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Abstract
We proposed and studied a new fractional-order model for the transmission dynamics of brucellosis
with a special focus on the sheep-to-sheep transmission. Two control strategies namely; culling
and vaccination rate are incorporated in the model. We computed the basic reproduction
number R0 and we studied the global stability of disease-free and endemic equilibrium point
in terms of basic reproduction number R0. We found that both the disease-free and endemic
equilibrium points are globally stable whenever R0 < 1 and R0 > 1 respectively. In numerical
simulations, we performed the sensitivity analysis of the model and expressed the relationship
between model parameters andR0.We noted that, increase on the magnitude of model parameters
with negative correlation coefficients would significantly reduce the spread of Brucellosis disease
in the population. Moreover, model validation and parameter estimation for fractional-order and
classical integer-order derivatives was carried out using real brucellosis for Egypt, 1999-2011.
Overall, we noted that fractional-order model gave better prediction of brucellosis compared to
classical integer-order model. Furthermore, we investigated the role of memory effects on the
transmission of brucellosis in the population. We observe that, the memory effects have influence
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on the transmission of brucellosis in the community. In addition, we noted that the aforementioned
control strategies have the potential to reduce the transmission of brucellosis in the population.
In particular, we observed that whenever the culling and vaccination rate is greater than 40%
and 50% respectively, the disease dies out in the population.

Keywords: Brucellosis; fractional-order model; global stability; sensitivity analysis; parameter
estimation.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16

1 Introduction

Globally, human brucellosis remains an important and widespread infection [1]. Brucella melitensis
is responsible for the vast majority of human cases [2]. Sheep and goats represent the natural hosts
of B. melitensis [3, 4]. Domesticated species such as cattle, sheep, horse and goats are regarded
as the main source of human brucellosis [5], in which transmission may occur directly or through
the consumption of unpasteurised dairy products [6]. Brucellosis is transmitted to humans mainly
by direct contact with animals or by consumption of milk products [7]. Although the disease is
well contained in Australia and the UK, the annual global incidence of brucellosis is estimated
above 500 000 [8, 9]. Brucellosis is endemic in Mediterranean areas, the south and the center of
America, Africa, Asia, Arab peninsula, Indian subcontinent and the Middle East [5]. In animals,
brucellosis is transmitted by direct contact transmission through the brucella carriers or indirect
contact transmission when animals ingest contaminated forages or the excrement containing large
quantities of bacteria, generally discharged by infected animals [6].

Since human-to-human transmission of the disease is rare the ultimate management of human
brucellosis can be achieved through effective control of brucellosis in animal population. In addition
the number one Sustainable Development Goal concerns ending poverty. Household income is
identified as the major way by which extreme poverty can be reduced in developing countries. As a
result, stake-holders and policy makers have turned their focus on livestock production as a means
of raising income and improving the livelihood of rural dwellers. The livestock industry does not
only supply manure for crop and vegetable growers but it also ensures the sustainability of food and
nutrients and financial security, all of which contribute to raise the standard of living, particularly
in rural areas.

Mathematical models have proved to be essential guiding tools for epidemiologists, biologists as
well as policy makers (See for example [10, 11, 12, 13, 14, 15, 16, 17, 18]). Recently, modelling the
transmission dynamics of brucellosis, is one of the most common global zoonoses [19], has been an
interesting topic for a number of researchers (see, for example [6, 18, 20, 21, 22, 23, 24, 25, 26, 27]).
It is undeniable that these studies and several other have produced several useful results and
significantly improved the existing knowledge on brucellosis dynamics. Understanding the role
of memory effects on short and long-term dynamics of infectious diseases is one of the emerging
areas in the biological research. Thus, in this study a mathematical model for brucellosis based
on Fractional Calculus (FC) is proposed and analyzed. Although this study is not the first to
incorporate FC in studying brucellosis transmission (see, for example [28]) the proposed model is
unique from those in literature.

Although the fractional derivative has several definitions such as those derived from Riemann-
Liouville, Caputo, liouville, Weyl, Riesz, Grunwald-Litnikov, Marchaud and Hifler, Caputo-Fabrizio-
Caputo, Atanga-Baleanu, Atanga-beta derivative, M-fractional derivative, Atangana-Koca, conform-
able derivative, Atanga-Gomez, Variable-order and fractal-fractional idea [29, 30], the model proposed
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in this study will be based on the Caputo derivative. The rationale of choosing the Caputo derivative
is that the Caputo derivative for a given function which is constant is zero. Thus, the Caputo
operator computes an ordinary differential equation, followed by a fractional integral to obtain
the desired order of fractional derivative [11, 28, 31, 32]. Most importantly, the Caputo fractional
derivative allows the use of local initial conditions to be included in the derivation of the model
[11, 28, 31, 32].

