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Abstract

The study of integer sums of two squares is still an open area of research. Much of the recent
work done has put more attention on Fermat Sums of two square theorem with little attention
given to new formulas of sums of two Squares. This work is set to partially overcome this
knowledge gap by introducing new formulas for generating integer sums of two squares.
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1 Introduction

Finding the relationship between integers and sums of two squares has become an interesting topic
in the recent years. The Theory of sums of two squares was first pioneered by Fermat in 1640, where
an odd prime p is expressible as a sum of two squares if and only if p ≡ 1mod4. Euler succeeded
in providing proof for Fermat’s theorem on sums of two squares in 1749, The proof majorly relies
on infinite descent, and was briefly sketched in a letter. The complete proof consists in five steps
and was published in two papers. For reference see [1,2]. Since, Euler gave proof to this somewhat
marvelous theorem, a number of researchers have provided alternative proof. For survey of this
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results reference can be made to [3,4,1,2]. Though a giant method the Fermat formula does not
generate all integer sums of two squares since it is purely defined for an odd prime numbers which
is congruent to 1 modulo p. Another limitation of Fermat Sums of two square theorem is that one
has to determine p before spliting the number into a sum of two square number [5]. This study is
set to overcome this challenges by introducing new formulas for integer sums of two squares which
has the ability to generate a wide range of integer sums of two squares if not all.

2 Preliminary Results

In this section we present some interesting results related to integer sums of two squares

Theorem 2.1 (Fermat). An odd prime p is expressible as p = a2 + b2 if and only if p ≡ 1 mod n
with a and b as integers.

The Brahmagupta Fibonacci identity known also as Diophantus identity expresses the product of
two sums of two squares as a sum of two squares in two different ways. i.e

(u2 + v2)(w2 + z2) = (uw − vz)2 + (uz + vw)2 = (uw + vz)2 + (uz − vw)2

3 Some Identities of Sums of Two Squares

In the sequel some identities of sums of two squares are presented. In this study all the numbers
are assumed to be integers with property that c > b > a and n is any non-negative exponent:

Proposition 3.1. b(a+ c) + 22n+1 = (a− 2n + 2)2 + (a+ 2n + 2)2 has solution in integers if a, b, c
are consecutive integers of the same parity and n ≥ 1.

Proof. Suppose a, b, c are consecutive integers of the same parity. Then, b = a+ 2, c = a+ 4. Thus,
b(a+c)+22n+1 = (a+2)(a+a+4)+22n+1 = (a+2)(2a+4)+22n+1 = a(2a+4)+2(2a+4)+22n+1 =
2a2 + 4a + 4a + 8 + 22n+1. · · · ·(∗).
On the other hand, (a− 2n + 2)2 + (a+ 2n + 2)2 = a(a− 2n + 2)− 2n(a− 2n + 2) + 2(a− 2n + 2) +
a(a + 2n + 2) + 2n(a + 2n + 2) + a(a + 2n + 2) = a2 − a.2n + 2a− a.2n + 22n − 2n+1 + 2a− 2n+1 +
4 + a2 + a.2n + 2a + a.2n + 22n + 2n+1 + 2a + 2n+1 + 4 = 2a2 + 4a + 4a + 8 + 22n+1. · · · ·(∗∗).
Clearly, (∗) and (∗∗) are equal. Hence b(a + c) + 22n+1 = (a− 2n + 2)2 + (a + 2n + 2)2.

Proposition 3.2. b(a + c) + 22n+1 = (b − 2n)2 + (b + 2n)2 has solution in integers if a, b, c are
consecutive integers of the same parity.

Proof. See proposition 3.1.

Proposition 3.3. b(a + c) + 22n+1 = (c− 2n − 2)2 + (c + 2n − 2)2 has solution in integers if a, b, c
are consecutive integers of the same parity.

Proof. See proposition 3.1.

Proposition 3.4. a(b+c)+22(n−1) +1 = (a+1)2 +( c+a
2

)2 has solution in integers if b = a+2, c =
a + 2n and n ≥ 1.

Proof. Suppose b = a+2, c = a+2n. Then, a(b+c)+22(n−1) +1 = a(a+2+a+2n)+22(n−1) +1 =
2a2 + 2a + a.2n + 22(n−1) + 1 · · · (∗).
On the other hand, (a + 1)2 + ( c+a

2
)2 = a2 + 2a + 1 + 1

4
(2a + 2n)2 = a2 + 2a + 1 + 1

4
(2a(2a +

2n) + 2n(2a + 2n)) = a2 + 2a + 1 + 1
4
(4a2 + a.2n+1 + a.2n+1 + 22n) = a2 + 2a + 1 + a2 + a.2n−1 +

a.2n−1 + 22n−2 + 1 = 2a2 + 2a + a2n + 22n−2 + 1 · · · (∗∗). From (∗) and (∗∗) it is clear that
a(b + c) + 22(n−1) + 1 = (a + 1)2 + ( c+a

2
)2.
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Proposition 3.5. a(b+c)+22(n−1) +4 = (a+2)2 +(a+c
2

)2 has solution in integers if b = a+4, c =
a + 2n and n ≥ 1.

