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Abstract

Disease progression studies through stochastic modeling are the most effective approaches as
different processes involved in the disease acquisition, growth, spread, and control are random.
This study develops a stochastic model for studying the disease spread using Markov Processes
(MP) and Hidden Markov Models (HMM). This study considered two states of illness under the
categories of hidden and visible. Further hidden states, as well as visible states, are classified
into two groups each. This study attempted to relate the spread of disease in Tamil Nadu and
Puducherry and its neighboring states. Increment/Decrement in daily positive cases of Tamil
Nadu and Puducherry influence the Increment/ Decrement in neighboring states’ daily positive
cases, assuming there are regular transitions of patients from one place to another. This study
develops HMM for transitions among different states (Increment/Decrement) for understanding
the dynamics of positivity for two consecutive days and three days. Probability distributions of
the prevalence of positivity are derived from the developed transition probability matrices. The
study further derived different statistical measures mathematical/ functional relations through
the parameters under consideration. This study will help to measure the severity of the disease
spread. The development of an interactive user interface for healthcare management will be the
scope of this study.

Keywords: Stochastic modelling; COVID-19; hidden markov model; disease progression; healthcare
management.
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1 Introduction

In late December 2019, China reported a new virus that affects humans, and it was later named
COVID-19. Further, on 31st January 2020 World Health Organization (WHO) declared this
outbreak as a global pandemic. But despite the efforts, the spread of the infection worldwide was
uncontrolled. To safeguard the people and avoid the further spread of COVID-19 government made
some stringent control measures such as imposing a nationwide lockdown, making the use of face
masks mandatory, and educating the people to maintain social distancing and proper sanitization.
The precautionary measure of nationwide lockdown played a drastic role in people’s routine life.
After the lockdown announcement, the most affected population were migrant workers, who lost
their livelihood and were forced to move to their native places from workplaces. Once the worker
started to migrate, there was a rapid increase in the virus spread and daily reported cases surged
suddenly.

Yuan et al., used three machine learning models, the Hidden Markov chain model, the long-short-
term memory model, and the Hierarchical Bayes model, for the prediction of COVID-19 cases for six
countries, including the US, Italy, etc., for 5 days ahead [1]. Lynnette et al., used HMM to predict
the people’s emotions on Twitter during the COVID-19 pandemic and constructed an emotion topic,
HMM, to indicate the user’s repeated subject on Twitter[2]. Johannes et al., forecast the COVID-
19 future spread between different countries by utilizing the recognized lead-lag structure and also
suggested HMM can be used for future research work[3]. Abdelghofour et al., used HMM in their
study to find out the future spread of the coronavirus from march 14, 2020, to October 5, 2020, in
the Morocco context[4]. HMM has been used by Prabhu et al., to predict the future spread of the
coronavirus. There are two types of prediction models Long-term prediction model and the short-
term prediction model[5]. Hongwei et al., used Suspected-Exposed-Infectious-Recovered (SEIR)
based short-term forecast model to predict the COVID-19 cases for two to three weeks in length[6].
To predict the survival and mortality rate of the COVID-19 infected patients, Aljameel et al.,
used some machine learning methods. They analyzed the data with the help of three classification
algorithms such as logistic regression, random forest, and extreme gradient boosting[7]. Ahmed
Bani et al., used a stochastic model called Lotka-Volterra coupled with an extended Kalman Filter
algorithm for predicting the spread of COVID-19 infections[8]. Cooper et al., predicted the spread
of infection within the hospitals and also for understanding the transmission between patient to
patient (or) transmission between staff to the patient by using HMM[9]. Tirupathi Rao et al used the
Markov model to find the future growth of the COVID-19 disease in three different states, and model
behavior is studied with real-life data[10]. Fractional calculus can be used to study the dynamic
behaviour of the Infectious disease[11, 12, 13]. Salah Boulaaras and Tao-Qian Tang used Fractional
derivative for analysing the transmission of dengue fever and breast cancer respectively[14, 15].