To the best of our knowledge, none of the models proposed as of to date has incorporated the aspect
of chronic animals. According to Evermann and Eriks [33], brucellosis ecology can be segmented as
infection rate, attack rate (progression to clinical disease) and mortality/morbidity (chronic carrier
state). Most common clinical signs of brucellosis infection in sheep are abortions, stillbirths and
the birth of weak offspring. A given number of animals born from brucella infected females may
be latent carriers (approximately 5%) and can only be identified by immunological tests after their
first or second pregnancy [34, 35]. However, according to some researchers animals infected with
brucellosis generally abort only once [36], and clearly if the animal is not detected at this stage it
will become chronic. Undoubtedly, effective management of brucellosis can be attained if emphasis
is placed on multidisciplinary research aimed at addressing the underlying relationship between the
disease ecology and prevalence.

The remainder of this paper is organized as follows. In Section 2, we present material and methods.
In Section 3, numerical simulations are done in order to verify theoretical results presented in the
study. Finally, we conclude the paper with a concluding remarks in Section 4.

1.1 Preliminaries on the caputo fractional calculus

We begin by introducing the definition of Caputo fractional derivative and state related theorems
(see, [37]) that we will utilise to derive important results in this work.

Definition 1. Suppose that α > 0, t > b, α, b, t ∈ R. The Caputo fractional derivative is given by

c
bD

α
t f(t)

1

Γ(n− α)

∫ t

b

fn(ξ)

(t− ξ)α+1−n
dξ, n− 1 < α, n ∈ N. (1)

Definition 2. (Linearity property [37]). Let f(t), g(t) : [0, b] → R be such that c
bD

α
t f(t) and

c
bD

α
t g(t)

exist almost everywhere and let c1, c2 ∈ R. Then, c
bD

α
t (c1f(t)) +

c
b D

α
t (c2g(t)) exists everywhere, and

c
bD

α
t (c1f(t) + c2g(t)) = c1

c
bD

α
t f(t) + c2

c
bD

α
t g(t). (2)

Definition 3. (Caputo derivative of a constant [32]). The fractional derivative for a constant
function f(t) = a is zero, that is,

c
bD

α
t a = 0. (3)

Let us consider the following general type of fractional differential equations involving Caputo
derivative:

c
bD

α
t x(t) = f(t, x(t)), α ∈ (0, 1), (4)

with initial condition x0 = x(b).

Theorem 1.1. (Uniform Asymptotic Stability [37, 38]). Let x∗ be an equilibrium point for the non-
autonomous fractional order system (4) and Ω ⊂ Rn be a domain containing x∗. Let L : [0,∞)×Ω →
R be a continuously differentiable function such that

M1(x) ≤ N (t, x(t)) ≤ M2(x)
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and

c
0D

α
t N (t, x(t)) ≤ M3(x),

for all α ∈ (0, 1) and all x ∈ Ω, where M1(x), M2(x) and M3(x) are continuous positive definite
functions on Ω. Then the equilibrium point of system (4) is uniformly asymptotically stable.

2 Materials and Methods

2.1 Model formulation and analytical results

The total animal population N(t) at time t is subdivided into compartments of: susceptible S(t),
vaccinated H(t), exposed E(t), clinically infected I(t), and chronic carrier state L(t). Thus,
N(t) = S(t) + H(t) + E(t) + I(t) + L(t): Susceptible animals are exposed to the disease through
direct contact with exposed, clinically infected and chronic animals. Although, brucellosis can be
transmitted indirectly through environment, prior studies [20, 21] suggest that form of transmission
plays a relatively small role on the spread of brucellosis, and as such we have ignored this concern
in our study.

Here, brucellosis transmission rate is being modeled by the mass action incidence since it is appropriate
when N(t) is not too large [22]. We assume that the transmission rate is dependent on the size of
the population which implies that the contact rate is an increasing function of the population. The
mass action incidence is density- dependent since contact rate per infective is proportional to the
density of the infectious host.

The model flow chart and corresponding fractional-order equations for brucellosis dynamics are
given below:

Fig. 1. The model flow chart of brucellosis transmission

c
bD

α
t S(t) = Λα − βα(E(t) + I(t) + L(t))S(t) + καH(t)− (µα + τα)S(t),

c
bD

α
t H(t) = ταS(t)− γαβα(E(t) + I(t) + L)H(t)− (κα + µα)H(t),

c
bD

α
t E(t) = βα(E(t) + I(t) + L(t))(S(t) + γαH(t))− (µα + σα)E(t),

c
bD

α
t I(t) = σαE(t)− (µα + θα + dα + cα)I(t),

c
bD

α
t L(t) = θαI(t)− (µα + dα)L(t),

 (5)

where c
bD

α
t denotes the Caputo-fractional calculus and α with 0 < α ≤ 1 is fractional order.
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Furthermore the death rate is denoted by µ, the parameter Λ is the recruitment rate, d is the
disease-related death rate, τ is the vaccination rate, κ is the immunity waning rate. The mass
action incidence is given by βS(t)(E(t)+ I(t)+L(t)), and βH(t)(E(t)+ I(t)+L(t)) where β is the
disease direct transmission rate such that βN is the number of adequate contact required for the
transmission of brucellosis, γ is the modification factor, σ is the incubation rate, c is the culling
rate of symptomatic infectious animals, and θ is the rate of progression to chronic state. All model
parameter and variables are considered to be positive.

