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Abstract

In this work, we introduce a new generalized Gamma function, which is named as p-v-Gamma
function and provide some properties generalizing those satisfied by the classical Gamma
function. We also give some convexity and monotonicity properties. Furthermore, we establish
some inequalities related to this new function.
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1 Introduction

The classical Euler’s Gamma function Γ(x) is defined for x > 0 as

Γ(x) =

∫ ∞
0

tx−1e−tdt = lim
p→∞

p!px

x(x+ 1) . . . (x+ p)
.

This function plays central roles in the theory of special functions and have lots of generalizations.
There seems to be so much study of literature. Although it is not possible to list all of these papers,
we can give some of them to the readers, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12] and the
references therein.
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Euler, gave an equivalent definition for the function Γ (known as p-analogue of the Gamma function)
as:

Γp(x) =
p!px

x(x+ 1) . . . (x+ p)
, x > 0

where p is a positive integer and

Γ(x) = lim
p→∞

Γp(x),

[13]. It satisfies the identities:

Γp(x+ 1) =
px

x+ p+ 1
Γp(x),

Γp(1) =
p

p+ 1
.

In [14], the authors define the p-analogue of the psi function as the logarithmic derivative of the
function Γp, that is:

ψp(x) =
d

dx
ln Γp(x) =

Γ
′
p(x)

Γp(x)
.

and they gave the series representation of the ψp with the relation:

ψp(x) = ln p−
p∑

n=0

1

x+ n
.

Also, the authors in [15] introduced a new one-parameter deformation of the classical Gamma
function, called v-analogue (v-deformation or v-generalization) of the Gamma function for x, v > 0
as:

Γv(x) =

∫ ∞

0

(
t

v

) x
v
−1

e−tdt. (1.1)

Note that when v = 1, Γv(x) = Γ(x). They also gived the relation

Γv(x) = lim
n→∞

n!
(
n
v

) x
v vn+2

x(x+ v)(x+ 2v) . . . (x+ nv)
. (1.2)

Definition 1. i. A function f : (a, b) → R is said to be convex if

f(αx+ βy) ≤ αf(x) + βf(y), (1.3)

ii. A function f : (a, b) → R is said to be concave if the inequality (1.3) is reversed,
iii. A function f : (a, b) → R+ is said to be logarithmically convex if

log f(αx+ βy) ≤ α log f(x) + β log f(y)

for all x, y ∈ (a, b) and α, β > 0 such that α+ β = 1.
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iv. A function f is said to be totally monotone if f is continuous on [0,∞), infinitely differentiable
on (0,∞) and satisfies the condition that:

(−1)nf (n)(x) ≥ 0, n = 0, 1, 2, . . . , x > 0.

Throughout this work, R, R+ and N be the sets of real numbers, positive real numbers and natural
numbers respectively.

The main purpose of this paper is to introduce a new generalized Gamma function Γp,v, called
the p-v-Gamma function. Our motivation to introduce this new function comes from a natural
question if a similar definition of Γ can be given for the function Γv. It contributes to giving some
generalized properties. We establish recurrent relations for Γp,v in Lemma 1 and Lemma 2. Also, we
give the convexity property by Theorem 2. After defining the p-v-psi and p-v-polygamma functions
we continue to give series representations, monotonicity properties, and some inequalities involving
these new functions.

2 Main Results

We begin this section by presenting a new generalized Gamma function as follows:

Definition 2. Let x, v > 0 and p ∈ N. Then the p-v-Gamma function (also called p-v-analogue or
p-v-generalization of the Gamma function) is defined as:

Γp,v(x) =
p!
(
p
v

) x
v vp+2

x(x+ v)(x+ 2v) . . . (x+ pv)
. (2.1)

Note that Γp,v(x) → Γv(x) as p→ ∞.

Lemma 1. Let x, v > 0 and p ∈ N. Then the function Γp,v satisfies the identities:

i. Γp,v(x+ v) =
xp

v(x+ pv + v)
Γp,v(x), (2.2)

ii. Γp,v(v) =
p

p+ 1
. (2.3)

Proof. The result follows immediately by the equation (2.1).

