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Abstract 
 

In this paper, we have proved that the probability density function ( )f t  considered as a distribution has a 

Cauchy representation in ' .O
  The distribution space 'O

  is intermediate space between 'E  and 'D . 

 
 

Keywords: Space D’, Space 'O
 , Space p

L
D , Cauchy representation, random variable, discrete random 

variable, probability density, analytic representation, support, spectrum. 
 

1. Introduction 
 

The space D , is the space of all functions   that are infinitely continuously differentiable and that vanish outside 

some bounded set [1-3]. 
 

The space of distributions D’ is the space of all linear functionals on D that are continuous in the following 

sense: A functional 'T D  is called continuous in the sense of D  if and only if the following condition is 
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satisfied: If  j
  is a sequence of functions in D such that the support of every j

  is contained in a fixed 

compact set K, and if  
p

j
D   converges uniformly on K for every fixed p , then  

 

lim , , lim
j j

j j

T T 
   

  

 

The sequence  j
  of functions ( )

n

j
C


  converges to ( )

n
C


 , at j   , if for each 

multindex  , the sequence  ( )
t j

D t

  converges to ( )

t
D t


 uniformly on any compact subset of 

n
, at 

j   . 

 

The space ( )
n

C
  with this convergence we will denote  

n
E E  . 

 

The set of all linear, continuous functions of E  is a set of distributions of  E and we denote by E  .              

 

The space D  is dense in E - for each E   there is a sequence of functions in D which converges to  in E .  

'E  is dense in 'D  
 

,1p
L

D p    is the space of infinitely differentiable functions   such that p
D L


   for any multi-index 

  of non-negative integers. 

 

The topology p
L

D  is given by the norm. 

 

 

1

,
( ) , , 0 ,1, 2 , 3, ...

n

p
p

m p
x d x m m


  

 
   
 
 
  

 

The sequence  j
  of 

p
L

D  converges to the function  , in ,1p
L

D p   at j   , if each 

,p pj L L
D D   , and  

 

       

1

lim lim ( ) ( ) 0
p

n

p
p

j j
j jL

x x d x
   

   
   

 
    

 
 
  

 

for each multi-index  . 

 

D  is dense in ,1p
L

D p   . ' ,1p
L

D p    is the space of linear, continuous functional of
q

L
D  where 

1 1
1

p q
  . 

 

Space ' p
L

D  is subspace of ' .D  

 

Theorem [4, p.47].  Let ( )f t  be a  
m

C -function. Let, for 
 

 0 , ( )
k

k m f t O t


    for some  less 

than zero. Let f  be the function 
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1 ( )
( )

2

f t
f z d t

i t z








  

 

Then  

 

0

lim ( ) ( ) ( )f x i f x i f x


 




    
 

  for all x . 

 

Let ( ')T E  we call 

 

1 1
( ) ,

2
t

T z T
i t z

 
  

 

  (1) 

 

the analytic representation of T  by means of Cauchy kernel, or Cauchy representation. 

 

The condition ( ')T E  is sufficient, but not necessary, for the Cauchy integral of T 

 

1 1
( ) ,

2
t

T z T
i t z

 
  

 

 

 

to exist. If we consider  

 

1 ( )
( )

2

f t
T z d t

i t z








  

 

where f is a continuous function with  ( )f t O t


 for some 0  as t   ; then ( )T z exists although 

( )T f t is not an element of 'E . Also ( )T z does not exist for all 'T D since the function 
 

1

t z
is not a 

test function in D . 

 

However, for every 'T D its analytic representation exists i.e., there exists a function ( )f z , analytic in the z-

plane except on K, where K is the support of T , such that, [4]  

 

 
0

lim ( ) ( ) ( ) ,f x i f x i x d x T


   







     for all D  . 

 

The dual space 'D  is too large for the study of the Cauchy integral ( )T z of a distribution T, and the dual space 

'E  is too small. In order to extend the class of distributions which are representable by the Cauchy integral, 

[4,5,6] has introduced the distribution space 'O


 which are intermediate space between 'E  and 'D . 

 

Let O


be the space of all  C


functions ( )t  on 
n

E  such that  ( )t O t


  and  ( )
k

D t O t


 

for all k . Convergence is defined as follows: A sequence  j
  is said to be convergent in O


 if and only if the 
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sequence  j
 converges uniformly on every compact subset of 

n
E  in any order and if there exists for each k a 

constant 
k

C , independent of j, such that 

 

( )
k

j k
D t C t



   for all t . 

 

The space 'O


 is the space of all continuous linear functionals on O


. 

 

For every ' , 1T O

   the Cauchy integral  

 

1 1
( ) ,

2
t

T z T
i t z

 
  

 

 

 

is well defined for  : Im ( ) 0z z z    ; in fact, we know that ( )T z  is an analytic function of z in 

 \ supp T . The analytic representation of elements ' , 1T O

   in terms of the Cauchy integral is 

given by theorem. 