2 Stochastic Model

This model intends to derive probability distribution functions of the number of emission states in
a discrete distribution. Thus, the transition states are of two kinds: State 1: Decrement and State
2: Increment.

2.1 Notations and terminology

Let us assume,

πi - Initial probability for ith hidden state. πi ≥ 0;∀ i = 1, 2;
2∑

i=1

πi = 1
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Xn - Resulting value of hidden states at nth trial
Yn - Resulting value of visible states with the influence of hidden states at nth trial
αkl denotes the transition probability within hidden states

αkl : P {Xn = l|Xn−1 = k} ≥ 0

0 ≤ αkl ≥ 1 and

2∑
l=1

αkl = 1∀ k = 1, 2

βkl denotes the emission probability in between hidden and visible states

βkl : P {Yn = l|Xn−1 = k} ≥ 0

0 ≤ βkl ≥ 1 and

2∑
l=1

βkl = 1 ∀ k = 1, 2

State 1: Decrement is Zn+1 − Zn < 0 , State 2: Increment is Zn+1 − Zn > 0
Zn is the number of positive cases identified on nth day of study.

Fig. 1. Schematic diagram for two state Hidden Markov Model of COVID-19 spread

2.2 Assumptions

i. Hidden states have the initial probabilities πi, ∀ πi ≥ 0; i = 1, 2.

ii. Transition probabilities among hidden states are of intra and inter transits in
nature.
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iii. Visible/Emission states are the effects of hidden states.

iv. The transition probabilities of visible states are initiated with hidden state.

2.2.1 Transition probability matrix within hidden states

A = Xn−1

Xn[
αkl

]
; k, l = 1, 2 (2.1)

2.2.2 Emission/observed probability matrix in between hidden and visible
states

B = Xn−1

Yn[
βkl
]

; k, l = 1, 2 (2.2)

2.2.3 Initial probabilities with hidden States:

P (H1) = π1;P (H2) = π2;

2∑
i=1

ni = n;

2∑
i=1

πi = 1;πi = ni/n (2.3)

ni: Number of observations in ith initial state.

3 Probability distributions for one day length of sequence

Let X(ω) = n, be the random variable that denotes the occurrence of the specific state. ω represents
two different states, namely Decrement and Increment (i.e.) ω = D (or) I. ’n’ be the number of times
the events happen in that specific state, ‘n’ can be 0, 1, 2, 3, .... Where 0 will be non-happening, 1
will be an event occur once, 2 will be an occurrence of the event twice, 3 will be an occurrence of
the event thrice, and so on.

3.1 Probability mass function for ”Decrement State” distribution

P [X(D)] =


2∑

i=1

πiβi2; X(D) = 0

2∑
i=1

πiβi1; X(D) = 1
(3.1)

3.2 Statistical characteristics of decrement state’s probability distribution:

Some statistical characteristics are derived in this section for the probability distribution given in
the equation (3.1).

Mean, E[X(D)] =

2∑
i=1

πiβi1 (3.2)

Variance, V [X(D)] =

2∑
i=1

πiβi1

(
1−

2∑
i=1

πiβi1

)
(3.3)

Third and fourth central moments:

µ3[X(D)] =

2∑
i=1

πiβi1

(
1− 2

2∑
i=1

πiβi1

)(
1−

2∑
i=1

πiβi1

)
(3.4)
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µ4[X(D)] =

2∑
i=1

πiβi1
( 2∑

i=1

πiβi1 − 1
)[
− 3

( 2∑
i=1

πiβi1

)2

+ 3

2∑
i=1

πiβi1 − 1

]
(3.5)

Sk[X(D)] =
(

1− 2

2∑
i=1

πiβi1
)2[ 2∑

i=1

πiβi1
(

1−
2∑

i=1

πiβi1
)]−1

(3.6)

Coefficient of kurtosis for Decrement state[
3
( 2∑

i=1

πiβi1
)2
− 3

2∑
i=1

πiβi1 + 1

][ 2∑
i=1

2∑
i=1

πiβi1
(

1−
2∑

i=1

πiβi1
)]−1

(3.7)