Also, note that Γp,v satisfies the following commutative diagram:

Γp,v
p→∞−−−−−→ Γv

v=1

y yv=1

Γp
p→∞−−−−−→ Γ

Now, we give a recurrent relation for Γp,v which is also a generalization of (2.2).

Lemma 2. Let x, v > 0 and p, n ∈ N. Then the function Γp,v satisfies the relation:

Γp,v(x+ nv) =
(p
v

)n(n−1∏
i=0

x+ iv

x+ (p+ i+ 1)v

)
Γp,v(x). (2.4)
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Proof. By (2.1) we have,

Γp,v(x+ nv)

Γp,v(x+ nv − v)
=

(p
v

) (x+ nv − v)(x+ nv)(x+ nv + v) . . . (x+ nv + (p− 1)v)

(x+ nv)(x+ nv + v)(x+ nv + 2v) . . . (x+ nv + pv)

=
(p
v

) (x+ nv − v)

(x+ nv + pv)
.

Then,

Γp,v(x+ nv) =
(p
v

) (x+ nv − v)

(x+ nv + pv)
Γp,v(x+ nv − v).

In a similar way, we have

Γp,v(x+ nv − v) =
(p
v

) (x+ nv − 2v)

(x+ nv + (p− 1)v)
Γp,v(x+ nv − 2v).

Then we have

Γp,v(x+ nv) =
(p
v

) (x+ nv − v)

(x+ nv + pv)
Γp,v(x+ nv − v)

=
(p
v

)2 (x+ nv − v)

(x+ nv + pv)

(x+ nv − 2v)

(x+ (n− 1)v + pv)
Γp,v(x+ nv − 2v).

Continuing in this way, we obtain

Γp,v(x+ nv) =
(p
v

)n (x+ nv − v)(x+ nv − 2v) . . . (x+ nv − nv)

(x+ nv + pv)(x+ (n− 1)v + pv) . . . (x+ (n− (n− 1)v) + pv)
Γp,v(x)

=
(p
v

)n (x+ (n− 1)v)(x+ (n− 2)v) . . . x

(x+ (p+ n)v)(x+ (p+ n− 1)v) . . . (x+ (p+ 1)v)
Γp,v(x)

=
(p
v

)n(n−1∏
i=0

x+ iv

x+ (p+ i+ 1)v

)
Γp,v(x),

and the result follows.

Remark 1. Lemma 2 generalizes Lemma 2.1 of [14].

Note that, when taking the limit of both sides of the equation (2.4) as p→ ∞, we obtain that

lim
p→∞

Γp,v(x+ nv) = lim
p→∞

(p
v

)n ∏n−1
i=0 (x+ iv)∏n

i=0(x+ (p+ i)v)
Γp,v(x).

Hence we get

Γv(x+ nv) =
1

v2n

n−1∏
i=0

(x+ iv)Γv(x)

or equivalently

Γv(x) = v2n
Γv(x+ nv)

x(x+ v) . . . (x+ (n− 1)v)
.
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Theorem 1. Let x, v > 0, r > 1 and p ∈ N. Then, the inequalitiy

Γp,v(rx) <
(p
v

) rx−x
v

Γp,v(x) (2.5)

is valid.

Proof. Using the definition of Γp,v we get

Γp,v(rx)

Γp,v(x)
=

p!
(
p
v

) rx
v vp+2

p!
(
p
v

) x
v vp+2

x(x+ v) . . . (x+ pv)

rx(rx+ v) . . . (rx+ pv)
<
(p
v

) rx
v

− x
v
,

and the result follows.

Theorem 2. Let x, v > 0 and p ∈ N. Then, the function Γp,v is convex.

Proof. We have to prove that:

Γp,v(αx+ βy) ≤ [Γp,v(x)]
α [Γp,v(y)]

β (2.6)

for all α, β > 0, α+ β = 1 and x, y > 0. Using the concavity of the logarithm function we have

xαyβ ≤ αx+ βy. (2.7)

By this, we obtain(
v +

x

k

)α (
v +

y

k

)β
≤ α

(
v +

x

k

)
+ β

(
v +

y

k

)α
= v +

αx+ βy

k

for all k ∈ N. Then we have(
v +

x

1

)α (
v +

x

2

)α
. . .