 

Theorem [7]. If ' , 1T O

   then 

 

0

lim ( ) ( ) ( ) ,T x i T x i x d x T


   







    
   

 

and 

 

0

lim ( ) ( ) ( ) 2 ,T x i T x i x d x T


   







     
   

 

For all ( )D   where ( )t  is the principal value integral 

 

1 ( )
( )

2

x
t d x

i x t













  

 

Also, in the [8] is proved the existence of the Cauchy representation of the distributions in the intermediate 

spaces       ' ' , 1
p

n n

L
D R E R p    . 

 

Theorem [8]. Let  ( ) ', (1 )
p

L
f D R p     and ( )F z  be the complex-valued function defined in the 

region  : Im 0z z    by:  

 

1 1
( ) ( ) ,

2
F z f t

i t z



 

 

Then ( )F z  is the Cauchy representation of the generalized function .f  
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Let X be a random variable taking values in the interval ( , )   and let ( )F t  be a probability distribution 

function for the random variable X, i.e., ( )F t  is defined as the probability that X takes the values in the interval 

( , )t .  As it is well known, the function ( )F t satisfies the following properties: 

 

i. 0 ( ) 1F t  ; 

ii. 
lim ( ) 0
t

F t
 


 and 

lim ( ) 1
t

F t
 


; 

iii. 1 2 1 2
( ) ( )  fo rF t F t t t 

. 

 

Let X takes the values 1 2
, , . . .x x  with the probabilities ( )

k k
P X x p   for 1, 2 , ...k  , respectively. A 

random variable defined in this way that receives a countable number of values (consequently, finally many 

values) is called a discrete random variable. 

 

The function ( )

k

k

x t

F t p



  is called a value distribution function or a cumulative function. 

 

From the definition we also get that 

 

( ) ( ) ( )P a X b F b F a     

 

If the function ( )F t is such that '( ) ( )F t f t , except perhaps in a finite number of points, then ( )f t  is called 

the density function or the probability density function for the random variable X and it, also, holds: 

 

( ) ( )

t

F t f x d x



  . 

 

The density function belongs to the  
1

L  space, and satisfies the condition; 

 

( ) 1f x d x





  

Also, ( ) ( )

b

a

P a X b f t d t    . 

If X  is a discrete random variable with a distribution function ( )F t , then ( )f t  does not exist in the ordinary 

sense. However, the probability density defines a generalized function on some space of test functions. For 

example, suppose that it is certain that the random variable x  takes the value 0
x . Then, 

 

0

0

0 fo r  
( )

1 fo r  

t x
F t

t x


 



 

 

Thus, 

 

0
( ) ( )F t H t x   

 

where H is the Heaviside step function. In this case the probability density ( )f t  does not exist in the ordinary 

sense. If, however, we admit generalized functions, then,  
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0 0
( ) ( ) ( )

d
f t H t x t x

d t
     

 

is the Dirac delta function.  

 

As a matter of fact, every probability density ( )f t belongs to a certain space of generalized functions. This fact 

is proved in the following theorem. 

 

Theorem [8]. Every probability density ( )f t  defines a generalized function on the space 

( ), (1 )
p

L
D R p   of test functions.  

 

Corollary [8]. For every probability density ( )f t , the Cauchy representation, as defined in (1), exists. 

 

Discrete case. Suppose a random variable takes values 1 2
, , ,

n
t t t  with probabilities 1

, ...., , 1
n j

j

p p p   . 

Then ( )f t  is a multiple step function and 

 

1

( ) '( ) ( )

n

k k

i

f t F t p t x



    

 

And the Cauchy representation of ( )f t  equals 

  

1

1 1
( )

2

n

k

k k

f t p
i t z 




  

 

The support of ( )f t  is called the spectrum of the random variable. 

 

2. Main Results 
 

We will give an interesting theorem of the Cauchy representation of the density function in 'O


. 

 

Theorem. Let X  be a discrete random variable with sets of values 1 2
, , , ,

k
t t t  and probabilities 

( )
к k

P X t p   for 1, 2 , 3, ...k  . Then the density function ( )f t  considered as a distribution has a Cauchy 

representation in the space 'O


. 

 

Proof: Let ( )F t  be a function of the probability distribution for the random variable X. 

 

As we know, it is a step function. It does not have derivation in the ordinary sense. It has a density function in 

the distributive sense, i.e. 

 

'( ) ( ) ( )
k k

k

F t p t t f t    

 

We will show that ( )f t  has Cauchy representation in the space 'O


. 
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Let D   be an arbitrary function and let  ,supp    . 

 

We consider the integral 

 

( ) ( ) ( )f x iy f x iy x d x





   
  , where 

1

1
( ) ,   

2

n

k

k k

p
f x iy z x iy

i t z 

   


 . 

 

We first consider the integral  

 

 

1

1

1 2

1

1
( ) ( ) ( )

2

1
( ) ( )

2

1

2

k k

n

k

k k

n

k k

k k kx t x t

n

k

p
f x iy x d x x d x

i t z

p p
x d x x d x

i t x iy t x iy

I I
i

 

 


 






    



  


 

   
     

 

 

  



 

 

Now 

 

1 1 1

( ) ( ) ( )( )
' ''

k k k

k k

k k k

k k kx t x t x t

x t t d xx d x
I p p d x p I I

t x iy t x iy t x iy
  

  

     


    

     
   , 

 

Where 

 

1

( ) ( )
'

k

k

k

kx t

x t
I p d x

t x iy


 

 




 
 . 