Characteristic Function, φx[X(D)] = 1−
2∑

i=1

πiβi1(1− eit) (3.8)

3.3 Probability mass function for ”Increment State” distribution

P [X(I)] =


2∑

i=1

πiβi1; forX(I) = 0

2∑
i=1

πiβi2; forX(I) = 1
(3.9)

3.4 Statistical characteristics of Increment state’s probability distri-
bution:

Some statistical characteristics are derived in this section for the probability distribution given in
the equation (3.9)

Mean, E[X(I)] =

2∑
i=1

πiβi2 (3.10)

Variance, V [X(I)] =

2∑
i=1

πiβi2

(
1−

2∑
i=1

πiβi2

)
(3.11)

Third and fourth central moments:

µ3[X(I)] =

2∑
i=1

πiβi2

(
1− 2

2∑
i=1

πiβi2

)(
1−

2∑
i=1

πiβi2

)
(3.12)

µ4[X(I)] =

2∑
i=1

πiβi2
( 2∑

i=1

πiβi2 − 1
)(
− 3(

2∑
i=1

πiβi2)2 + 3

2∑
i=1

πiβi2 − 1

)
(3.13)

Sk[X(I)] =
(

1− 2

2∑
i=1

πiβi2
)2[ 2∑

i=1

πiβi2
(

1−
2∑

i=1

πiβi2
)]−1

(3.14)

Coefficient of kurtosis for Increment state[
3
( 2∑

i=1

πiβi2
)2
− 3

2∑
i=1

πiβi2 + 1

][ 2∑
i=1

2∑
i=1

πiβi2
(

1−
2∑

i=1

πiβi2
)]−1

(3.15)

Characteristic Function, φx[X(I)] = 1−
2∑

i=1

πiβi2(1− eit) (3.16)

19



Padi et al.; ARJOM, 18(7): 15-31, 2022; Article no.ARJOM.87240

4 Probability distributions for two days length of seq-
uence:

4.1 Probability mass function for ”Decrement State” distribution

P [X(D)] =



2∑
i,j=1

πiαijβ
2
j2; X(D) = 0

2
2∑

i,j=1

πiαijβj1β
2
j2; X(D) = 1

2∑
i,j=1

πiαijβ
2
j1; X(D) = 2

(4.1)

4.2 Statistical characteristics of Decrement state’s probability distri-
bution:

In this section, some statistical characteristics are explored for the probability distribution given in

the equation(4.1) by assuming, θ1 =
2∑

i,j=1

πiαijβ
2
j2; θ2 =

2∑
i,j=1

πiαijβj1β
2
j2; θ3 =

2∑
i,j=1

πiαijβ
2
j1

Mean, E[X(D)] = 2(θ2 + θ3) (4.2)

Variance, V [X(D)] = 2(θ2 + 2θ3)− [2(θ2 + θ3)]2 (4.3)

Third and fourth central moments

µ3[X(D)] =2(θ2 + 4θ3)− 4(θ2 + θ3)
(

3(θ2 + 2θ3)− 4(θ2 + θ3)2
)

(4.4)

µ4[X(D)] =2(θ2 + 8θ3)− 8(θ2 + θ3)
[
2(θ2 + 4θ3)− 6(θ2 + θ3)

(
(θ2 + 2θ3) + (θ2 + θ3)2

)]
(4.5)

Sk[X(D)] =
[
(θ2 + 4θ3)− 2(θ2 + θ3)

(
3(θ2 + 2θ3)− 4(θ2 + θ3)2

)]2[
2
(

(θ2 + 2θ3)− 2(θ2 + θ3)2
)3]−1

(4.6)

Coefficient of kurtosis for Decrement state

(θ2 + 8θ3)− 4(θ2 + θ3)
[
2(θ2 + 4θ3)− 6(θ2 + θ3)

(
(θ2 + 2θ3) + (θ2 + θ3)2

)]
[
2
(

(θ2 + 2θ3)− 2(θ2 + θ3)2
)2]−1

(4.7)

Characteristic Function, φ[X(D)] =θ1 + eitθ2 + e2itθ3 (4.8)