(
v +

x

p

)α (
v +

y

1

)β (
v +

y

2

)β
. . .

(
v +

y

p

)β

≤
(
v +

αx+ βy

1

)(
v +

αx+ βy

2

)
. . .

(
v +

αx+ βy

p

)
.

By using the equation (2.1) and inequality (2.7) we can write

Γp,v(αx+ βy) =

(
p
v

)αx+βy
v vp+2

(αx+ βy)
(
αx+βy

1
+ v
)
. . .
(

αx+βy
p

+ v
)

≤
(p
v

)αx+βy
v

vp+2 1

αx+ βy

1

(v + x)α
(
v + x

2

)α
. . .
(
v + x

p

)α
(v + y)β

(
v + y

2

)β
. . .
(
v + y

p

)β

≤
(p
v

)αx+βy
v

vp+2 1

xαyβ
1

(v + x)α
(
v + x

2

)α
. . .
(
v + x

p

)α
(v + y)β

(
v + y

2

)β
. . .
(
v + y

p

)β (2.8)

On the other hand, we have

[Γp,v(x)]
α [Γp,v(y)]

β =

(
p
v

)αx
v vα(p+2)

xα(x+ v)α
(
x
2
+ v
)α
. . .
(

x
p
+ v
)α (

p
v

) βy
v vβ(p+2)

yβ(y + v)β
(
y
2
+ v
)β
. . .
(

y
p
+ v
)β

5
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=
(p
v

)αx+βy
v

vp+2 1

xα(x+ v)α
(
x
2
+ v
)α
. . .
(

x
p
+ v
)α

yβ(y + v)β
(
y
2
+ v
)β
. . .
(

y
p
+ v
)β . (2.9)

Then by the equations (2.8) and (2.9) we get

Γp,v(αx+ βy) ≤ [Γp,v(x)]
α [Γp,v(y)]

β ,

and since every logarithmically convex function is also convex [16], the result follows.

Corollary 1. Let x, v > 0 and p ∈ N. Then, the inequalitiy

Γp,v(x+ y) ≤
(p
v

) x+y
2v
√

Γp,v(x)Γp,v(y) (2.10)

is valid.

Proof. By letting α = β = 1
2
, writing 2x instead of x and 2y instead of y in the equation (2.6) we

have

Γp,v(x+ y) ≤
√

Γp,v(2x)Γp,v(2y).

Now, using the inequality (2.5) for r = 2 we get

Γp,v(x+ y) ≤
√(p

v

) x
v
Γp,v(x)

(p
v

) y
v
Γp,v(y) =

(p
v

) x+y
2v
√

Γp,v(x)Γp,v(y),

and the result follows.

We define the p-v-psi (p-v-digamma) function as the logarithmic derivative of the function Γp,v;
that is

ψp,v(x) =
d

dx
ln Γp,v(x) =

Γ
′
p,v(x)

Γp,v(x)
.

By using the equation (2.4) we get the following recurrent relation for ψp,v.

Corollary 2. Let x, v > 0 and p, n ∈ N. Then the function ψp,v satisfies the relation:

ψp,v(x+ nv)− ψp,v(x) =

n−1∑
i=0

pv + v

(x+ iv)(x+ (p+ i+ 1)v)
. (2.11)

Proposition 1. Let x, v > 0 and p ∈ N. Then, the function ψp,v has the series representation:

ψp,v(x) =
1

v
ln
(p
v

)
−

p∑
n=0

1

x+ nv
. (2.12)

Proof. By using the equation (2.1) we can write

Γp,v(x) =

(
p
v

) x
v vp+2

x(x+ v)
(
x
2
+ v
)
. . .
(

x
p
+ v
) . (2.13)

6
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Then,

ln Γp,v(x) =
x

v
ln
(p
v

)
+ (p+ 2) ln v −

(
lnx+ ln(x+ v) + ln

(x
2
+ v
)
. . . ln

(
x

p
+ v

))
.

