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In this paper, a family of the weakly dissipative periodic Camassa-Holm type equation cubic and quartic nonlinearities is
considered. The precise blow-up scenarios of strong solutions and several conditions on the initial data to guarantee blow-up
of the induced solutions are described in detail. Finally, we establish a sufficient condition for global solutions.

1. Introduction

In this paper, we are concerned with the periodic Cauchy
problem of the generalized Camassa-Holm (CH) type equa-
tion the weak dissipation as follows:

ut − utxx + 3uux + λ u − uxxð Þ
= 2uxuxx + uuxxx + αux

+ βu2ux + γu3ux + Γuxxx,

u t, x + 1ð Þ = u t, xð Þ, t ≥ 0, x ∈ℝ,

u 0, xð Þ = u0 xð Þ, x ∈ℝ, ð1Þ

where α, β, γ, λ, and Γ are arbitrary constants.
When λ = α = β = γ = Γ = 0, the generalized CH type

equation in (1) recovers the well-known integrable
Camassa-Holm equation [1]

ut − utxx + 3uux = 2uxuxx + uuxx, ð2Þ

which was derived by Camassa and Holm for shallow water
waves [2] and is named after them. In fact, the CH equation
was originally derived by Fokas and Fuchssiteiner [1] as a bi-
Hamiltonian generalization of KdV. It is completely integra-

ble and has infinitely many conservation laws [2–4]. In the
recent years, the CH equation has caught a lot of attention
from different perspectives, such as well-posedness, blow-
up phenomena of solutions, and their stability. For example,
the local well-posedness and the global strong solutions for
certain class of initial data were studied [4, 5]. Existence
and uniqueness results for classical solution of the periodic
CH equation were established in [6]. The blow-up phenom-
ena of the periodic CH equation were also investigated in a
number of papers (see [2, 4–8] and references therein).
Orbital stability of the peakons for the CH equation was
studied by Lenells in [9, 10].

When λ = β = γ = 0 and αΓ ≠ 0, we have the Dullin-
Gottwald-Holm (DGH) equation [11, 12]. And if α = β = γ
= Γ = 0 and λ > 0, it reduces to the weakly dissipative CH
equation, whereas if β = γ = 0 and λ > 0, αΓ ≠ 0, it reduces
to the weakly dissipative DGH equation. The well-
posedness and blow-up phenomena of solutions of the Cau-
chy problem for the weakly dissipative DGH equation were
studied, see, for example, [13, 14]. The similar research of
the dissipative DGH equation higher-order nonlinearities
and arbitrary coefficients and the other related models was
also discussed in [15–19]. For some new and important
developments for searching for solving numerical solutions
for some PDE, the reader is referred to [20, 21] and refer-
ences therein.
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If λ = 0, the first equation of (1) becomes the equation

ut − utxx + 3uux = 2uxuxx + uuxxx + αux
+ βu2ux + γu3ux + Γuxxx,

ð3Þ

which is related to the following physically relevant model:

ut − utxx + 3uux = 2uxuxx + uuxxx − cux +
β0
β
uxxx

−
ω1
α2

u2ux −
ω2
α3

u3ux,
ð4Þ

with

c =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +Ω2

p
−Ω,

α = c2

1 + c2
,

β0 =
c c4 + 6c2 − 1
À Á
6 c2 + 1ð Þ2

,

β = 3c4 + 8c2 − 1
6 c2 + 1ð Þ2

,

ω1 = −
3c c2 − 1
À Á

c2 − 2
À Á

2 c2 + 1ð Þ3
, 

ω2 =
c2 − 1
À Á2 c2 − 2

À Á
8c2 − 1
À Á

2 c2 + 1ð Þ5
,

ð5Þ

satisfying c⟶ 1, β⟶ 5/12, β0 ⟶ 1/4, ω1, ω2 ⟶ 0, and
α⟶ 1/2 when Ω⟶ 0. Here, Ω is a parameter related to
the rotational frequency due to Coriolis effect which is typi-
cally a manifestation of rotation when Newton’s laws are
applied to model physical phenomena on Earth’s surface.
The Cauchy problem of Equations (3) and (4) has been stud-
ied in ref. [16, 22–26].

