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The work explores the optical wave solutions along with their graphical representations by proposing the coupled spatial-temporal
fractional cubic-quartic nonlinear Schrédinger equation with the sense of two fractal derivatives (beta and conformable derivative)
and Kerr law nonlinearity for birefringent fibers. The new extended direct algebraic method for the first time is implemented to
achieve this goal. Many optical solutions are listed along with their existence criteria. Based on the existence criteria, the cubic-
quartic bright, and singular optical soliton, periodic pulse, and rouge wave profiles are supported in birefringent fibers with the

influence of both beta and conformable derivative parameter.

1. Introduction

It is confirmed that the most idyllic information transferors,
have the most captivating phenomena in fiber optics due to
their expanding applications in optoelectronics, optical
switching, optical metamaterials, telecommunications, and
ultrafast signal processing systems [1-4]. As a result, one
may study several nonlinear phenomena occurring on the
aforementioned applications, namely nonlinear phase mod-
ulation, optical solitons, parametric and stimulated scatter-
ing processes, and supercontinuum generation. Such
phenomena involving of different functions are very useful
to understand the dynamical wave propagation in the area
of all optical signal processing, namely optical amplification,
multiwavelength sources, pulse generation, optical regenera-
tion, wavelength conversion, and optical switching. The
nonlinear Schrédinger equation (NLSE) is only the mathe-
matical physics equation that characterizes the propagation
of optical wave phenomena with different types of nonlinear
media [5-9]. Over the past couple of decades, the majority of
extant research has mostly focused on optical solitons in
polarization-preserving fibers. However, solitons receive far
less attention in birefringent fibers where the dynamics of

soliton propagation are dictated by coupled NLSE [10-14].
As a result, the study of optical solitons in birefringent fibers
is currently an important topic of nonlinear optics research.
Actually, the optical pulses traveling through an optical
fiber tend to become polarized due to fiber nonuniformities,
random changes in fiber diameter, and other technical issues
caused by fiber technologies such as fiber twists, bends, and
external stress. Such causes yield various problems, includ-
ing differential group delay of the pulses, which is known
as the polarization mode dispersion [15]. As a result, the dis-
persion has a significant negative impact on the steady and
stable transmission of pulses across transcontinental and
transoceanic lengths via fiber. At this stage, a phenomenon
referred to as birefringence, which is caused by the splitting
of optical pulses into two orthogonally polarized pulses.
Thus, the birefringence is basically one kind of physical phe-
nomenon in optical fibers with variable propagation con-
stants and group velocities. It is also generated due to have
delicate circular symmetry for optical fibers [16]. In such
an undesirable physical state, the controlling NLSE in the
birefringent fibers (BFs) breaks into vector coupled NLSE.
Furthermore, the notion of cubic-quartic (CQ) solitons
is occurred due to the delicate balance between chromatic
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dispersion (CD) and self-phase modulation becomes fragile
with the CD becomes low enough. In order to restore the
much-needed equilibrium in this crisis situation for the com-
pensation of low CD count, the third-order dispersion (30D)
and fourth-order dispersion (40D) terms are needed. This
phenomenon is known as the CQ dispersive effects and it
was firstly introduced in 2017 [17, 18]. Consequently, this
study has been garnered a lot of interest in the research com-
munity from 2017 until the present. Recently, a group of
researchers [19-22] have made a momentous effort to recover
a slew of remarkable results for CQ optical solitons in Bragg-
gratings fiber, magneto-optic wave-guides described by
NLSEs and the newly proposed Biswas-Milovic equation.
Besides, a few results have been reported on CQ solitons in
birefringent fibres with different laws of refractive index using
various efficient mathematical methodologies [23-27]. There-
fore, it is imperative to focus on the previous studies along
with their limitations as a follow-up. One of the significant
flaws of previous studies are illustrated that they have solely
considered the physical models for localization.