Proof. Assume b = a + 4, c = a + 2n. Then, a(b + c) + 22(n−1) + 4 = a(a + 4 + a + 2n) + 22n−2 + 4
since b = a + 4, c = a + 2n. Thus, a(b + c) + 22(n−1) + 4 = a(2a + 4 + 2n) + 22n−2 + 4 =
2a2 + 4a + a.2n + 22n−2 + 4 · · · (∗).
On the other hand, (a + 2)2 + (a+c

2
)2 = (a + 2)2 + (a+2n+a

2
)2 = a2 + 4a + 4 + 1

4
(2a + 2n)2 =

a2 + 4a + 4 + 1
4
(2a(2a + 2n) + 2n(2a + 2n)) = a2 + 4a + 4 + 1

4
(4a2 + 2n+1.a + 2n+1.a + 22n) =

a2 + 4a+ 4 + a2 + 2n−1.a+ 2n−1.a+ 22n−2 = 2a2 + 4a+ a.2n + 22n−2 + 4 · · · (∗∗). Clearly, from (∗)
and (∗∗) the equality holds. Hence a(b + c) + 22(n−1) + 4 = (a + 2)2 + (a+c

2
)2.

Proposition 3.6. a(b+c)+22(n−1) +16 = (a+b
2

)2 +(a+c
2

)2 has solution in integers if b = a+8, c =
a + 2n and n ≥ 1.

Proof. Suppose b = a+8, c = a+2n. Then,a(b+c)+22(n−1) +16 = a(a+8+a+2n)+22n−2 +16 =
2a2 + 8a + a.2n + 22n−2 + 16 · · · (∗).
On the other hand, (a+b

2
)2 + (a+c

2
)2 = 1

4
(a + c)2 + 1

4
(a + b)2 = 1

4
(a + a + 2n)2 + 1

4
(a + a + 8)2 =

1
4
(2a + 2n)2 + 1

4
(2a + 8)2 = 1

4
(2a(2a + 2n) + 2n(2a + 2n)) + 1

4
(2a(2a + 8) + 8(2a + 8)) = 1

4
(4a2 +

a.2n+1 + a.2n+1 + 22n)2 + 1
4
(4a2 + 16a + 16a + 64) = 1

4
(4a2 + a.2n+2 + 22n) + 1

4
(4a2 + 32a + 64) =

a2 + a.2n + 22n−2 + a2 + 8a + 16 = 2a2 + 8a + a.2n + 22n−2 + 16 · · · (∗∗). From (∗) and (∗∗) it is
clear that a(b + c) + 22(n−1) + 16 = (a+b

2
)2 + (a+c

2
)2.

Proposition 3.7. a(b+c)+22(n−1)+64 = (a+b
2

)2+(a+c
2

)2 has solution in integers if b = a+16, c =
a + 2n and n ≥ 1.

Proof. Suppose b = a+16, c = a+2n. Then, a(b+c)+22(n−1)+64 = a(a+16+a+2n)+22n−2+64 =
a(2a + 16 + 2n) + 22n−2 + 64 = 2a2 + 16a + a.2n + 22n−2 + 64 · · · (∗).
On the other hand (a+b

2
)2 + (a+c

2
)2 = 1

4
(a + b)2 + 1

4
(a + c)2 = 1

4
(a + a + 16)2 + 1

4
(a + a + 2n)2 =

1
4
(2a + 16)2 + 1

4
(2a + 2n)2 = 1

4
(2a(2a + 16) + 16(2a + 16)) + 1

4
(2a(2a + 2n) + 2n(2a + 2n)) =

1
4
(4a2 + 32a+ 32a+ 256) + 1

4
(4a2 + a.2n+1 + 22n) = a2 + 8a+ 8a+ 64 + a2 + a.2n + 22n−2 = 2a2 +

16a+a.2n+22n−2+64 · · · (∗∗). From (∗) and (∗∗) we have a(b+c)+22(n−1)+64 = (a+b
2

)2+(a+c
2

)2.

Proposition 3.8. a(b + c) + 22(n−1) + 256 = (a+b
2

)2 + (a+c
2

)2 has solution in integers if b =
a + 32, c = a + 2n and n ≥ 1.

Proof. Assume b = a+32, c = a+2n. Then, a(b+c)+22(n−1)+256 = a(a+32+a+2n)+22n−2+256 =
a(2a + 32 + 2n) + 22n−2 + 256 = 2a2 + 32a + a.2n + 22n−2 + 256 · · · (∗).