When λ > 0, the first equation of (1) can be seen as a
weakly dissipative Camassa-Holm (CH) type equation. For
the weakly dissipative CH type equations: the local well-
posedness, global existence, and blow-up phenomena of
the Cauchy problem of the weakly dissipative CH equation

ut − utxx + 3uux + λ u − uxxð Þ = 2uxuxx + uuxxx, ð6Þ

on the line [27] and on the circle [27] were studied. They
found that the behaviors of Equation (44) are similar to the
CH equation in a finite interval of time, such as the local
well-posedness and the blow-up phenomena, and that there
are considerable differences between them in their long time
behaviors. Thereafter, a new global existence result and a
new blow-up result for strong solutions to the equation cer-
tain profiles were presented in [28]. The obtained results
improve considerably the previous results. Later on, a new
blow-up result for positive strong solutions of (6) was pre-
sented by Novruzov [29]. In particular, they used a condi-
tion where the initial data u0ðxÞ and its derivative are not
simultaneously involved and the parameter λ is not bounded

from above. The well-posedness and wave-breaking phe-
nomena to the weakly dissipative CH equation quadratic
and cubic nonlinearities

ut − utxx + 3u2ux + λ u − uxxð Þ = 2uxuxx + uuxxx, ð7Þ

were considered by Freire et al. [30]. The novelty of their
work is the method of group analysis was applied in order to
construct conserved currents, and therefore, the conserved
quantities were established as an extremely natural conse-
quence of them. Subsequently, the periodic Cauchy problem
of Equation (7) was considered by Ji and Zhou [31] and their
local well-posedness was established via Kato’s theory [32];
then, a sufficient condition on the initial data to guarantee
the wave breaking was given and the global existence of solu-
tions was given finally. Recently, Freire [33] considered the
Cauchy problem of the weakly dissipative CH Equation
(1). In their paper, some time-dependent energy functionals
of solutions were proved, then the existence of wave-
breaking phenomena was investigated, and necessary condi-
tions for its existence were also obtained.

In general, it is difficulty to avoid energy dissipation
mechanics in a real world. So it is reasonable to investigate
the model with energy dissipation in propagation of nonlin-
ear waves, see [34, 35] and references therein. Inspired by
the previous work, the aim of the paper is to investigate
whether the periodic Cauchy problem of the equation in
(1) has the similar remarkable properties as that on the
entire line. The outline of the paper is as follows. In Section
2, we obtain the local well-posedness and wave-breaking cri-
terion. In Section 3, a blow-up scenario for strong solutions
is described and some sufficient conditions for wave break-
ing of strong solutions in finite time are established. Further-
more, the blow-up rate of blow-up solutions of (1) is also
derived. In Section 4, a sufficient condition for global solu-
tions is provided.

1.1. Notations. Throughout this paper, we identity all spaces
of periodic functions with function spaces over the unit cir-
cle S in ℝ2, i.e., S =ℝ/ℤ. The norm of the Sobolev space
HsðSÞ, s ∈ℝ, by k⋅kHs . Since all space of functions are over
S, for simplicity, we drop S in our notations of function
spaces if there is no ambiguity.

2. Preliminaries and Local Well-Posedness

Let us introduce the subject of investigation of this paper. In
order to establish the local well-posedness result by Kato’
theorem. Rewrite problem (1) as follows:

mt + u + Γð Þmx + 2uxm + λm − ∂xh uð Þ = 0, t > 0, x ∈ℝ,
u t, x + 1ð Þ = u t, xð Þ, t ≥ 0, x ∈ℝ,

u 0, xð Þ = u0 xð Þ, x ∈ℝ,
ð8Þ
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where

m = u − uxx, h uð Þ≔ α + Γð Þu + β

3 u
3 + γ

4 u
4: ð9Þ

Denote GðxÞ≔ cosh ðx − ½x� − 1/2Þ/2 sinh ð1/2Þ, x ∈ℝ.

Then ð1 − ∂2xÞ
−1
f =Λ−2 f =G ∗ f for all f ∈ L2ðSÞ. Our

system (8) can be written in the following transport type:

ut + u + Γð Þux = ∂xG
∗h uð Þ − ∂xG

∗ u2 + u2x
2

� �
− λu, t > 0, x ∈ℝ,

u t, x + 1ð Þ = u t, xð Þ, t ≥ 0, x ∈ℝ,

u 0, xð Þ = u0 xð Þ, x ∈ℝ, ð10Þ

or equivalently,

ut + u + Γð Þux = ∂xΛ
−2h uð Þ − ∂xΛ

−2 u2 + u2x
2

� �
− λu, t > 0, x ∈ℝ,

u t, x + 1ð Þ = u t, xð Þ, t ≥ 0, x ∈ℝ,
u 0, xð Þ = u0 xð Þ, x ∈ℝ:

ð11Þ

We begin by presenting the local well-posedness result
for the periodic Cauchy problem (11). Concerning the gen-
eralized CH equation in (1) is suitable for applying Kato’s
theory [32]; one may follow the similar argument as in [30,
33] to obtain the following theorem.