4.3 Probability mass function for ”Increment State” distribution

P [X(I)] =



2∑
i,j=1

πiαijβ
2
j1; X(I) = 0

2
2∑

i,j=1

πiαijβj1β
2
j2; X(I) = 1

2∑
i,j=1

πiαijβ
2
j2; X(I) = 2

(4.9)

20



Padi et al.; ARJOM, 18(7): 15-31, 2022; Article no.ARJOM.87240

4.4 Statistical characteristics of Increment state’s probability distrib-
ution:

In this section, some statistical characteristics are explored for the probability distribution given in

the equation(4.9) by considering, τ1 =
2∑

i,j=1

πiαijβ
2
j1; τ2 =

2∑
i,j=1

πiαijβj1β
2
j2; τ3 =

2∑
i,j=1

πiαijβ
2
j2

Mean, E[X(I)] = 2(τ2 + τ3) (4.10)

Variance, V [X(I)] = 2(τ2 + 2τ3)− [2(τ2 + τ3)]2 (4.11)

Third and fourth central moments

µ3[X(I)] =2(τ2 + 4τ3)− 4(τ2 + τ3)
(

3(τ2 + 2τ3)− 4(τ2 + τ3)2
)

(4.12)

µ4[X(I)] =2(τ2 + 8τ3)− 8(τ2 + τ3)
[
2(τ2 + 4τ3)− 6(τ2 + τ3)

(
(τ2 + 2τ3) + (τ2 + τ3)2

)]
(4.13)

Sk[X(I)] =
[
(τ2 + 4τ3)− 2(τ2 + τ3)

(
3(τ2 + 2τ3)− 4(τ2 + τ3)2

)]2[
2
(

(τ2 + 2τ3)− 2(τ2 + τ3)2
)3]−1

(4.14)

Coefficient of kurtosis for Increment State

(τ2 + 8τ3)− 4(τ2 + τ3)
[
2(τ2 + 4τ3)− 6(τ2 + τ3)

(
(τ2 + 2τ3) + (τ2 + τ3)2

)]
[
2
(

(τ2 + 2τ3)− 2(τ2 + τ3)2
)2]−1

(4.15)

Characteristic Function, φ[X(I)] =τ1 + eitτ2 + e2itτ3 (4.16)

5 Probability distributions for three days length of seq-
uence:

5.1 Probability mass function for ”Decrement State” distribution

P [X(D)] =



2∑
i,j,k=1

πiαijαjkβ
3
k2; X(D) = 0

3
2∑

i,j,k=1

πiαijαjkβk1β
2
k2; X(D) = 1

3
2∑

i,j,k=1

πiαijαjkβ
2
k1βk2; X(D) = 2

2∑
i,j,k=1

πiαijαjkβ
3
k1; X(D) = 3

(5.1)

5.2 Statistical characteristics of Decrement state’s probability distri-
bution:

Statistical characteristics are explored for the probability distribution given in the equation (5.1).

by considering, λ1 =
2∑

i,j,k=1

πiαijαjkβ
3
k2; λ2 =

2∑
i,j,k=1

πiαijαjkβk1β
2
k2; λ3 =

2∑
i,j,k=1

πiαijαjkβ
2
k1βk2;

λ4 =
2∑

i,j,k=1

πiαijαjkβ
3
k1
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Mean, E[X(D)] = 3(λ2 + 2λ3 + λ4) (5.2)

Variance, V [X(D)] =3(λ2 + 4λ3 + 3λ4)−
[
3(λ2 + 2λ3 + λ4)

]2
(5.3)

Third and fourth central moments

µ3[X(D)] =3(λ2 + 8λ3 + 9λ4)− 27(λ2 + 2λ3 + λ4)
(

(λ2 + 4λ3 + 3λ4)− 2(λ2 + 2λ3 + λ4)2
)

(5.4)

µ4[X(D)] =3(λ2 + 16λ3 + 27λ4)− 9(λ2 + 2λ3 + λ4)
[
4(λ2 + 8λ3 + 9λ4)