On the other hand,(a+b
2

)2 + (a+c
2

)2 = 1
4
(a + b)2 + 1

4
(a + c)2 = 1

4
(a + a + 32)2 + 1

4
(a + a + 2n)2 =

1
4
(2a + 32)2 + 1

4
(2a + 2n)2 = 1

4
(2a(2a + 32) + 32(2a + 32)) + 1

4
(2a(2a + 2n) + 2n(2a + 2n)) =

1
4
(4a2+64a+64a+322)+ 1

4
(4a2+a.2n+1+a.2n+1+22n) = 1

4
(4a2+128a+322)+ 1

4
(4a2+a.2n+2+22n) =

a2 + 32a+ 256 + a2 + a.2n + 22n−2 = 2a2 + 32a+ a.2n + 22n−2 · · · (∗∗). From (∗) and (∗∗) it follows
that a(b + c) + 22(n−1) + 256 = (a+b

2
)2 + (a+c

2
)2.

Proposition 3.9. a(b + c) + 22n−1 = (a+b
2

)2 + (a+c
2

)2 = (a+b
2

)2 + (a+b
2

)2 = (a+c
2

)2 + (a+c
2

)2 has
solution in integers if b = a + 2n, c = a + 2n and n ≥ 1.

Proof. Suppose b = a + 2n, c = a + 2n. Then, a(b + c) + 22n−1 = a(a + 2n + a + 2n) + 22n−1 =
2a2 + a.2n+1 + a.22n−1 · · · (∗).
On the other hand, (a+b

2
)2 + (a+c

2
)2 = 1

4
(a + b)2 + 1

4
(a + c)2 = 1

4
(a + a + 2n)2 + 1

4
(a + a + 2n)2 =

1
4
(2a + 2n)2 + 1

4
(2a + 2n)2 = 1

4
(2a(2a + 2n) + 2n(2a + 2n)) + 1

4
(2a(2a + 2n) + 2n(2a + 2n)) =

1
4
(4a2 +a.2n+1 +a.2n+1 +22n)+ 1

4
(4a2 +a.2n+1 +a.2n+1 +22n) = 1

2
(4a2 +a.2n+1 +a.2n+1 +22n) =

2a2 + a.2n+1 + 22n−1 · · · (∗∗). From (∗) and (∗∗) it can be seen that a(b + c) + 22n−1 = (a+b
2

)2 +
(a+c

2
)2 = (a+b

2
)2 + (a+b

2
)2 = (a+c

2
)2 + (a+c

2
)2.
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Proposition 3.10. Let a be any positive even integers and the exponent n be any non negative
integer with zero included. Then 2n.aa + 2n = u2 + v2.

Proof. Case(i) when n = 0. 20.aa + 20 = aa + 1. Let a = 2m. Then aa + 1 = 2m2m + 1 =
(4m2)

m
+ 1. Let m2 = k so that (4m2)

m
+ 1 = (4k)m + 1. Setting k = 1 we have 4m + 1. Let

R = {4m + 1 : k ∈ Z+} and S = {p ≡ 1mod4 where p is an odd prime}. Clearly R ⊆ S and by
fermat theorem of sums of two squares, the result easily follows.

Proof. Case(ii) when n = 2k . 22k.a2m + 22k = (2k.am)
2

+ (2k)2. Let u = 2kam and v = 2m. So
that 2n.aa + 2n = u2 + v2.

Proof. Case(iii) when n = 2k+1. 22k+1.a2m +22k+1 = 2.(2k.am)
2
+2.(2k)2 = 2.((2k.am)

2
+(2k)2).

Let u = 2kam and v = 2m. So that 2n.aa + 2n = 2.(u2 + v2) = (12 + 12).(u2 + v2) and by the
identity (x2 + y2)(u2 + v2) = (xu + yv)2 + (xv − yu)2 the proof follows.

Proposition 3.11. Let p and x be any positive integers and n be any non negative exponent.
Suppose that p ≡ 1 mod b2 where b is anon negative even integer. Then pxn − xn = z2. Moreover,
z2 = u2 + v2 is a sum of two squares where u and v are integers.

Proof. We want to show that pxn−xn = z2 = u2 +v2. If p ≡ 1 mod b2 then p = b2 +1. Put b = 2m
so that p = 2m2m + 1. Proving from L.H.S we have pxn − xn = (2m2m + 1).xn − xn = 2m2m.xn +
xn − xn = 2m2m.xn. Set n = 2k to get pxn − xn = 2m2m.x2k = (2m.mm)2(xk)2 = (2m.mm.xk)2.
Set z = (2m.mm.xk) proving the first part of the equation. To show that (2m.mm.xk)2 is a sum of
two squares, Let z = (2m.mm.xk) and set m = 1. This means that z = (2.xk) = (1+1).xk = xk+xk.
Assume k = 2t, xk + xk = (xt)2 + (xt)2 = u2 + v2 as desired. Thus pxn − xn = z2 = u2 + v2.

Conjecture 3.1. a(b + c) + L = u2 + v2 has no general solution in integers if a, b and c is not
related.

4 Conclusion

This study has introduced some new formulas for integer sums of two squares. Up to now, much
of the research done in this area is very scanty and we encourage other researchers to give more
attention to this particular area of research. For instance there is very little information on the
general formula for generating integer sums of two squares since not every multiple of sums of two
squares with any number is a sum of two squares.
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