Theorem 1. Given u0 ∈HsðSÞ with s > 3/2. Then, there exists
a maximal time T = Tðu0Þ > 0 and unique solution u to (1)
satisfying the initial condition uð0, xÞ = u0ðxÞ such that

u ·, u0ð Þ ∈ C 0, T½ Þ ;Hs Sð Þð Þ ∩ C1 0, T½ Þ ;Hs−1 Sð ÞÀ Á
: ð12Þ

Moreover, the solution depends continuously on the initial
data, in the sense that the mapping u0 ⟶ uð·, u0Þ: HsðSÞ
⟶ Cð½0, TÞ ;HsðSÞÞ ∩ C1ð½0, TÞ ;Hs−1ðSÞÞ is continuous
and T does not depend on S.

Remark 2. The equation in (1), for λ > 0, can be seen as the
weakly dissipative periodic Camassa-Holm type equation.
However, no matter the value of parameter λ, the problem
(1) is locally well-posed as shown in Theorem 1.

Lemma 3. (see [8]).

(i) For every f ∈H1ðSÞ, we have

max
x∈ 0,1½ �

f 2 xð Þ = e + 1
2 e − 1ð Þ fk k2H1 Sð Þ, ð13Þ

where the constant ðe + 1Þ/2ðe − 1Þ is sharp.

(ii) For every f ∈H3ðSÞ, we have

max
x∈ 0,1½ �

f 2 xð Þ ≤ c fk k2H1 Sð Þ, ð14Þ

with the best possible constant c lying within the range ð1,
13/12�. Moreover, the best constant c is ðe + 1Þ/2ðe − 1Þ .

The next theorem will establish the time-dependent con-
served quantities of solutions to problem (1), which is crucial
in the investigation of wave-breaking phenomena and global
existence of solutions.

Theorem 4. Assume that uðt, xÞ be the solution to problem
(1) with the initial data u0ðxÞ ∈HsðSÞ, s > 3/2 such that u
ðt, xÞ and its derivatives up to second order go to 0 as x
⟶ 0 and x⟶ 1. Let

H0 tð Þ≔
ð
S

u t, xð Þdx, H1 tð Þ≔ 1
2

ð
S

u2 t, xð Þ + u2x t, xð ÞÀ Á
dx:

ð15Þ

Then, for any t ∈ ½0, TÞ, we have

H0 tð Þ = e−λtH0 0ð Þ, H1 tð Þ = e−2λtH1 0ð Þ: ð16Þ

Proof. Integrating the first equation of system (1) by parts,
in view of the periodicity of u, we have

d
dt

ð
S

u t, xð Þ dx + λ
ð
S

u t, xð Þ dx = 0: ð17Þ

Then integrating (17) with respect to t over ð0, tÞ
implies

H0 tð Þ =
ð
S

u t, xð Þdx = e−λt
ð
S

u0 xð Þdx = e−λtH0 0ð Þ: ð18Þ

For the proof of the other conserved quantity, multi-
plying both sides of the first equation in (1) by 2u, we
have

2uut − 2uutxx + 6u2ux + 2λ u2 − uuxx
À Á

= 4uuxuxx + 2u2uxxx + 2αuux + 2βu3ux
+ 2γu4ux + 2Γuuxxx:

ð19Þ

Integrating (19) with respect to t over ð0, tÞ yields

d
dt

ð
S

u2 + u2x
À Á

dx + 2λ
ð
S

u2 + u2x
À Á

dx

= −2
ð
S

∂
∂x

u3 − u2uxx − uutx +
Γ

2 u
2
x − Γuuxx

�

−
α

2 u
2 −

β

4 u
4 −

γ

5 u
5 − λuux

�
dx = 0,

ð20Þ

i.e., H1ðtÞ = e−2λtH1ð0Þ, which completes the proof of
the theorem.