2.1.1 The basic reproduction number and existence of equilibria

In this section, we study the basic reproduction number and the existence of a disease-free equilibrium
and an endemic equilibrium of system (5). System (5) always has a disease-free equilibrium

E0 = (S0, H0, E0, I0, L0) = (S0, H0, 0, 0, 0), with S0 = Λα(κα+µα)
µα(µα+κα+τα)

, H0 = Λατα

µα(µα+κα+τα)
, and

S0 + γαH0 = Λα(µα+κα+γατα)
µα(µα+κα+τα)

. By means of the method of the next generation matrix (see, for

example, van den Driessche and Watmough [39] , one obtains the basic reproduction number of
system (5) as follows:

R0 = RE +RI +RL

=
βα(S0 + γαH0)

(µα + σα)
+

βασα(S0 + γαH0)

(µα + σα)(µα + θα + dα + cα)

+
βασαθα(S0 + γαH0)

(µα + σα)(µα + θα + dα + cα)(µα + dα)
(6)

R0 is the average number of secondary transmissions by a single infectious individual in a fully
susceptible population,

where

• RE =
βα(S0 + γαH0)

(µα + σα)
, accounts for the average number of new infections generated by

exposed animals;

• RI =
βασα(S0 + γαH0)

(µα + σα)(µα + θα + dα + cα)
, gives the number of new infections generated by

infectious animals; and;

• RL =
βασαθα(S0 + γαH0)

(µα + σα)(µα + θα + dα + cα)(µα + dα)
, measures the average number of secondary

brucellosis infections generated by chronically infected animals.

In addition to the disease-free equilibrium E0, system (5) has a unique endemic equilibrium E∗ =
(S∗, H∗, E∗, I∗, L∗), where from the last two equations in (5) we have,

I
∗

=
σαE∗

(µα + θα + dα + cα)
, L

∗
=

θασαE∗

(µα + θα + dα + cα)(µα + dα)
, and (E

∗
+ I

∗
+ L

∗
) = ME

∗
.(7)

with

M =
(µα + dα)(µα + θα + dα + cα) + σα(µα + θα + dα)

(µα + dα)(µα + θα + dα + cα)
(8)

the first two equations in (5) lead to

S∗ =
Λα(µα + κα + γαβαME∗)

(µα + τα + βαME∗)(µα + κα + γαβαME∗)− κατα
, and

H∗ =
Λατα

(µα + τα + βαME∗)(µα + κα + γαβαME∗)− κατα
, (9)
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for E∗ ̸= 0, substituting the third equation in (7) into the third equation in (5) yields,

(S∗ + γαH∗) =
(σα + µα)

βαM
. (10)

Substituting (9) into (10) gives:

F (E∗) =
Λα(µα + κα + γαβαME∗) + γαΛατα

(µα + τα + βαME∗)(µα + κα + γαβαME∗)− κατα
− (σα + µα)

βαM
. (11)

Direct calculation for E∗ ≥ 0 shows:

c
bD

α
t F (E∗) = −ΛαMβα[(γαΛαβαE∗)2 + 2(γαΛαβαE∗)(µα + κα + γατα) + a]

[(µα + τα + βαME∗)(µα + κα + γαβαME∗)− κατα]2
< 0. (12)

Where

a = (µα)2 + 2µακα + (κα)2 + 2γακατα + 2γαµατα + (γατα)2, (13)

then the function F (E∗) is monotonic decreasing for E∗ > 0, then we can define the function

F (0) =
Λα(µα + κα + γατα)

µα(µα + κα + τα)
− (σα + µα)

βαM
=

(σα + µα)

βαM
(R0 − 1). (14)

Therefore, by monotonicity of a function F (E∗) there exists a unique positive root in the interval
(0, 1) when R0 > 1 and there is no positive root in the interval (0, 1) when R0 < 1. Thus model
(5) has a unique endemic equilibrium E∗ = (S∗, H∗, E∗, I∗, L∗).

2.1.2 Global stability

In this section, we are concern with the global stability of the disease-free equilibrium E0 and the
endemic equilibrium E∗ of system (5).

Theorem 2.1. If R0 ≤ 1, then the disease-free equilibrium E0 is globally asymptotically stable.

Proof. Consider the following Lyapunov function:

V(t) =

(
βα

(σα + µα)
+

βασα(µα + θα + dα)

(σα + µα)(µα + dα)(µα + θα + dα + cα)

)
E(t) (15)

+

(
βα(µα + dα + σαθα)

(µα + dα)(µα + θα + dα + cα)

)
I(t) +

βα

(µα + dα)
L(t).

Then the fractional time derivative of V(t) along the solutions of model (5) yields :

c
bD

α
t V(t) =

(
βα

(σα + µα)
+

βασα(µα + θα + dα)

(σα + µα)(µα + dα)(µα + θα + dα + cα)

)
c
bD

α
t E(t) (16)

+

(
βα(µα + dα + σαθα)

(µα + dα)(µα + θα + dα + cα)

)
c
bD

α
t I(t) +

βα

(µα + dα)
c
bD

α
t L(t).