Now, by differentiating both sides of the last equation with respect to x we get

ψp,v(x) =
1

v
ln
(p
v

)
−

(
1

x
+

1

x+ v
+

1

2

1
x
2
+ v

+ . . .+
1

p

1
x
p
+ v

)

=
1

v
ln
(p
v

)
−

p∑
n=0

1

x+ nv
,

and the result follows.

The following proposition is given in [15]:

Proposition 2. Let x, v > 0. Then the v-digamma function ψv has the series representation:

Ψv(x) = − ln v + γ

v
− 1

x
+

∞∑
n=1

[
1

nv
− 1

x+ nv

]
. (2.14)

Note that, γ is the Euler-Mascheroni constant in the proposition 2:

γ = lim
n→∞

(
n∑

k=1

1

k
− lnn

)
.

Theorem 3. Let x, v > 0 and p ∈ N. Then, the function ψp,v satisfies the limit property:

lim
p→∞

ψp,v(x) = ψv(x).

Proof. By the equation (2.12) and the Proposition 2 we have

lim
p→∞

ψp,v(x) = lim
p→∞

[
1

v
ln
(p
v

)
− 1

x
−

p∑
n=1

1

x+ nv

]

= lim
p→∞

[
1

v

(
ln p− ln v −

p∑
n=1

1

n

)
− 1

x
−

(
p∑

n=1

1

x+ nv
−

p∑
n=1

1

nv

)]

=
1

v
lim
p→∞

[
ln p−

p∑
n=1

1

n

]
− ln v

v
− 1

x
− lim

p→∞

(
p∑

n=1

1

x+ nv
−

p∑
n=1

1

nv

)

= −1

v
γ − ln v

v
− 1

x
+ lim

p→∞

p∑
n=1

(
1

nv
− 1

x+ nv

)
= ψv(x),

and the result follows.

By using the equation (2.12) we get the following.
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Corollary 3. Let x, v > 0 and p ∈ N. Then, the following identities hold:

i. ψp,v(v) =
1

v

[
ln
(p
v

)
−Hp+1

]
where Hp is the p-th harmonic number, i.e. the sum of the reciprocals of the first p natural numbers:

Hp = 1 +
1

2
+ . . .+

1

p
=

p∑
n=1

1

n
,

ii. The function ψp,v is increasing on (0,∞).
iii. The function ψp,v is totally monotone on (0,∞).

Note that, for an alternative proof of convexity of the function Γp,v, we can use monotonicity. Since

ψp,v is increasing on (0,∞), we have ψ
′
p,v(x) > 0 for x > 0. Then (ln Γp,v(x))

′′
> 0, i.e. Γp,v is

logarithmically convex. It follows that Γp,v is convex. Also, since every totally monotone function
f is logarithmically convex [17, 18], we get that the function ψp,v is logarithmically convex and so
it is convex.

Now, we define the p-v-polygamma function of order m as the (m+1)-th derivative of the logarithm
of the function Γp,v as

ψ(m)
p,v (x) =

dm

dxm
ψp,v(x) =

dm+1

dxm+1
ln Γp,v(x).

Thus

ψ(0)
p,v(x) = ψp,v(x).

Proposition 3. Let x, v > 0 and p,m ∈ N. Then the function ψ
(m)
p,v has the series representation:

Ψ(m)
p,v (x) =

p∑
n=0

(−1)m+1m!

(x+ nv)m+1
. (2.15)

Proof. By differentiating m times of the equation (2.12) with respect to x we get the result.

Note that
lim
p→∞

ψ(m)
p,v (x) = ψ(m)

v (x),

where ψ
(m)
v is the v-polygamma function of order m and has the series representation,

Ψ(m)
v (x) = (−1)m+1m!

∞∑
n=0

1

(x+ nv)m+1
.

given in [15]. By using the equation (2.15) we get the following.

Corollary 4. Let x, v > 0 and p,m ∈ N. Then, the following identities hold:

i. The function ψ
(m)
p,v is positive and decreasing on (0,∞) if m is odd.

ii. The function ψ
(m)
p,v is negative and increasing on (0,∞) if m is even.

Finally, as an application to the definition of ψp,v we give the following theorems.