3Advances in Mathematical Physics



It is worth mentioning that if λ > 0, the results of Theo-
rem 1 implies

H0 tð Þ ≤H0 0ð Þ, H1 tð Þ ≤H1 0ð Þ, ð21Þ

which will be of great relevance in our investigation of
wave breaking. Combining this observation with the Sobolev
Embedding Theorem, we give the following remark.

Remark 5. If u0ðxÞ ∈HsðSÞ, s > 3/2, and λ > 0, then the H1

-norm of the corresponding solution of system (1) is
bounded above by ku0kH1ðSÞ.

Once we have presented conditions for having locally
well-posed solutions, a natural question is whether (1)
admits wave breaking, which can be assured by the following
blow-up criterion. In the following proof, we only prove the
case when s = 3, since the same conclusion for general case
s > 3/2 can be obtained by using denseness.

Theorem 6. Let u0ðxÞ ∈Hs, s > 3/2 be given and assume that
T > 0 is the maximal existence time of the corresponding solu-
tion uðt, xÞ to problem (1). Then, T is finite if and only if

liminf
t⟶T

finf
x∈S

uxðt, xÞg = −∞:

Proof. Note that m = u − uxx, a simple computation yields

mk k2L2 =
ð
S

u − uxxð Þ2dx =
ð
S

u2 + 2u2x + u2xx
À Á

dx,

mxk k2L2 =
ð
S

ux − uxxxð Þ2dx =
ð
S

u2x + 2u2xx + u2xxx
À Á

dx:

ð22Þ

Therefore, we can conclude that

uk k2H3 ≤ mk k2H1 ≤ 3 uk k2H3 : ð23Þ

Multiplying 2m to both sides of the first equation in (8),
we get

2mmt + 2 u + Γð Þmmx + 4uxm2 + 2λm2 − 2m∂xh uð Þ = 0:
ð24Þ

Integrating (24) with respect to x over S yields

d
dt

ð
S

m2dx = −
ð
S

2 u + Γð Þmmx + 4uxm2 + 2λm2 − 2m∂xh uð ÞÀ Á
dx

= −
ð
S

3uxm2 + 2λm2 − 2m∂xh uð ÞÀ Á
dx,

ð25Þ

where we used the relationsð
S

2mmxdx =
ð
S

dm2 = 0, 
ð
S

2ummxdx = −
ð
S

uxm
2dx = 0:

ð26Þ

If u0 ∈H4, differentiating the first equation in (8) with
respect to x, we obtain

mtx + 3uxmx + u + Γð Þmxx + 2uxxm + λmx − ∂2xh uð Þ = 0:
ð27Þ

Multiplying 2mx to both sides of Equation (27), then
integrating the result with respect to x over S, it follows that

d
dt

ð
S

m2
xdx = −6

ð
S

uxm
2
xdx − 2

ð
S

u + Γð Þmxmxxdx

− 4
ð
S

uxxmmxdx − 2λ
ð
S

m2
xdx

+ 2
ð
S

mx∂
2
xh uð Þdx:

ð28Þ

Since that

2
ð
S

u + Γð Þmxmxxdx = −
ð
S

uxm
2
xdx, 4

ð
S

uxxmmx

= −2
ð
S

uxm
2dx,

ð29Þ

we have

d
dt

ð
S

m2
xdx = −5

ð
S

uxm
2
xdx + 2

ð
S

uxm
2dx

− 2λ
ð
S

m2
xdx + 2

ð
S

mx∂
2
xh uð Þdx,

ð30Þ

with

∂2xh uð Þ = α + Γð Þuxx + 2βuu2x + βu2uxx + 3γu3uxx, ð31Þ

which yields that

d
dt

ð
S

m2
xdx = −5

ð
S

uxm
2
xdx + 2

ð
S

uxm
2dx

− 2λ
ð
S

m2
xdx + 2

ð
S

mx∂
2
xh uð Þdx:

ð32Þ

Then, by approximating u0 in H3 by function un0 ∈H
4

ðn ≥ 1Þ, (32) also holds for u0 ∈H3. In fact, let un be the
solution to problem (1) with the initial data un0 . By local
well-posedness theorem, we know that un ∈ Cð½0, Tn� ;H4Þ
∩ C1ð½0, Tn� ;H3Þ for n ≥ 1,unðt, xÞ⟶ uðt, xÞ in H3 and
Tn ⟶ T as n⟶∞. Since un0ðxÞ ∈H4, we have

d
dt

ð
S

mn
xð Þ2dx = −5

ð
S

unx mn
xð Þ2dx + 2

ð
S

unx mnð Þ2dx

− 2λ
ð
S

mn
xð Þ2dx + 2

ð
S

mn
x∂

2
xh unð Þdx:

ð33Þ

Since un ⟶ u in H3 as n⟶∞, it follows that
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unx ⟶ ux , unxx ⟶ uxx in L∞ as n⟶∞. Meanwhile,
mn ⟶m in H1 and mn

x ⟶mx in L2 as n⟶∞. Letting
n⟶∞ in (33), it follows that (32) holds for u0ðxÞ ∈H3.

Thus, we get

d
dt

ð
S

m2 +m2
x

À Á
dx = −5

ð
S

uxm
2
xdx −

ð
S

uxm
2dx

− 2λ
ð
S

m2 +m2
x

À Á
dx

+ 2
ð
S

m∂xh uð Þ +mx∂
2
xh uð ÞÀ Á

dx:

ð34Þ

Note that

2
ð
S

m∂xh uð Þ +mx∂
2
xh uð ÞÀ Á

dx = 2
ð
S

mΛ2∂xh uð Þdx

≤ mk k2L2 + Λ2∂xh uð Þ 2
L2
≤ c mk k2H1 :

ð35Þ

Here, we have used the facts that

Λ2∂xh uð Þ 
L2
= ∂xh uð Þk kH2 ≤ h uð Þk kH3 ,

h uð Þk kH3 ≤ c uk kH3 = c Λ−2u
 

H1 = c mk kH1 :
ð36Þ

Therefore, (34) is reduced to

d
dt

ð
S

m2 +m2
x

À Á
dx = −5

ð
S

uxm
2
xdx −

ð
S

uxm
2dx

− 2λ
ð
S

m2 +m2
x

À Á
dx + c mk k2H1 :

ð37Þ

If there exists some positive constant M > 0 such that
ux > −M, then we have

d
dt

ð
S

m2 +m2
x

À Á
dx ≤ 5M

ð
S

m2
xdx +M

ð
S

m2dx

− 2λ
ð
S

m2 +m2
x

À Á
dx + c mk k2H1

≤ 5M − 2λ + cð Þ mk k2H1 :

ð38Þ

By using Gronwall’s inequality, we get

mk k2H1 ≤ e 5M−2λ+cð Þt m0k k2H1 ≤ e 5M−2λ+cð ÞT m0k k2H1 : ð39Þ

Therefore,

uk k2H3 ≤ mk k2H1 ≤ e 5M−2λ+cð ÞT m0k k2H1 ≤ 3e 5M−2λ+cð ÞT u0k k2H1 ,
ð40Þ

which implies the H3-norm of the solution uðt, xÞ to (1)
does not blow up in finite time.

On the other hand, if

liminf
t⟶T

inf
x∈S

ux t, xð Þ
n o

= −∞, ð41Þ

then solution uðt, xÞ to (1) will blow up in finite time.
This completes the proof of the theorem.

Remark 7. Similar to the case of nonperiodic, we prove the
following result: Let u0ðxÞ ∈Hs, s > 3/2 be given and λ > 0.
And u be the corresponding solution uðt, xÞ to problem
(1). Assume that ux > −k for some positive constant k. Then,
we obtain that kukHsðSÞ ≤ eσtku0kHsðSÞ, for a certain posi-
tive constant σ.

3. Blow-up Solutions and Blow-up Rate

In this section, we establish some sufficient conditions for
the breaking of waves for the initial-value problem (1). To
this end, we need the following lemma.

Lemma 8. Let T > 0 and vðt, xÞ ∈ C1ð½0, TÞ ;H2Þ be a given
function. Then, for any t ∈ ½0, TÞ, there exists at least one
point ξðtÞ ∈ S such that

m tð Þ = inf
x∈S

vx t, xð Þ = vx t, ξ tð Þð Þ, ð42Þ

and the function mðtÞ is almost everywhere differentiable
in ½0, TÞ, with

m′ tð Þ = vtx t, ξ tð Þð Þ, a:e:on 0, T½ Þ: ð43Þ

Now we are in position to state the following that pro-
vide a case that wave breaks in finite time.