However, the fractional calculus has advanced over the
last several decades. It is now well established that the influ-
ence of memory has been of major importance in the local-
ization of modeling for quite some time. Profoundly, the
integer-order physical models do not handle this memory
issue efficiently [28, 29]. Many scholars have demonstrated
that the noninteger operators can provide more information
about the memory effect [30-32]. Consequently, the fractal
derivatives, that is beta fractional derivative (BFD) and con-
formable fractional derivative (CFD) have been established
recently as the extensions of integer order derivatives. Such
derivatives play a dynamic role in modeling to study the
local/nonlocal and conservative/nonconservative physical
systems. The development of BFD and CFD meet many fea-
tures of fundamental calculus, whereas the earlier fractional
derivatives does not support some features of fundamental
calculus. In References [33-38], authors have been used such
derivatives for describing a wide range of physical processes.
For instance, Uddin et al. [33-36] have reported that the
effect of BFD parameter on nonlinear wave phenomena by
considering different kinds of environments. Hafez et al.
[37] and Igbal et al. [38] have reported that the effect of
CFD parameter on wave phenomena with their dynamical
features in optical bullets and one-dimensional nonlinear
electrical transmission line, respectively. It is now required
to investigate nonlocal and nonconservative physical issues
in optical fibers due to imperfections/nonuniformities in
birefringent fibres along with some technical challenges
resulting from fiber technologies discussed previously.

Thus, this work explores some new solutions with their
better visualization on the topic of optical wave propagation
in BFs described by the model of the governing coupled
space-time fractional cubic-quartic NLSE (STF-CQNLSE)
via the new extended direct algebraic method (EDAM)
[39]. It is noted that the EDAM technique is first time imple-
mented to achieve this goal for the considered model STF-
CQNLSE along with the Kerr law of nonlinear refractive
index in the presence of BFD and CFD. In addition, this
work reveals mysteries of nonlocal behavior in birefringent
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fibers for the governing STF-CQNLSE by securing bright,
singular, periodic singular, combo, and pure periodic optical
soliton solutions with constraint criteria that must remain
valid for these optical wave propagation to exist. The rest
of this paper is organized as follows. The governing model
equations are presented in the next subsections. Section 2
discusses the essential mathematical preliminaries for deriv-
ing the converted ordinary differential equation (ODE) from
the leading STF-CQNLSE, which is described in Section 3.
In Section 4, use the EDAM approach to recover the desired
optical solitons. Section 5 discusses the graphical depiction
of certain acquired results along with the comparison of pre-
viously reported outcomes. Finally, in Section 6, some clos-
ing observations are presented.

1.1. Governing Coupled Equation Having BFD and CFD
Evolution. For polarization preserving fibers, the wave prop-
agation through optical fibers with Kerr law of nonlinear
refractive index is examined by the following cubic-quartic
NLSE [23, 24].

i¢t+ip¢xxx+q¢xxxx+r|¢|2¢:0’ (1)

where the complex—valued function ¢(x, t) is measuring
the optical wave propagation in polarization preserving
fibers, x (t) is the spatial (temporal) variable, r is the Kerr
law of refractive index, respectively. The coefficients p and
q are real constants represent the 30D and 40D, respec-
tively. Note that most optical fibers are supported Kerr law
nonlinearity. Recently, the fractional NLSEs (FNLSEs) are
modeled and introduced to describe the physical process
rather than NLSEs in the actual case especially in the field
of nonlinear optical environments. To illustrate it, in Refer-
ences [40, 41], authors have reported the transmission
dynamics of the beam describing by the FNLSE by consider-
ing fractional diffraction effect and self-defocusing saturable
nonlinear media. They have studied the existence and
dynamical evolution of fundamental solitons and multipole
solitons supported by PT-symmetric potential. Wang and
Wang [42] have studied the propagation of optical signal
in fibers by considering the variable-coefficient wick-type
stochastic FNLSE and found some analytical white noise
functional solutions. They have shown that the FNLSEs
can support a variety of new fractional optical solitons, such
as multipole solitons, chirped and chirp-free fractional
bright and dark soliton, and symmetric and antisymmetric
solitons. Uddin et al. [33] have reported that one can derive
nonlinear evolution equations of fractional order from non-
linear evolution equations of integer order using Agrawal’s
variational principle when the complexity arises in a certain
regimes of space or time for the impact of nonlocality as well
as nonconservative energies arising in the physical systems.
For the sake of simplicity, instead of deriving the fractional
order equation, the following coupled STF-CQNLSE which
incorporates BFD into consideration for the nonlocal non-
linear media and draws inspiration from the aforementioned
literatures, is presented in this study to characterize the non-
local behavior in BFs when the pulses are split into two
direction frames from Equation (1):
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(0D +ip, (b)) +q, (0 ZEW,) + (r|F1] + 5, 73] )7, =0,
(0D, +ip, (( DX, + a, (4D, + (r2|¥3| + 5| ¥7]) ¥, = 0.