= βα

[(
βα

(σα + µα)
+

βασα(µα + θα + dα)

(σα + µα)(µα + dα)(µα + θα + dα + cα)

)(
S(t) + γαH(t)

)
− 1

]

×

[
E(t) + I(t) + L(t)

]
. (17)
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Since S(t) ≤ S0,H(t) ≤ H0,
(
S0 + γαH0 = Λα(µα+κα+γατα)

µα(µα+κα+τα)

)
for t ≥ 0 we have:

c
bD

α
t V(t) ≤ β

α

[(
βα

(σα + µα)
+

βασα(µα + θα + dα)

(σα + µα)(µα + dα)(µα + θα + dα + cα)

)(
Λα(µα + κα + γατα)

µα(µα + κα + τα)

)
− 1

]

×
[
E(t) + I(t) + L(t)

]
.

= β
α

[
R0 − 1

][
E(t) + I(t) + L(t)

]
(18)

Therefore, c
bD

α
t V(t) < 0 holds if R0 < 1. Furthermore, c

bD
α
t V(t) = 0 if R0 = 1. Thus, the largest

invariant set of c
bD

α
t V(t) is a singleton such that S(t) = S0, H(t) = H0, E(t) = I(t) = L(t) = 0.

Therefore, from the LaSalle’s invariance principle [40] the disease-free equilibrium of model (5)
denoted by E0 is globally asymptotically stable whenever R0 ≤ 1. This completes the proof.

Next, we investigate the global stability of the endemic equilibrium point E∗ of model (5) when
R0 > 1.

Theorem 2.2. If R0 > 1, then model (5) has a globally asymptotically stable endemic equilibrium
point.

Proof. In order to analyze the global asymptotic stability of the endemic equilibrium of model (5)
we set:

x =
S

S∗ , y =
H

H∗ , z =
E

E∗ , u =
I

I∗
, and v =

L

L∗ .

Thus, model (5) is transformed into the following form:

c
bD

α
t x(t) = x

{
Λα

S∗

{
1

x
− 1

}
− βαE∗(z − 1)− βαI∗(u− 1)− βαL∗(v − 1)

}

+x

{
καH∗

S∗

{ y

x
− 1
}}

,

c
bD

α
t y(t) = y

{
ταS∗

H∗

{
x

y
− 1

}
− γαβαE∗(z − 1)− γαβαI∗(u− 1)− γαβαL∗(v − 1)

}
,

c
bD

α
t z(t) = z

{
βαS∗I∗

E∗

{xu
z

− 1
}
+

βαγαH∗I∗

E∗

{yu
z

− 1
}
+

βαS∗L∗

E∗

{xv
z

− 1
}}

+z

{
γαβαH∗L∗

E∗

{yv
z

− 1
}
+ βαS∗ {x− 1}+ βαγαH∗ {y − 1}

}
,

c
bD

α
t u(t) = u

{
σαE∗

I∗

{ z

u
− 1
}}

,

c
bD

α
t v(t) = v

{
θαI∗

L∗

{u
v
− 1
}}

.


(19)

It can easily be verified that model (19) has a unique endemic equilibrium E∗(1, 1, 1, 1, 1), and that
the global stability of E∗ is the same as that of model (5).
Consider the Lyapunov function

W = S∗
(
x− 1− lnx

)
+H∗

(
y − 1− ln y

)
+E∗

(
z − 1− ln z

)
+
βα(S∗ + γαH∗)(I∗ + L∗)

σαE∗ I∗
(
u− 1− lnu

)
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+
βα(S∗ + γαH∗)L∗

θαI∗
L∗
(
v − 1− ln v

)
. (20)

Differentiating W with respect to t along solutions of (19) yields:

c
bD

α
t W(t) = (x − 1)

{
Λα

{
1

x
− 1

}
− βαE∗S∗(z − 1) − βαI∗S∗(u − 1) − βαL∗S∗(v − 1)

}

+(x − 1)

{
καH∗S∗

{
y

x
− 1

}}

+(y − 1)

{
ταS∗

{
x

y
− 1

}
− γαβαE∗H∗(z − 1) − γαβαI∗H∗(u − 1) − γαβαL∗H∗(v − 1)

}

+(z − 1)

{
βαS∗I∗

{
xu

z
− 1

}
+ βαγαH∗I∗

{
yu

z
− 1

}
+ βαS∗L∗

{
xv

z
− 1

}}

+(z − 1)

{
γαβαH∗L∗

{
yv

z
− 1

}
+ βαS∗E∗ {x − 1} + βαγαH∗E∗ {y − 1}

}

+
βα(S∗ + γαH∗)(I∗ + L∗)

σαE∗
(u − 1)

{
σ
α
E

∗
{

z

u
− 1

}}

+
βα(S∗ + γαH∗)L∗

θαI∗
(v − 1)

{
θ
α
I
∗
{

u

v
− 1

}}
= F (x, y, z, u, v).


(21)

At endemic equilibrium point E∗, we have the following identities:

(µα + τα) =
Λα

S∗ − βα(E∗ + I∗ + L∗) +
καH∗

S∗

(µα + κα) =
ταS∗

H∗ − γαθαβα(E∗ + I∗ + L∗),

(µα + σα) = βα(S∗ + γαH∗) + βα(S∗ + γαH∗)
I∗

E∗ + βα(S∗ + γαH∗)
L∗

E∗ ,

(µα + θα + dα + cα) =
σαE∗

I∗
,

(µα + dα) =
θαI∗

L∗ .