Theorem 9. Let u0 ∈Hs with s > 3/2 and λ > 0. Assume k
≔max fjα + Γj, jβ/3j, ðjγj/4Þg and U0 ≔max fku0kH1 ,
ku0k4H1g. If there exists some x0 ∈ S such that

u0′ x0ð Þ < −λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2 1 + 3

2
· e + 1
e − 1

� �
1 + kð ÞU0

s
: ð44Þ

Then, the corresponding solution uðt, xÞ to (1) blows up in
finite time in the following sense: there exists a T1 with

0 < T1 <
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 + 2 1 + 3/2 · e + 1ð Þ/ e − 1ð Þð Þ 1 + kð ÞU0

q

Á ln
m 0ð Þ + λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2 1 + 3/2 · e + 1ð Þ/ e − 1ð Þð Þ 1 + kð ÞU0

q
m 0ð Þ + λ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2 1 + 3/2 · e + 1ð Þ/ e − 1ð Þð Þ 1 + kð ÞU0

q ,

ð45Þ

such that

liminf
t↑T1

inf
x∈S

ux t, xð Þ
n o

= −∞: ð46Þ
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Proof. . Differentiating the first equation in (11) with respect
to x, we get

uxt +
u2x
2 + u + Γð Þuxx + λux

= u2 −Λ−2 u2 + u2x
À Á

− h uð Þ +Λ−2h uð Þ,
ð47Þ

where we have used the relation ∂2xΛ
−2 =Λ−2 − 1:

According to Lemma 8 and the local well-posedness
theorem, there is at least one point ξðtÞ ∈ S satisfying
mðtÞ = inf

x∈S
uxðt, xÞ = uxðt, ξðtÞÞ. Hence,

uxx t, ξ tð Þð Þ = 0, a:e:t ∈ 0, T½ Þ: ð48Þ

Thus, we get

m′ tð Þ = −
1
2m

2 tð Þ − λm tð Þ + f t, ξ tð Þð Þ, ð49Þ

where f ðt, ξðtÞÞ is given by

f t, ξ tð Þð Þ = u2 t, ξ tð Þð Þ −G ∗ u2 + u2x
2

� �
t, ξ tð Þð Þ

− h uð Þ t, ξ tð Þð Þ + G ∗ h uð Þ t, ξ tð Þð Þ:
ð50Þ

Note that

u2 t, ξ tð Þð Þ ≤ e + 1
2 e − 1ð Þ uk k2H1 ≤

e + 1
2 e − 1ð Þ u0k k2H1 ,

G ∗ u2 + u2x
À Á 

L∞
≤ Gk kL∞ u2 + u2x

 
L1
≤

e + 1
2 e − 1ð Þ uk k2H1

≤
e + 1

2 e − 1ð Þ u0k k2H1 ,

G ∗ h uð Þj j ≤ Gk kL∞ h uð Þk kL∞ ≤
e + 1

2 e − 1ð Þ h uð Þk kH1 , ð51Þ

then

G ∗ h uð Þ − h uð Þj j ≤ 1 + e + 1
2 e − 1ð Þ

� �
h uð Þk kH1 : ð52Þ

Let U0 ≔max fku0kH1 , ku0k4H1g, it follows from (9)
that

h uð Þk kH1 ≤ k max u0k kH1 , u0k k4H1
È É

≤ kU0, ð53Þ

with k≔max fjα + Γj, jβ/3j,jγj/4g is a positive constant.
Therefore, we obtain

fj j ≤ e + 1
e − 1 u0k k2H1 + 1 + e + 1

2 e − 1ð Þ
� �

kU0

≤ 1 + 3
2 · e + 1

e − 1

� �
1 + kð ÞU0:

ð54Þ

Combining (49) and (54), we have

m′ tð Þ ≤ −
1
2m

2 tð Þ − λm tð Þ + 1 + 3 e + 1ð Þ
2 e − 1ð Þ

� �
1 + kð ÞU0

≐−
1
2m

2 tð Þ − λm tð Þ + c = −
1
2 m tð Þ + λ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p� �
Á m tð Þ + λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p� �
a:e:on 0, T½ Þ,

ð55Þ

with

c = 1 + 3
2 · e + 1

e − 1

� �
1 + kð ÞU0: ð56Þ

According to assumption (44), we have mð0Þ < −λ −ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p
, hence m′ð0Þ < 0. Considering the continuity

of mðtÞ with respect to t, we can obtain that for any

t ∈ ½0, TÞ, m′ðtÞ < 0 and mðtÞ < −λ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p
.