(2)

Whereas the STF-CQNLSE is described in terms of CFD
by

iDYY, +ip, DY, + q, DY, + (r, |‘P§| +5, |‘I’§|)‘I’1 =0,
DY, +ip, DY, + q, D, + (rs yquy + sz\qfﬂ)lpz =0.
3)

In the above coupled systems, T (sj), j=1,2 indicated
the coefficients of self-phase modulation (cross-phase mod-
ulation)and the effect of four-wave mixing is discarded.
Many researchers [40-47] have already implemented several
kinds of mathematical procedures to solve the evolution
equations involving of local and nonlocal operators. The
solutions of Equations (2) and (3) have already been deter-
mined in the earlier investigations [23, 24] via the Riccati
function, Sine-Gordon function, F-expansion, and exp-
function expansion methods by considering only the classical
models i.e. when y = 1. However, EDAM will be implemented
to determine the traveling wave solutions of Equations (2) and
(3) with the presence of nonlocal operators.

2. Mathematical Preliminaries

2.1. Beta Fractional Derivative (BFD). The useful definition
of BFD is recently introduced by the scholar group Atangana
et al. [48].

Definition 1. Let a € R and & be a function such that & : [a,
00) — R. Then the beta fractional derivative of order y of
@ is exhibited as § 2! &(x) and defined by

49'%(x) = lim G (x+g(x+ (1T (1) ™) - G(x) |

¢—0 S

O<u<l.
(4)

Properties 2. Let 0 < 4 < 1 and suppose that o, &}, a, € R, F,
& # 0 are two beta-differentiable functions of order y. Then

0L {a F(x) + 6, 8(x)} =y DAF (1)} + a0y Z{ G ()},
0D {a} =0,
0DAF() - B(x)} = F(x) 0L AF(0)} + E(x) - 0L F(x)}>

9(x) 4 ZAF )} - F(x) {DAT ()}
9*(x)

CDAF ()% (x)} =
(5)

It is noted that if one introduce ¢ = (x + (1/T'(x)))*'¥,
when ¢ — 0, f) — 0 in Equation (4), one of the most impor-
tant property of BFD is defined as

1 )W d%(x)

29'%(x) = (x + T I (6)

which is indicated that the BFD can not only be treated as frac-
tional derivative but also as a natural extension of the integer
order derivative.

2.2. Conformable Fractional Derivative (CFD). Khalil et al.
[49] are introduced in details about the CFD with the follow-
ing useful definition.

Definition 3. Assume that & be a function such that & : [0,
00) — R. Then the conformable fractional derivative of
order y of & is denoted as 2% Z(x) and given by

C(x+xt) - %
PG(x) = lim TEFH )G

¢—0 S

O<u<l. (7)

Properties 4. Suppose that 0 < ¢ <1 and assuming a, a, b, c €
R, F,E #0 are two functions conformable differentiable of
order y. Then

P [aF (x) + bT(x)} = aD{ F(x)} + bD{Z(x)},
DAF(x) - E(x)} = F(x) - DAL (%)} + G (x) - DAF(x)}»
o () = T 95{%);2—( j(x) D)}
A% (x)

DG () =5

dx

(8)