 

Since the function   is continuous in k
t  for given 0   there exists 0  , such that 

 

( ) ( )
k

x t      for 
k

x t   . So,  1
' 0I   for 0y


 . 

 

We now consider the integral  1
''I . 

 

  

1

+

( )
'' ( ) ln ( )

( ) ln a rg ( )  if  y 0 .

k

k

k

k

k k k k t x

kx t

k k k k k kt x

t d x
I p p t t x iy

t x iy

p t t x iy i t x iy p t i










  

 

 

 

     
 

       



 

 

It remains to consider the following integral 

 

2

( )
.

k
kx t

x
I d x

t x iy
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Because the function   is bounded, there exists 0M   such that ( )x M  , from where we get that 

 

( )
0

k
k kx t

x d x d x
М

t x iy t x iy




 

 
   

   when 0y  . 

 

Similarly, we get for the second integral 

1

( )1
( ) ( )

2

n

k

k k

p x
f x iy x d x d x

i t x iy




 

 
 

   

 

Finally, we get that  

 

0
1 1

lim ( ) ( ) ( ) ( ) ( ) , ,

n n

k k k k
y

k k

f x iy f x iy x d x p t p t t f    



 

       
     

 

Example 1. The Poisson's distribution ( )
!

k

P X k e
k

 
   has a Cauchy representation in the space 'O


. 

 

1

1 1
( )

2 !

k

k

f z e
i k k z











 


 . 

 

The function ( )f z  has a singular (isolated singularity at the points z k ) 

 

 
1

R e ; .
2 !

k

s f k e
i k






   

 

Example 2. The geometric distribution 
1

( ) ,   1
k

P X k q p p q


      has a representation 

 
1

1

1
( )

2

k

k

q p
f z

i k z









 . 

 

The function ( )f z  has a singular (isolated singularity at the points z k ) 

 

 
11

R e ( ); .
2

k
s f z k q p

i


   

 

Example 3. Let the random variable X  has the Poisson distribution,  
!

k

xx
e

k

 .  We will show that the function 

( )T z  is an analytical representation of the Poisson distribution, in the sense of distributions, where 

 

 ( ) lo g
!

k

zz
T z e z

k


 ,  / , a rgz z     . 
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Let   D  be a function with support in [ , ]a a , where 0a  . Then, we have 

 

 

 

( )

( ) 2 2

2 2

0

0

1
( ) ( ) lo g ( ) ( ) lo g ( ) ( )

! !

1
( ) ln a rg ( )

!

1
( ) ln a rg ( )

!

1

!

k
k

z x iy

k
x iy

k

n k n x iy

n

k

n

z
T z x d x e z x d x x iy e x iy x d x

k k

x iy e x y i x iy x d x
k

k
x iy e e x y i x iy x d x

nk

k

nk

  





 

  

 

 

  





    

      
 

 
      
 

 

 
  

 

  







R

R

R

 

 

2 2

( ) 2 2

0
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1
( ) ln a rg

!
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k

n k n x iy

n

x iy e e x y i x iy x d x

k
x iy e x y i x iy d x

nk


  

  



    
 

 
     
 

 



 

R

R

 

 

Let us consider the integrand  

 

 
( ) 2 2

( ) ln arg
n k n x iy

x iy e x y i x iy
      

 
 

 

For 0x  , if 0y


  then  arg x iy   , so the integrand tends to  ln
n x

x e x i


 . For 0x  , if 

0y


  then  arg 0x iy  . Therefore, we get that 

 

 

   

( ) 2 2

0
0

0

0

1
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!

1
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!

1 1
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y
n
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k
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n
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k
x e x i x d x
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k
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Let us now consider the second integral 
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For 0x  , if 0y


  then  arg x iy    , so the integrand tends to  ln
n x

x e x i


 . For 0x  , if 

0y


  then  arg 0x iy  . Therefore, we get that 

 

  

 

2 2

0
0

1
lim ( ) ln a rg ( )
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1
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!
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n k n x iy

y
n

k x

k
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So, we finally have that  
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x iy x iy
e x iy e x iy x d x
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3 Conclusions 
 

 The Cauchy representation in the space 'O


 exists, but the Cauchy representation is not valid for every 

Schwartz distribution f D . In [7,9-11] is proved that the Cauchy representation of distributions in 

,  1p
L

D p    exist, and that every probability density defines a generalized function on the space 

,  1p
L

D p    of test functions. 

 

In this work we have proved that the probability density function ( )f t  in distributional sense has Cauchy 

representation in the space 'O


. We found analytical representation of Poisson distribution, in sense of 

distributions and also, we give the prove of that and some other exercises. So, other researchers can find other 

spaces, for which this applies. 
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