2], [3], [4], [5]. The approach taken in this
paper is perhaps, surprisingly elementary. We may apply standard measure extension theorems
to show existence. These may be found in [6], [7].
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1 Model

Suppose (R,R, ρ) is a probability space that we will call the state space; and (P,P, π) be a probability
space called the index space. The following definitions convey the prime theme of the paper.

Definition 1.1. A setting is defined as a pair < (R,R, ρ), (P,P, π) > consisting of a state space
and an index space.
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Definition 1.2. A measure-preserving transformation is any measurable map ψ : P → R such that

(∀B ∈ R)(π({p : ψ(p) ∈ B}) = ρ(B)). (1.1)

Definition 1.3. A setting < (R,R, ρ), (P,P, π) > is said to admit a perfect i.i.d process if there
exists a probability space < Ω,F ,P > and measurable functions {Xp}p∈P where Xp : Ω → R such
that

1. For any finite P ′ ⊂ P and collection {Bp}p∈P ′ ⊆ R we have that

P(∩p∈P ′{Xp ∈ Bp}) =
∏
p∈P ′

ρ(Bp).

2. There exists A ∈ F such that P(A) = 1 and

A ⊆ {ω ∈ Ω : Xp(ω) is measure-preserving in p}.

Definition 1.4. An index space (P,P, π) will be called fine if

1. For every p ∈ P , {p} ∈ P.

2. For every p ∈ P , π({p}) = 0.

It follows immediately that any fine index space (P,P, π) is uncountably infinite. The following is
the main theorem of the paper.

Theorem 1.1. Let < (R,R, ρ), (P,P, π) > be a setting. Suppose that the index space (P,P, π) is
fine. Further, suppose that there exists a measure-preserving transformation ψ : P → R. Then, the
setting < (R,R, ρ), (P,P, π) > admits a perfect i.i.d process.

Proof. The proof proceeds in a few steps.

Step 1 : We argue that given a measure-preserving transformation ψ : P → R; a countable subset
P̂ ⊆ P ; and any function ψ̂ : P̂ → R, the map ψ′ : P → R defined as

ψ′(p) =

{
ψ̂(p) if p ∈ P̂
ψ(p) otherwise

(1.2)

is also a measure-preserving transformation. This is true since the probability space (P,P, π)
is assumed to be fine. As P includes all singleton sets, it follows that P̂ ∈ P. Hence, ψ′ is
measurable. Further, since singletons have zero probability according to the probability measure π,
implying that π(P̂ ) = 0 (due to countable additivity), it follows that ψ′ is also a measure-preserving
transformation.

Step 2 : We now define the probability space (Ω,F ,P). Define Ω as

Ω := {ψ : P → R : ψ is measure-preserving}.

By assumption, we have that Ω 6= ∅. For a finite subset P̂ ⊆ P and collection of sets {Bp}p∈P̂ ⊆ R,
define the set

< P̂ , {Bp}p∈P̂ >:= {ψ ∈ Ω : (∀p ∈ P̂ )(ψ(p) ∈ Bp)}.
The collection of all such sets is defined as

S :=
{
< P̂ , {Bp}p∈P̂ >: finite P̂ ⊆ P and collection {Bp}p∈P̂ ⊆ R

}
.

We show that S is a semi-ring (see [8]). Further, we show that the following set function P′ defines
a measure on S

P′(< P̂ , {Bp}p∈P̂ >) =
∏
p∈P̂

ρ(Bp).

We first prove that S is a semi-ring. This follows simply from the following facts.
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1. Suppose that we have a set of the form < P̂ , {Bp}p∈P̂ > such that Bp = ∅ for some p ∈ P̂ .

This immediately implies that < P̂ , {Bp}p∈P̂ >= ∅ ∈ S.

2. Suppose that < P̂ , {Bp}p∈P̂ >,< P̂ ′, {B′p}p∈P̂ ′ >∈ S. Then, it is simple to prove that

< P̂ , {Bp}p∈P̂ > ∩ < P̂ ′, {B′p}p∈P̂ ′ >=< P̂∪P̂ ′, {Bp∩B′p}p∈P̂∩P̂ ′∪{Bp}p∈P̂\P̂ ′∪{B
′
p}p∈P̂ ′\P̂ > .

Hence, we have shown that < P̂ , {Bp}p∈P̂ > ∩ < P̂ ′, {B′p}p∈P̂ ′ >∈ S.

3. Suppose that< P̂ , {Bp}p∈P̂ >,< P̂ ′, {B′p}p∈P̂ ′ >∈ S. We wish to show that< P̂ , {Bp}p∈P̂ >

\ < P̂ ′, {B′p}p∈P̂ ′ > may be represented as a finite union of pairwise disjoint sets in S. Note
that

< P̂ , {Bp}p∈P̂ > \ < P̂ ′, {B′p}p∈P̂ ′ >=< P̂ , {Bp}p∈P̂ > ∩(Ω\ < P̂ ′, {B′p}p∈P̂ ′ >).

Then, it follows that

Ω\ < P̂ ′, {B′p}p∈P̂ ′ >=
⋃

Q⊆P̂ ′;Q6=∅

< P̂ ′, {Ω\B′p}p′∈Q ∪ {B′p′}p′∈P̂ ′\Q >,

which is a finite union of disjoint sets in S. Hence, from 2., we have indeed shown that it is
the case < P̂ , {Bp}p∈P̂ > \ < P̂ ′, {B′p}p∈P̂ ′ > is a finite union of disjoint sets in S as it may
be represented as

< P̂ , {Bp}p∈P̂ > \ < P̂ ′, {B′p}p∈P̂ ′ >

=
⋃

Q⊆P̂ ′;Q6=∅ < P̂ , {Bp}p∈P̂ > ∩ < P̂ ′, {Ω\B′p}p′∈Q ∪ {B′p′}p′∈P̂ ′\Q > .

and we have proved that S is a semiring.