Theorem 4. The following inequalities are valid for x, v > 0 and p ∈ N:

1

v
ln

(
px

v(x+ pv + v)

)
− pv + v

x(x+ pv + v)
< ψp,v(x) <

1

v
ln

(
px

v(x+ pv + v)

)
.
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Proof. If we apply the mean value theorem to the function

f(x) = lnΓp,v(x)

on (x, x+ v), then there is a point x0 ∈ (x, x+ v) such that

ln Γp,v(x+ v)− ln Γp,v(x) = vψp,v(x0).

By the monotonicity of the function ψp,v on (0,∞) we get

ψp,v(x) < ψp,v(x0) < ψp,v(x+ v) (2.16)

and also by (2.2) we get ψp,v(x0) =
1
v
ln px

v(x+pv+v
. Now using the equation (2.11) for n = 1 in the

inequalities (2.16) we get

ψp,v(x) <
1

v
ln

(
px

v(x+ pv + v

)
<

pv + v

x(x+ pv + v)
+ ψp,v(x),

and the result follows.

Theorem 5. Let x, v > 0 and p ∈ N. Then, the function

x→ xψp,v(x)

is convex.

Proof. We have

(xΨp,v(x))
′′
= 2ψ

′
p,v(x) + xψ

′′
p,v(x).

Then by using the equation (2.15) we have

(xΨp,v(x))
′′
= 2

p∑
n=0

1

(x+ nv)2
− x

p∑
n=0

2

(x+ nv)3
=

p∑
n=0

2nv

(x+ nv)3
≥ 0,

and the proof is completed.

Theorem 6. Let x ∈ [0, 1], v > 0, p,m ∈ N and a, b (a ≥ b) be positive real numbers. Also let c, d
be positive real numbers such that 0 < cbm+1 ≤ dam+1. Then the function

x→

(
ln

[Γp,v(a+ bx)]c

[Γp,v(b+ ax)]d

)(m)

is

i. decreasing if m is odd,
ii. increasing if m is even.

Proof. Let g(x) =
[Γp,v(a+bx)]c

[Γp,v(b+ax)]d
and h(x) = ln g(x). Then,

h(m+1)(x) = [ln g(x)](m) = c [ln(Γp,v(a+ bx))](m+1) − d [ln(Γp,v(b+ ax))](m+1)

= cbm+1ψ(m)
p,v (a+ bx)− dam+1ψ(m)

p,v (b+ ax).

Since x ∈ [0, 1] and a ≥ b we have a+bx ≥ b+ax. Now using the Corollary 4, we get the followings:
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If m is odd then 0 < ψ
(m)
p,v (a+ bx) ≤ ψ

(m)
p,v (b+ ax). Then since 0 < cbm+1 ≤ dam+1 we can write

cbm+1ψ(m)
p,v (a+ bx) ≤ dam+1ψ(m)

p,v (a+ bx) ≤ dam+1ψ(m)
p,v (b+ ax).

So, h(m+1)(x) ≤ 0. It means that the function h(m) is decreasing on [0, 1] if m is odd.
Similarly, if m is even we have

cbm+1ψ(m)
p,v (a+ bx) ≥ dam+1ψ(m)

p,v (a+ bx) ≥ dam+1ψ(m)
p,v (b+ ax),

this implies that the function h(m) is increasing on [0, 1] if m is even, and the result follows.

3 Conclusions

In the first section, we have given the necessary definitions for our main results. In the main section,
we have introduced a new generalized Gamma function Γp,v, called the p-v-Gamma function. We
have proved a recurrent relation convexity property and related results for Γp,v. In addition, we

have defined ψp,v and ψ
(m)
p,v functions, called the p-v-psi(digamma) and p-v-polygamma functions

respectively. Also, we have given some series representations, monotonicity properties, and inequali-
ties involving these new functions.
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[1] Dı́az R, Parigúan E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat.
2007;15(2):179–192.

[2] Duran U, Acikgoz M. A Study on novel extensions for the p-adic Gamma and p-adic beta
Functions. Mathematical and Computational Applications. 2019;24(2):53.
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