− 9(λ2 + 2λ3 + λ4)
(

2(λ2 + 4λ3 + 3λ4) + (λ2 + 2λ3 + λ4)2
)]

(5.5)

Sk[X(D)] =
[
(λ2 + 8λ3 + 9λ4)− 9(λ2 + 2λ3 + λ4)

(
(λ2 + 4λ3 + 3λ4)− 2(λ2 + 2λ3 + λ4)2

)]2
[
3
(

(λ2 + 4λ3 + 3λ4)− 3(λ2 + 2λ3 + λ4)2
)3]−1

(5.6)

Coefficient of kurtosis for Decrement State

(λ2 + 16λ3 + 27λ4)− 3(λ2 + 2λ3 + λ4)
[
4(λ2 + 8λ3 + 9λ4)− 9(λ2 + 2λ3 + λ4)(

2(λ2 + 4λ3 + 3λ4) + (λ2 + 2λ3 + λ4)2
)][

3
(

(λ2 + 4λ3 + 3λ4)− 3(λ2 + 2λ3 + λ4)2
)2]−1

(5.7)

Characteristic Function, φ[X(D)] =λ1 + eit3λ2 + e2it3λ3 + e3itλ4 (5.8)

5.3 Probability mass function for ”Increment State” distribution

P [X(I)] =



2∑
i,j,k=1

πiαijαjkβ
3
k1; X(I) = 0

3
2∑

i,j,k=1

πiαijαjkβ
2
k1βk2; X(I) = 1

3
2∑

i,j,k=1

πiαijαjkβk1β
2
k2; X(I) = 2

2∑
i,j,k=1

πiαijαjkβ
3
k2; X(I) = 3

(5.9)

5.4 Statistical characteristics of Increment State’s probability distrib-
ution

Statistical characteristics are explored for the probability distribution given in the equation (5.9).

by considering, ψ1 =
2∑

i,j,k=1

πiαijαjkβ
3
k1; ψ2 =

2∑
i,j,k=1

πiαijαjkβ
2
k1βk2; ψ3 =

2∑
i,j,k=1

πiαijαjkβk1β
2
k2;

ψ4 =
2∑

i,j,k=1

πiαijαjkβ
3
k2

Mean, E[X(I)] = 3(ψ2 + 2ψ3 + ψ4) (5.10)

Variance, V [X(I)] =3(ψ2 + 4ψ3 + 3ψ4)−
[
3(ψ2 + 2ψ3 + ψ4)

]2
(5.11)
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Third and fourth central moments

µ3[X(I)] =3(ψ2 + 8ψ3 + 9ψ4)− 27(ψ2 + 2ψ3 + ψ4)
(

(ψ2 + 4ψ3 + 3ψ4)− 2(ψ2 + 2ψ3 + ψ4)2
)

(5.12)

µ4[X(I)] =3(ψ2 + 16ψ3 + 27ψ4)− 9(ψ2 + 2ψ3 + ψ4)
[
4(ψ2 + 8ψ3 + 9ψ4)

− 9(ψ2 + 2ψ3 + ψ4)
(

2(ψ2 + 4ψ3 + 3ψ4) + (ψ2 + 2ψ3 + ψ4)2
)]

(5.13)

Sk[X(I)] =
[
(ψ2 + 8ψ3 + 9ψ4)− 9(ψ2 + 2ψ3 + ψ4)

(
(ψ2 + 4ψ3 + 3ψ4)− 2(ψ2 + 2ψ3 + ψ4)2

)]2
[
3
(

(ψ2 + 4ψ3 + 3ψ4)− 3(ψ2 + 2ψ3 + ψ4)2
)3]−1

(5.14)

Coefficient of kurtosis for Decrement State

(ψ2 + 16ψ3 + 27ψ4)− 3(ψ2 + 2ψ3 + ψ4)
[
4(ψ2 + 8ψ3 + 9ψ4)− 9(ψ2 + 2ψ3 + ψ4)(

2(ψ2 + 4ψ3 + 3ψ4) + (ψ2 + 2ψ3 + ψ4)2
)][

3
(

(ψ2 + 4ψ3 + 3ψ4)− 3(ψ2 + 2ψ3 + ψ4)2
)2]−1

(5.15)