We show that P′ defines a measure on S. Suppose, we have a countable collection of pairwise
disjoint sets {< P̂ i, {Bi

p}p∈P̂ i >}∞i=1 ⊆ S and a set < P̂ , {Bp}p∈P̂ >∈ S such that the following
holds

< P̂ , {Bp}p∈P̂ >=

∞⋃
i=1

< P̂ i, {Bi
p}p∈P̂ i > . (1.3)

We prove it also holds that

P′(< P̂ , {Bp}p∈P̂ >) =

∞⋃
i=1

P′(< P̂ i, {Bi
p}p∈P̂ i >).

We prove this as follows. Define the set P̂ ∗ = P̂ ∪ (∪∞i=1P̂
i). Since P̂ ∗ is a countable union of finite

sets, it is at most countable. We denote the probability space (⊗p∈P̂∗R,⊗p∈P̂∗R,⊗p∈P̂∗ρ) as the

product measure space where ⊗p∈P̂∗R = {ψ̂ : ψ̂ : P̂ ∗ → R} is the product space corresponding to

R with index set P̂ ∗; ⊗p∈P̂∗R is the product σ-field ; ⊗p∈P̂∗ρ is denoted as the associated product
measure (see [9]).

Define the map T : S → ⊗p∈P̂∗R as

T (< P̂ ′, {Bp}p∈P̂ ′ >) = {ψ̂ : P̂ ∗ → R : (∀p ∈ P̂ ′ ∩ P̂ ∗)(ψ̂(p) ∈ Bp)}.
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Hence, it follows that T (< P̂ ′, {Bp}p∈P̂ >) ∈ ⊗p∈P̂∗R. If we have P̂ ′ ⊆ P̂ ∗, then by the definition
of the product measure space (⊗p∈P̂∗R,⊗p∈P̂∗R,⊗p∈P̂∗ρ), we have that :

⊗p∈P̂∗ρ(T (< P̂ ′, {Bp}p∈P̂ ′ >)) =
∏
p∈P̂ ′

ρ(Bp) = P′(< P̂ ′, {Bp}p∈P̂ ′ >).

Hence, from countable additivity of the product measure ⊗p∈P̂∗ and by applying equality 1.3, to
prove that P′ defines a measure on S, it suffices to show that for the pairwise disjoint finite collection
of sets given by {< P̂ i, {Bi

p}p∈P̂ i >}∞i=1 ⊆ S, the following holds :

T (

∞⋃
i=1

< P̂ i, {Bi
p}p∈P̂ i >) =

∞⋃
i=1

T (< P̂ i, {Bi
p}p∈P̂ i >).

We prove that T (
⋃∞

i=1 < P̂ i, {Bi
p}p∈P̂ i >) ⊆

⋃∞
i=1 T (< P̂ i, {Bi

p}p∈P̂ i >). Suppose that we

have that it is the case that ψ̂ ∈ T (
⋃∞

i=1 < P̂ i, {Bi
p}p∈P̂ i >). By equality 1.3, we have that

ψ̂ ∈ T (< P̂ , {Bp}p∈P̂ >). Then, from Step 1, it follows that there exists a measure-preserving

transformation ψ such that ψ(p) = ψ̂(p) for all p ∈ P̂ ∗. Hence, by equality 1.3 we get that
ψ ∈< P̂ , {Bp}p∈P̂ >= ∪∞i=1 < P̂ i, {Bi

p}p∈P̂ i >. This implies there exists a P̂ i such that ψ(p) = ψ̂(p)

for all p ∈ P̂ i. Hence, this shows that ψ̂ ∈
⋃∞

i=1 T (< P̂ i, {Bi
p}p∈P̂ i >). We have, hence established

that T (
⋃∞

i=1 < P̂ i, {Bi
p}p∈P̂ i >) ⊆

⋃∞
i=1 T (< P̂ i, {Bi

p}p∈P̂ i >).

This way, appropriately we may also that prove that,
⋃∞

i=1 T (< P̂ i, {Bi
p}p∈P̂ i >) ⊆ T (

⋃∞
i=1 <

P̂ i, {Bi
p}p∈P̂ i >). Suppose ψ̂ ∈

⋃∞
i=1 T (< P̂ i, {Bi

p}p∈P̂ i >). Then, there exists a P̂ i such that

ψ̂ ∈ T (< P̂ i, {Bi
p}p∈P̂ i >). From Step 1 again, it follows that there exists a measure-preserving

transformation ψ such that ψ(p) = ψ̂(p) for all p ∈ P̂ . This means that ψ ∈< P̂ i, {Bi
p}p∈P̂ i >.

By equality 1.3, this implies ψ ∈< P̂ , {Bp}p∈P̂ >. Hence, ψ̂ ∈ T (< P̂ , {Bp}p∈P̂ >), which means

ψ̂ ∈ T (
⋃∞

i=1 < P̂ i, {Bi
p}p∈P̂ i >).

Hence, P′ defines a measure on S.

The probability space (Ω,F ,P) is then completely defined as F := σ(S) and P is defined to be
the extension of the measure P′ on the defined σ-field F by the Caratheodory Extension Theorem.

Step 3 : We finish the proof of the theorem. We have defined the appropriate probability space
(Ω,F ,P). For p ∈ P , define Xp(ψ) := ψ(p) and A := Ω.

This completes the proof of the theorem.
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