3. Converted ODE for STF-CQNLSE

To start with the following traveling wave variables trans-
form to convert the systems of Equations(2) and (3) into
its corresponding ODEs:

W, (x,t) = &, ()T,

T )
W, (x, 1) = &, (E;) €T,

~

where j= {%, €}. The real functions &;(Z;) and T;(x, ) are
representing the amplitude portion and the phase compo-
nent of the pulse wave propagation, respectively. It is noted
here that =, and T are considered for BFD and defined by

1( 1)% v( 1)!‘

@:_ X+ — - — |+ — N

2 Tw) w I'p
1



whereas in sense of CFD, ¢, and T, are defined by

1
¢ ¢ (11)
‘Eg:—fx"+ 9t“+90.

1z

Here v, k, w, and 0, are representing the speed, fre-
quency, number, and phase constant of wave, respectively.
The coupled system of Equation (2) and Equation (3) are
then converted to the same ODEs by substituting separately
the pair of equations, either Equation (9) and Equation (10)
for BFD or Equation (9) and Equation (11) for CFD along
with their suitable properties. Finally, for the sake of simplic-
ity of this report, after decomposing the obtained ODEs into
real and imaginary parts, one attains the following:

Real parts:

ql?:i’”) + (3xp, - 6K2q1)%1 "y (x4ql —-K°p, — w)& +71, & +5,8,& =0,
ngg’“ + (3xp, - 6;c2q2)%2" + (;c“q2 —K°p, — w)E, + & +5,876,=0,
(12)
where the superscripts &\, &/, &!', and & are denoted
the fourth, third, second, and first order derivatives of &,

respectively.
Imaginary parts:

(py —4xq) &, """ — (v + 31%p, — 4x°q,) &, =0, (13)
13
(p, - 4Kq2)%2’” - (v +3K%p, — 4K3q2)%2' =0.

Applying the linearly independent principle to imagi-
nary parts for recovering:

V= 4K3q1 - 3K2p1,

p, —4xq, =0.

(14)
V= 41<3q2 - 3K2p2,
Py —4xq, = 0.

This two equations gives the frequency of waves as
K= 3(P1_p2)' (15)
44 - )

This suggests that p, # p, and g, # gq,.
Setting &, = I1&,, where II is any nonzero constant so
that IT # 1. The real parts implies to the following:
qlgi’” +(3xp, - 679)) &, + ('q, - ©°p, — )&, + (r, + T’ &} =0,

(16)

qugii") +11(3xp, - 6K2q2)%1" + H(K4q2 -1p, - w)&, + (173r2 +11s,) & =0.
(17)

Both these equations have the similar form under the
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following constraint conditions:

q, =11g,,

3kp, — 6K°q, = I1(3xp, — 6K°q,),
(18)

kg —K'p ~w= H("4‘Z2 —1°p, — w),
ry+ s =TI (IT°r, +5,).
Now, considering
Y,=3kp, —6k°q,, Y, =x*q, —&’p,, Y, =r +II*s;, (19)
Equation (16) reduces to the following form

18" Y, 8, (Y, -0 + Y, & =0.  (20)

4. Analytical Solutions of STF-CQNLSE
via EDAM

Applying the homogeneous balance principle to &\ and
%? in Equation (20) and according to EDAM (see details
in Reference [39]), the formal analytical solutions of Equa-
tion (20) can be represented as a polynomial in §(Z)):

2
&(5) =m+ Y mS"(5), (21)
L=1

where #; (L =0,1,2) are constants with 7, #0. S(&;) is
satisfied the following ODE:

ds(E;
d(Ej]) =In (o) (a+AS(E)) +a<§’2(5j)) ;0 o #0,1.
(22)

Note that Equation (22) offers a hung amount of solu-
tions by depending on «, A, and o as set out in Reference
[39]. By considering Equation (21) and Equation (22), a
polynomial in §(£;) is obtained from Equation (20). As a
result, a set of algebraic equations (ignored for convenience)
for #y,71,, 1, &, A, 0, and w are formulated by setting the
coefficients of this polynomial equal to zero. By simplifying
such equations via the computational package Maple-18,
the following relations are determined:

_ > | 10xp, 2 | 10xp,
1, = £6ac(In (<)) Y, %, 1, =6Ac(In ()) Y, %,

10xp .Y, - 12(In (o)) *@*p 3xkp
- 1602(1 2 | L= g = 2P
1, = +60°(In (7)) Y, %, w 7, 9 7,

(23)

where %, =20a0(In (¢/))* - 5A*(In (2/))* + 6x* and @ =
A - 4ao.