Then by solving the inequality (54), it follows that

m 0ð Þ + λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p

m 0ð Þ + λ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p e
ffiffiffiffiffiffiffiffiffiffi
λ2+2ct

p
≤
m tð Þ + λ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p

m tð Þ + λ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p , ð57Þ

then

m 0ð Þ + λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p

m 0ð Þ + λ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p e
ffiffiffiffiffiffiffiffiffi
λ2+2c

p
t − 1 ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p

m tð Þ + λ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p ≤ 0:

ð58Þ

Notice that 0 <mð0Þ + λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p
/mð0Þ + λ −ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 + 2c
p

< 1, there exists

0 < T1 ≤
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 + 2c
p ln m 0ð Þ + λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p

m 0ð Þ + λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 2c

p ð59Þ

such that

liminf
t↑T1

m tð Þ = −∞, ð60Þ

which demonstrates that the solution uðt, xÞ blows up at
a time 0 < T ≤ T1:

Theorem 10. If T <∞ is the blow-up time of the solution to
(1) with initial data u0 ∈Hs, s > 3/2 satisfying the assumption
of Theorem 9. Then,

liminf
t↑T

inf
x∈S

ux t, xð Þ T − tð Þ
n o

= −2: ð61Þ

Proof. From (49) and (54), we know that

−c ≤m′ tð Þ + 1
2m

2 tð Þ + λm tð Þ ≤ c, a:e:on 0, T½ Þ, ð62Þ
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therefore,

−c −
1
2 λ

2 ≤m′ tð Þ + 1
2 m tð Þ + λð Þ2 ≤ c + 1

2 λ
2, a:e:on 0, T½ Þ:

ð63Þ

Choose 0 < ε < 1/2. Since liminf
t↑T

mðtÞ =∞, we get

liminf
t↑T

ðmðtÞ + λÞ = −∞; there is some point t0 ∈ ð0, TÞ such
that

m t0ð Þ + λ < 0,  m t0ð Þ + λð Þ2 > 1
ε

c + 1
2 λ

2
� �

: ð64Þ

Since mðtÞ is absolutely continuous on ½0, TÞ. By the
above differential inequality, it follows that mðtÞ is strictly
decreasing on ½t0, TÞ and hence

m tð Þ + λð Þ2 > 1
ε

c + 1
2 λ

2
� �

, t ∈ t0, T½ Þ: ð65Þ

Combining (63) and (63), we get

−
1
2 − ε ≤

m′ tð Þ
m tð Þ + λð Þ2 ≤ −

1
2 + ε, a:e:on t ∈ t0, T½ Þ: ð66Þ

Since ε ∈ ð0, 1/2Þ is arbitrary, the above relation implies

liminf
t↑T

m tð Þ + λð Þ T − tð Þ = −2, ð67Þ

namely, liminf
t↑T

ðmðtÞ + λÞðT − tÞ = −2: This implies liminf
t↑T

finf
x∈S

uxðt, xÞðT − tÞg = −2 by in view of the definition of

mðtÞ.

4. Global Existence

In this section, we turn our attention to existence of the
global solution of system (1). We begin with the related
results as follows.

Lemma 11. Let u ∈ C1ð½0, TÞ,HsÞ be the solution of problem
(1) with u0 ∈Hs, s > 3/2, and T > 0 be the maximal time of
existence. Then, the problem

qt t, xð Þ = u t, qð Þ + Γ,  t, xð Þ ∈ 0, T½ Þ × S,
q 0, xð Þ = x, x ∈ S:

ð68Þ

has a unique solution qðt, xÞ ∈ C1ð½0, TÞ ×ℝ,ℝÞ and q
ðt, ·Þ is an increasing diffeomorphism of the line with

qx t, xð Þ = exp
ðt
0
ux s, q s, xð Þð Þds

� �
> 0, t, xð Þ ∈ 0, T½ Þ ×ℝ:

ð69Þ

Furthermore,

m t, q t, xð Þð Þq2x t, xð Þ =m0 xð Þe−λt +
ðt
0
eλ s−tð Þq2x s, xð Þ∂xh u s, qð Þð Þds,

ð70Þ

where q is the solution of the problem (72) and hðuÞ is the
function given in (44).