Characteristic Function, φ[X(I)] =ψ1 + eit3ψ2 + e2it3ψ3 + e3itψ4 (5.16)

6 Results and Discussion

By using the collected COVID-19 dataset (placed in the annexure), the derived model behavior
is studied[16]. The data consist of the number of reported positive cases state-wise in India from
24th March 2020 to 25th August 2020. This model is focused on the dynamic behavior of two
states. The total number of cases per day is divided into two transition states, ”Decrement” and
”Increment.” This study primarily focused on the southern states of India, and it aims to predict the
COVID-19 positive cases in Tamilnadu and Puducherry that are influenced by its adjacent states,
namely Kerala, Karnataka, Andhra Pradesh. If the previous day’s cases are more when compared
to the current day, then that state is considered a ”Decrement State.” At the same time, the state is
mentioned as an ”Increment State” when the previous day’s cases are less than the current day. The
number of positive cases identified each day in Kerala, Karnataka, Telangana, and Andhra Pradesh
is considered to identify Hidden states. The daily positive cases of Tamilnadu and Puducherry are
supposed to identify visible states. Transition frequency tables and transition probability matrices
are obtained for the hidden and visible states.

6.1 Initial probability matrix for hidden states.

π =
[
0.4183 0.5817

]
6.2 Transition probability matrix among hidden states:

Thorough processing of identified daily positive cases in the total neighboring states of Tamil Nadu,
the number of initial states, Decrement (D) and Increment (I), was carried out with the collected
data. The joint states (HD,HD), (HD,HI), (HI,HD) and (HI,HI) are identified as
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(HD,HD) : (Xn+1 < Xn) ∩ (Xn < Xn−1)

(HD,HI) : (Xn+1 < Xn) ∩ (Xn > Xn−1)

(HI,HD) : (Xn+1 > Xn) ∩ (Xn < Xn−1)

(HI,HI) : (Xn+1 > Xn) ∩ (Xn > Xn−1)

Transition Frequency Table: Transition Probability Matrix:
Xn

n(D) n(I)
Xn−1 n(D) 16 47

n(I) 46 43

Xn

n(D) n(I)
Xn−1 n(D) 0.2540 0.7460

n(I) 0.5169 0.4831

A =

[
0.2540 0.7460
0.5169 0.4831

]

6.3 Transition probability matrix between hidden and visible states:

The emission probability matrix is obtained after processing the emission frequency matrix. The
joint states (HD,V D), (HD,V I), (HI, V D) and (HI, V I) are identified as

(HD,V D) : (Xn+1 < Xn) ∩ (Yn+1 < Yn)

(HD,V I) : (Xn+1 < Xn) ∩ (Yn+1 > Yn)

(HI, V D) : (Xn+1 > Xn) ∩ (Yn+1 < Yn)

(HI, V I) : (Xn+1 > Xn) ∩ (Yn+1 > Yn)

Transition Frequency Table: Transition Probability Matrix:
Yn

n(D) n(I)
Xn−1 n(D) 28 36

n(I) 35 54

Yn

n(D) n(I)
Xn−1 n(D) 0.4375 0.5625

n(I) 0.3936 0.6067

B =

[
0.4375 0.5625
0.3933 0.6067

]

Table 1. Probability distribution for Decrement state

X(D) 0 1 2 3

P[X(D)](1 day sequence) 0.5882 0.4118 - -
P[X(D)](2 day sequence) 0.3471 0.4833 0.1697 -
P[X(D)](3 day sequence) 0.2048 0.4265 0.2985 0.0702

From Table 1 it is observed that non-occurrence of decrement state in one-day length is having
more chance. The chance of happening of decrement state once in a two days sequence is more.
In three-day sequence occurrence of decrement state once having more chance when compared to
other. And the graph is plotted for the above probability.
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Fig. 2. Probability of Decrement State for 1 day sequence, 2 days sequence, 3 days
sequence

Based on the results obtained for “Decrement State” it is observed that the average happening of
decrement state is less than 1 in one day study, nearly one day in two day’s study and there is a
chance of occurrence of the state is more than 1 in three day’s calculation. And also observed that
the decrement state is positively skewed. The kurtosis measure is less than 3 which means it is
platy kurtic.