(22)
After some algebraic manipulations and simplifications, we have

c
bD

α
t W(t) = (µα + βαE∗)S∗

{
2− x− 1

x

}
+ καH∗

{
2− y

x
− x

y

}
+(γαβαE∗ + µα)H∗

{
3− 1

x
− y − x

y

}
+ βαI∗S∗

{
3− 1

x
− z

u
− xu

z

}
+βαS∗L∗

{
4− 1

x
− z

u
− u

v
− xv

z

}
+ βαγαH∗I∗

{
4− 1

x
− x

y
− z

u
− yu

z

}
+βαγαH∗L∗

{
5− 1

x
− x

y
− yv

z
− z

u
− u

v

}
= F (x, y, z, u, v). (23)

Since the arithmetic mean is greater or equal to the geometric mean, i.e c
bD

α
t W(t) = F (x, y, z, u, v) ≤

0, it can easily be verified that c
bD

α
t W(t) ≤ 0 provided that S∗, H∗, E∗, I∗, L∗ are positive, where

the equality c
bD

α
t W(t) = 0 holds only for x = y = z = u = v = 1. Therefore c

bD
α
t W(t) ≤ 0 holds.

Then the endemic equilibrium point E∗ is globally asymptotically stable if R0 > 1 by LaSalle’s
invariance principle [40].

3 Numerical Simulations and Discussion

In this section, we utilize the MATLAB programming language to numerically solve the model
system (5) and assess the behavior of solution for fractional-order derivatives. We perform the
fractional Adam-Bashforth-Moulton scheme to simulate the model (5) as illustrated below;
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Consider the nonlinear differential equation:

c
bD

α
t Φ(t) = f(t,Φ(t)), 0 ≤ t ≤ T, (24)

with the following initial conditions:

Φp(t) = Φp
0, p = 0, 1, 2, ...[α]− 1. (25)

Now, with operating by the fractional integral operator on the equation (24), we can obtain on the
solution Φ(t) by solving the following equation:

Φ(t) =

|α|−1∑
p=0

Φp

p!
tp +

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ,Φ(τ))dτ. (26)

Diethelm [44] applied the predictor-corrector scheme based on the Adam-Bashforth-Moulton algorithm
to establish the solution for equation (24). Setting h = T

N
, tn = nh and n = 0, 1, 2, ..., N ∈ Z+.

Therefore we discretized equation (24) as follows:

Φh(tn+1) =

|α|−1∑
p=0

Φp
0

p!
tpn+1 +

hα

Γ(α+ 2)

n∑
m=0

am,n+1f(tm,Φm) +
hα

Γ(α+ 2)
f(tn+1,Φ

v
n+1) (27)

where

am,n+1 =


nα+1 − (n− α)(n+ α)α, m = 0,
(n−m+ 2)α+1 + (n−m)α+1 − 2(n−m+ 1)α+1, 1 ≤ m ≤ n,
1, if m = n+ 1,

and the predicted value Φv
h(tn+1) is determined by

Φv
h(tn+1) =

|α|−1∑
p=0

Φp
0

p!
tpn+1 +

1

Γ(α)

n∑
m=0

bm,n+1f(tm,Φh(tm)), (28)

where

bm,n+1 =
hα

α
((n+ 1−m)α − (n−m)α. (29)

The error estimate is

max
0≤m≤k

|Φ(tm)− Φh(tm)| = O(hv), (30)

with k ∈ N and v = min(2, 1 + α).

3.1 Application of Adam-Bashforth-Moulton Scheme to the proposed
model

In this section, we solved numerically the nonlinear fractional-order model (5) by Adam-Bashforth-
Moulton method. In the view to the generalized Adam-Bashforth-Moulton method, the proposed
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scheme for the model system (5) has the following form:

S(tn+1) = S0 +
hα

Γ(α+ 2)
fS
(
tn+1, S

v(tn+1), H
v(tn+1), E

v(tn+1), I
v(tn+1),

Lp(tn+1)
)
+ hα

Γ(α+2)

∑n
m=0 am,n+1fS

(
tm, S(tm), H(tm), E(tm), I(tm),

L(tm)
)
,

H(tn+1) = H0 +
hα

Γ(α+ 2)
fH
(
tn+1, S

v(tn+1), H
v(tn+1), E

v(tn+1), I
v(tn+1),

L(tm)
)
+ hα

Γ(α+2)

∑n
m=0 am,n+1fH

(
tm, S(tm), H(tm), E(tm), I(tm),

L(tm)
)
,

E(tn+1) = E0 +
hα

Γ(α+ 2)
fE
(
tn+1, S

v(tn+1), H
v(tn+1), E

v(tn+1), I
v(tn+1),

L(tm)
)
+ hα

Γ(α+2)

∑n
m=0 am,n+1fE

(
tm, S(tm),H(tm), E(tm), I(tm),

L(tm)
)
,


I(tn+1) = I0 +

hα

Γ(α+ 2)
fI
(
tn+1, S

v(tn+1), H
v(tn+1), E

v(tn+1), I
v(tn+1),

L(tm)
)
+ hα

Γ(α+2)