Proof. The proof of Lemma 11 is similar as for the classic CH
Equation (2), see ref. [36] for details.

Theorem 12. Let u0 ∈Hs, s > 3/2, and m0ðxÞ = u0ðxÞ − u0′′
ðxÞ. Assume that

m0ðxÞ ≥ 0 on S or m0ðxÞ ≥ 0 on S does not change sign

sgn m0ð Þ = sgn mð Þ: ð71Þ

Then, the solution uðt, xÞ of (1) possesses bounded from
blow x-derivative, which implies the global existence of the
solution uðt, xÞ in time t.

Proof. Since u = G ∗m, with GðxÞ = cosh ðx − ½x� − 1/2Þ/2
sinh ð1/2Þ, x ∈ℝ, we get

u t, xð Þ = 1
2 sinh 1/2ð Þ

ð
S

cosh x − ξ − x − ξ½ � − 1/2ð Þm t, ξð Þdξ

= ex

4 sinh 1/2ð Þ
ðx
0
e−ξ−1/2m t, ξð Þdξ + ex

4 sinh 1/2ð Þ
Á
ð1
x
e−ξ+1/2m t, ξð Þdξ + e−x

4 sinh 1/2ð Þ
ðx
0
eξ+1/2m t, ξð Þdξ

+ e−x

4 sinh 1/2ð Þ
ð1
x
eξ−1/2m t, ξð Þdξ:

ð72Þ

Differentiating this representation of u with respect to x
gives

ux t, xð Þ = ex

4 sinh 1/2ð Þ
ðx
0
e−ξ−1/2m t, ξð Þdξ + ex

4 sinh 1/2ð Þ
Á
ð1
x
e−ξ+1/2m t, ξð Þdξ − e−x

4 sinh 1/2ð Þ
ðx
0
eξ+1/2m t, ξð Þdξ

−
e−x

4 sinh 1/2ð Þ
ð1
x
eξ−1/2m t, ξð Þdξ:

ð73Þ

By combining (72) and (73), we have

u t, xð Þ + ux t, xð Þ = ex

2 sinh 1/2ð Þ
ðx
0
e−ξ−1/2m t, ξð Þdξ

+ ex

2 sinh 1/2ð Þ
ð1
x
e−ξ+1/2m t, ξð Þdξ,

ð74Þ
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ux t, xð Þ − u t, xð Þ = −
e−x

2 sinh 1/2ð Þ
ðx
0
eξ+1/2m t, ξð Þdξ

−
e−x

2 sinh 1/2ð Þ
ð1
x
eξ−1/2m t, ξð Þdξ:

ð75Þ

Since that sgn ðmÞ = sgn ðm0Þ, it follows from (72), (74),
and (75) that if m0ðxÞ ≥ 0, then uðt, xÞ ≥ 0 and uðt, xÞ ≥ −ux
ðt, xÞ or if m0ðxÞ ≤ 0, then uðt, xÞ ≤ 0 and uxðt, xÞ ≥ uðt, xÞ:

The above facts are enough to ensure that

ux t, xð Þ ≥ − u t, xð Þk kL∞ , t, xð Þ ∈ 0, T½ Þ × S: ð76Þ

Consider that kukL∞ ≤ 1/√2kukH1 ≤ 1/√2ku0kH1 , we
conclude that uxðt, xÞ ≥ −1/√2ku0kH1 : The above inequality
and Theorem 10 imply T =∞, which shows the solution u
ðt, xÞ ≥ 0 or uðt, xÞ ≤ 0 exists globally in time.

Remark 13. It is observed that if the conditions of Theorem
12 are satisfied and if m0 ∈H1ðSÞ, then u does not blow up
in finite time by considering Theorem 9. This is similar to
the previous results on the line [33].

Remark 14. From Lemma 11, we can observe that the pres-
ence of function hðuÞ is the main obstacle of our investiga-
tion of existence of the global solutions. In fact, if hðuÞ = 0,
it follows from Lemma 11 that the second condition of The-
orem 12 would hold automatically as a consequence of its
first condition. Therefore, the sign invariance of m is essen-
tial to prove the global existence of solutions.

Remark 15. Similarly for the Camassa-Holm equation and
other analogous equations (see [4, 5, 7, 25, 33]), (1) admits
the wave-breaking phenomenon, but differently from the
Camassa-Holm equation, we cannot assure the global exis-
tence of solutions through the way we followed here [30, 33].
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