Table 2. Statistical results of Decrement State for different (one day, two days run
and three days run) lengths of consecutive days

Statistical measures 1 day’s 2 day’s 3 day’s

Mean 0.4118 0.8225 1.2342
Variance 0.2422 0.4852 0.7293

3rd central moment 0.0427 0.0864 0.1303

4th central moment 0.0662 0.4854 1.2617
Skewness 0.1256 0.0654 0.0438
Kurtosis 1.1286 2.0618 2.3722

It is observed from the “Decrement State” that the average happening of decrement state is less
than 1 in one day study, nearly one in two day’s study, and more than 1 in three day’s calculation.
It is observed from the result that the decrement state is positively skewed. The kurtosis measure
is less than 3, which means it is platy kurtic.

Table 3. Probability distribution for Increment State

X(I) 0 1 2 3

P[X(I)](1 day sequence) 0.4118 0.5882 - -
P[X(I)](2 day sequence) 0.1697 0.4833 0.3471 -
P[X(I)](3 day sequence) 0.0702 0.2985 0.4265 0.2048

From table 3 it is observed that happening of increment state is having more chance when compared
to the non-happening of increment state. In two days sequence chance of happening of increment
state once is more. The occurrence of increment state twice is having more chance in three days
sequence. Graphical representation is given below.
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Fig. 3. Probability of Increment State for 1 day sequence, 2 days sequence, 3 days
sequence.

Table 4. Statistical results for Increment state for different (one day, two days run
and three days run) lengths of consecutive day’s

Statistical measures 1 day’s 2 day’s 3 day’s

Mean 0.5882 1.1774 1.7658
Variance 0.2422 0.4852 0.7293

3rd central moment -0.04274 -0.0865 -0.1302

4th central moment 0.0662 0.4854 1.2617
Skewness 0.1286 0.0654 0.0438
Kurtosis 1.1286 2.0618 2.3722

From table 4, it is observed that the average happening of Increment state is less than 1 in one-day
length, more than 1 in two, three day’s study. It is noticed that the Increment state is positively
skewed. The kurtosis measure is less than 3 which means it is platy kurtic.

7 Summary and Conclusion

This research study mainly focused on developing the Hidden Markov Model based on the transitions
among states. The primary intent of the study is to examine whether the total number of positive
cases registered in Tamil Nādu and Puducherry has an association with the total number of
positive cases reported in its adjacent southern states like Andhra Pradesh, Telangana, Kerala,
and Karnataka. A transition frequency table has been obtained by considering discrete Markov
processes. Transition probability matrices are also derived based on transition frequency tables. As
an extended activity for understanding the model behavior, the classical formulae for probability
distributions of one-day occurrence, two-day successive occurrences, and three-day successive occur-
rences of a single state and two states are derived. Probability distribution’s mass function for the
states of increment and decrement are derived. Explicit functions of various statistical characteristics
to the said probability distributions are also derived. A numerical analysis was also carried out based
on the derived mathematical relations. The statistical measures based on pearson’s coefficients are
obtained for the derived probability mass functions of the hidden Markov models and related discrete
distributions. Model behavior is studied with the help of the COVID-19 dataset, which was collected
from internet sources. This data is about the occurrences of positive cases identified in Tamil Nadu,
Puducherry, Telangana, Andhra Pradesh, Kerala, and Karnataka. Study reports on statistical
measures are obtained for the said numerical data sets. The intensity of the prevalence, trends
of increments, or decrement fluctuations is studied. This study will provide indicators of disease
prevalence and will be helpful to the government in developing suitable health care management
strategies. The indicators that explored the mobilities of the population have revealed the necessary
course of action for the governing agencies. The controlling measures on the spread of disease may
be implemented with the observed indicators.
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