∑n
m=0 am,n+1fI

(
tm, S(tm),H(tm), E(tm), I(tm),

(tm)
)
,

L(tn+1) = L0 +
hα

Γ(α+ 2)
fL
(
tn+1, S

v(tn+1), H
v(tn+1), E

v(tn+1), I
v(tn+1),

L(tm)
)
+ hα

Γ(α+2)

∑n
m=0 am,n+1fL

(
tm, S(tm), H(tm), E(tm), I(tm),

(tm)
)
,


(31)

where

Sv(tn+1) = S0 +
1

Γα

n∑
m=0

bm,n+1fS(tm, S(tm), H(tm), E(tm), I(tm), L(tm),

Hv(tn+1) = H0 +
1

Γα

n∑
m=0

bm,n+1fH(tm, S(tm), H(tm), E(tm), I(tm), L(tm),

Ev(tn+1) = E0 +
1

Γα

n∑
m=0

bm,n+1fE(tm, S(tm), H(tm), E(tm), I(tm), L(tm),

Iv(tn+1) = I0 +
1

Γα

n∑
m=0

bm,n+1fI(tm, S(tm), H(tm), E(tm), I(tm), L(tm),

Lv(tn+1) = L0 +
1

Γα

n∑
m=0

bm,n+1fL(tm, S(tm), H(tm), E(tm), I(tm), L(tm).



(32)

Further we have:
c
bD

α
t S(t) = fS(tm, S(tm),H(tm), E(tm), I(tm), L(tm)),

c
bD

α
t H(t) = fH(tm, S(tm), H(tm), E(tm), I(tm), L(tm)),

c
bD

α
t E(t) = fE(tm, S(tm), H(tm), E(tm), I(tm), L(tm)),

c
bD

α
t I(t) = fI(tm, S(tm), H(tm), E(tm), I(tm), L(tm)),

c
bD

α
t L(t) = fL(tm, S(tm), H(tm), E(tm), I(tm), L(tm)),

 (33)

Additionally, the quantities

fS(tn+1, S
v(tn+1), H

v(tn+1), E
v(tn+1), I

v(tn+1), L
v(tn+1)),

fH(tn+1, S
v(tn+1), H

v(tn+1), E
v(tn+1), I

v(tn+1), L
v(tn+1)),

fE(tn+1, S
v(tn+1), H

v(tn+1), E
v(tn+1), I

v(tn+1), L
v(tn+1)),

fI(tn+1, S
v(tn+1), H

v(tn+1), E
v(tn+1), I

v(tn+1), L
v(tn+1)),

fL(tn+1, S
v(tn+1), H

v(tn+1), E
v(tn+1), I

v(tn+1), L
v(tn+1)),

 (34)

are the derivatives from system (33) at the points tn+1, n = 1, 2, 3...p.
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3.2 Parameter Estimation and model validation using real data

In this section, we utilize the real data of brucellosis cases from Egypt as reported in [41] and
estimate the parameters (d, β, θ) that minimize the deviation of real data from prediction of model
system (5). Fitting the model using real data and parameter estimation in the fractional order
models is an integral part in the disease modeling. Therefore, we utilize both the least squares
and Nelder mead algorithm methods as in [43] to fit and estimate the parameters (d, β, θ) of the
model (5). The real data used in this study are yearly reported cases as shown in Table (1), and we
obtained the commutative new infections predicted by model system (5) by using equation (35):)

c
bD

q
tC(t) = βα(E(t) + I(t) + L(t))(S(t) + γαH(t)) (35)

We use the following function to compute the best fitting:

F : R3
(d,β,θ) → R(d,β,θ) (36)

where d, β, θ are variables such that:
(1) For a given (d, β, θ), we solve the model (5) numerically to obtain a solution Ŷi(t) =

(Ŝ, Ĥ, Ê, Î, L̂ which is an approximation of the reported brucellosis cases Y (t). (2) Set t0 = 1 (the
fitting process starts in year 1) and for t = 2, 3, ..., 13, corresponding to years in where data are
available, evaluate the computed numerical solution for I(t); that is., Î(1), Î(2), Î(3),....., Î(13).
(3) Compute the root mean square (RMSE) of the difference between Î(1), Îh(2), ...., Î(13) and real
data. This function F returns the root-mean-square error (RMSE) where

RMSE =

√√√√ 1

n

13∑
k=1

(I(k)− Î(k))2, (37)

(4) Determine a global minimum for the RMSE using Nelder-Mead algorithm. The function F
takes values in R3 and returns a positive real number. Using the formula (37), we computed the
RMSE that measures the closeness of the model prediction to the real data and was found to be
0.1186. This shows that the proposed model has a good fit to the reported cases. On performing
the fitting process we set the following initial conditions S(0) = 25000, H(0) = 10, 000, E(0) = 100,
I(0) = 1000, L(0) = 20 and the model parameters are in Table (2).

Table 1. Shows prevalence of Sheep brucellosis in Egypt from January 1999 through
December 2011 based on reports from the General Organization of Veterinary

Services in [41]

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Cases 1, 437 1, 303 1, 967 1, 111 1, 755 1, 081 1, 203 905 924 968 3, 095

Year 2010 2011

Cases 525 292

Fig. 2 shows commutative detected cases of brucellosis as reported in Egypt. We used the 13 yearly
reports cases to fit in the model system (5). The prediction ability between fractional order model
and the classical model is investigated. Overall we observed that the estimates for the fractional
order model are close to the real data for the entire period of 13 years compared to the estimates
of the classical integer model. Therefore we conclude that the fractional order model has better
forecasts compared to the classical integer model.

Fig.3 shows the graphical representation of residuals for the model system (5) of brucellosis cases
reported in [41]. Overall, one can note that the residuals did not follow any particular path
(exhibited random pattern) which shows that the model (5) present better forecasts to the reported
real data in [41].
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Fig. 2. The model system (5) fitted to brucellosis cases from Egypt as reported in
[41] at α = 0.826. The red circles denote the real data and the smooth line denotes the

model prediction to the real data

Fig. 3. The model system (5) shows the residuals against the time series for
brucellosis cases from Egypt as reported in [41]

3.3 Sensitivity analysis of the reproduction number

In this section we perform the sensitivity analysis and investigate what happens to some dependent
variables when either one or more of its independent variables are altered. To identify the parameters
that are strongly correlated positively or negatively to R0, we conducted global sensitivity analysis
of the model system (5) using partial rank correlated coefficient developed in [42] and the values of
the parameters used in the model simulations are in table (2).

Definition 4. (See, [42]) The normalized sensitivity index of R0 which depends on differentiably
of parameter, ζ is defined as follows:

ΦR0
ζ =

∂R0

∂ζ
× ζ

R0
(38)
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The implication of the sensitivity analysis is that the model parameters whose sensitivity index is
positive increase the magnitude of R0 whenever they are increased and those with a negative index
decrease the R0 whenever they are increased. From (38), the value of normalized sensitivity index
for each parameter used in the model (5) is summarized in table (3):

Table 2. Definition of Parameters and values

Symbol Definition Value Units Source

Λ Recruitment rate 11,629,200 year−1 [21]
µ Natural elimination rate 0.25 year−1 [21]
κ Vaccination waning rate 0.4 year−1 [21]
γ Modification factor 0.18 unite-less [21]
τ Vaccination rate 0.316 year−1 [21]
σ Incubation rate 3.4 year−1 [21]
c Culling rate 0.15 year−1 [21]
d Disease mortality rate − year−1 fitted
β Sheep -to-sheep transmission rate − year−1 fitted
θ Rate of progression to chronic state − year−1 fitted

Table 3. Sensitivity analysis of parameters for the model system (5)

Parameter Λ µ κ γ τ σ c

Index +1.0000 -1.0000 +0.2955 +0.2565 -0.2955 -0.4200 −0.4942
Parameter d β θ

Index -0.5351 +1.0000 +0.4493

Fig. 4. Sensitivity analysis of the model system (5)

From the results in Fig. 4, model parameters with positively partial rank correlation coefficient
to R0, that is., whenever they are increased R0 increases and those with negatively correlated to
R0, whenever they increased R0 decreases. Overall, we can note that parameters Λ, κ, γ and θ
have high influence on the magnitude of R0. For example, an increase in Λ by 20% will lead to an
increase in the magnitude of R0 by 20%. On the other-hand, parameters µ, τ, σ, c, and d whenever
they increase the magnitude of R0 decreases. Therefore, to reduce the spread of brucellosis in
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animal population the policy markers should target the mitigation that increase the parameters
with negative and decrease the parameters with positively correlated to R0. In particular, one can
note that increasing the vaccination rate (modeled by parameter, τ) and culling rate (modeled by
parameter, c) will reduce the spread of brucellosis in animal population.

(a) (b)
Fig. 5. Effects of varying (a) culling rate c on R0 (b) vaccination rate τ on R0

Numerical results in Fig. 5(a). and culling rate (modeled by parameter c) on R0. From the results
we observed that increasing the culling rate on infected sheep decrease the magnitude of R0. We
observed that, whenever c is greater than 0.4 the disease dies in the population. Fig. 5 (b), we
investigated the effect of vaccination rate modeled by parameter τ on R0. We noted that whenever
τ is greater than 0.5 the disease dies in the community. Numerical results in Fig. 6 (a) we assessed

(a) (b)
Fig. 6. Effects of varying (a) vaccination waning rate (modeled by parameter κ) on

R0 (b) rate of progression to chronic stage (modeled by parameter θ) on R0

the effects of vaccination waning rate modeled by parameter κ on R0. From the results we noted
that increasing the vaccination waning rate of vaccinated sheep increases the magnitude of R0.
In particular, whenever κ is greater than 0.5 the disease persists in the population. Fig. 6 (b),
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we investigated the effects of rate of progression to chronic stage modeled by parameter θ on R0.
We observed that whenever the θ is greater than 0.5 the disease persists in the community. Fig.

Fig. 7. Contour plot of R0 as the function of culling rate c and vaccination rate τ .
We simulated the model (5) at θ = 0.015, d = 0.00055,and β = 8.444× 10−6

(7) shows the contour plot of R0 as the function of culling rate c and vaccination rate τ . The
results showed that, increase of culling rate on asymptomatic sheep the value of R0 decreases. In
particular, we noted that whenever the culling rate is greater than 0.4 the disease dies out in the
population.

Fig. 8. Contour plot of R0 as the function of culling rate c and modification factor on
the disease transmission modeled by parameter γ. We simulated the model (5) at

θ = 0.015, d = 0.00055,and β = 8.444× 10−6

Fig. (8) shows the contour plot of R0 as the function of culling rate c and modification factor on
the disease transmission modeled by parameter γ. Overall, we observed that increase of culling rate
and modification factor decrease the magnitude of R0. One can note that whenever the culling rate
is greater than 4% the magnitude of R0 is less than unity.

Fig. (9) shows the mesh plot of R0 as a function of culling rate (modeled by parameter c)
and vaccination rate (modeled by parameter τ). Overall, we noted that increase on culling and
vaccination rate decreases the magnitude of R0. Therefore, we can conclude that both culling and
vaccination rate have the potential to minimize the spread of disease in the population.
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Fig. 9. Mesh plot of R0 as the function of culling rate c and vaccination rate τ . We
simulated the model (5) at θ = 0.015, d = 0.00055,and β = 8.444× 10−6

3.4 Simulation of the model to support the analytical results

In this section, we solve the model system (5) numerically at α ∈ (0, 1] to support the analytical
results. We first perform the numerical results at R0 < 1, followed by simulation at R0 > 1 to show
the behavior of dynamical solution of the model (5).

Fig. 10. Dynamical solutions of model system (5) at R0 < 1 with different order
derivatives, α = 0.6, 0.7, 0.8, 1, leading to R0 ∈ [0.0142, 1).
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Numerical simulation in Fig. (10) shows the convergence of model solutions to the disease-free
equilibrium with different fractional order derivatives. The solution were obtained upon setting
d = 1.5 × 10−6, β = 8.944 × 10−9, and θ = 1.5 × 10−5, giving R0 ∈ [0.0142, 1). Overall, we
observed that as the order of derivatives decrease from unity the value of the reproduction number
R0 decreases close to 0 and the time taken by the solution to converge to the disease-free equilibrium
decreases.

Fig. 11. Dynamical solutions of model system (5) at R0 > 1 with different order
derivatives, α = 0.6, 0.7, 0.8, 1, leading to R0 ∈ (1, 9.6235].

Numerical simulation in Fig. (11) shows the convergence of model solutions to the endemic
equilibrium with different fractional order derivatives. The solutions were obtained upon setting
d = 0.015, β = 8.944× 10−6, and θ = 1.5× 10−4, giving R0 ∈ (1, 9.6235]. Overall, we observed that
whenever the derivative order α approaches 1, the value of the reproduction number R0 increases
and the memories of biological species decreases as a result the number of infections increase over
time. Additionally, one can note that as the order of derivatives decrease from 1 the time taken by
the solution to attain its stability decreases.

4 Concluding Remarks

Brucellosis is one of the zoonotic diseases caused by bacteria belonging to the genus Brucella. This
bacteria can cause infections to both wild and domestic animals such as cattle, goats, sheep, dogs,
wild hogs and etc. Recently, mathematical modeling of infectious disease using fractional order
derivatives are suggested in the literature [32, 37, 38]. It is worth noting that fractional order
models can properly capture the memory effects and hereditary properties of biological systems.
Therefore, in this study we analyzed the Caputo derivative non-integer order Brucellosis model.
We quantitatively studied the model and provided its analysis in details. We investigated the global
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stability of both disease-free and endemic equilibrium points of non-integer Brucellosis model using
well constructed Lyapunov functions. We found that the disease free and endemic equilibrium point
is global stable whenever R0 < 1 and R0 > 1 respectively. In numerical simulations, first of all
we qualitatively performed global sensitivity analysis of the model and expressed the relationship
between R0 and the model parameters. Overall, we noted that for the disease management increase
in magnitude of the parameters with negative correlation coefficients would significantly reduce the
spread of Brucellosis disease in the population.

Extensive investigation of the relationship between R0 and control strategies namely; culling rate
(modeled by parameter c) and vaccination rate (modeled by parameter τ) have been investigated.
The results revealed that both culling and vaccination rate have the nonlinear relationship with R0.
In particular, we noted that whenever the culling and vaccination rate is greater than 40% and 50%
respectively, the disease dies out in the population. Parameter estimation was carried out using the
nonlinear least square method which produced best fitted values of d, β and θ. Model validation was
carried out using the estimated parameters and the results was compared with both classical integer
and fractional order model. Overall, we noted that fractional order model gave better prediction of
Brucellosis disease compared to integer order derivative. Furthermore, we investigated the role of
memory effects on the transmission dynamics of the Brucellosis by varying the order of derivatives
α. We observed that the memory of biological species have influence on the dynamics of Brucellosis
disease transmission. In particular, one can note that as the order of derivatives decrease from
1, the number of infections generated in the population decrease and thus the disease dies in the
community.
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