By considering the above relations together with the
solutions of Equation (22) and the assistance of Equation
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(21), the following solitary wave solutions for the considered
STF-CQNLSE as in Equation (2) and Equation (3) in sense
of BFD and CFD, respectively, are determined:

Case 1. When @ <0 and 0 #0,

Pl(x, 1) :x?(ln () /—%{l+tand <\/2_®5j> }ef%, (24)

(27)
V3 (x, t) = i?(ln E)RY; 12};;11{1 + [t«mﬂ(@%) =V AMN secg(\/—_dsz)r}e’w

(28)
w3 (x t):¢31;®(1 (o)) ;‘z;};}‘{n [tan, (V=25 ) tmsecg,(F:J)]z}ezz

(29)

i (x, 1) :I%D(ln (o)) —;21;1;11{4+ [tan‘d <\/;65)> — cot,, (?E]) } }e’tu
(

32)
w3 (x, t)zii(ln () /—%{4+ |:tand( Y .:J) —cotd< 4<DE]> }e‘vsu
(33)

5
W] (1) = 202 (In () - 21 ) 1 coth, [ Y22 2 ¢,
YZ%I !
(37)
i(x, 1) = x%‘b(m (), [- ;2’;;11{1 - [tanh‘(,,(\/an) F iV sechy, (@s}) r}“’:”

(38)

Pi(x 1) =7 31? (In (7)) /,%{1 - [tanhd (ﬁsj) F VAl sech, (\/55),) T}eﬁ/’

(39)

Sk

Yi(x,t)=7F

(in () /- ;22;}1 {1 - [ coth, (VOE,) # VLR esc (VDS ]Z}ers/,

(40)

V(x 1) = xg (In ()% [~ %{1 - [cothﬂ (\/Esj) VAT csc h‘c,(\/asj) } z}efs,,

(41)
¥ (x,t) = ;%D (In () |- ;0’;‘;‘ {4 - {tanhd <@5}) +coth,, <@5j) }e'%,

(42)
PO(x,t)=F 31;‘1) (In (2))*y /- ;0’;‘;1 {4 - [tanhg{ (@@) +coth,, (‘/765]) }ef%.

(43)

Case 3. When oo >0 and A =0,

¥ (x, t) = x6a0(In () /7%{1 + tang,(\/ﬁgj)z}ei%’
W1 (x, 1) = 6ITac(In (/) |- %{1 +an, (Vaos) Je,
W (x, 1) = +6ac(ln ()2 - ;2’;’;)1{1 +cot, (vaas) e,
W2 (x, 1) = £6ITao(In (7)) /7%{1 +coty (VaoE))’ b,

Y3(x,t) = +6a0(In (d))ﬂ —%{1 + [tang(ZMEI) +V AN secg(z\/ﬁsj) r}eﬂ/;

10xp _ 12 e
Y3 (x,t) = +6I1ac(In (&/))2‘ /- YZ%II {1 + {tan&,(Z\/an.:j) VAN secy (2 ota.:f)} }8 i,
¥it(x, t) = 26a0(In () |- 108, 1+ {cot (2Va0Z;) F VAMN cscy(2V/ 002 )r %
1 (%) =% Y, %, < Zj o Ej >

#(x, 1) = £6Tao(In (7)), /7%{1 + [ coty (2/a08,) ¥ VA cscy (2/a0%)) | Z}e"%,

V() == % ao(In (/) [~ %{4 + |itan~{ <@ EJ> - cot,, (@ 5J> ] ' }e”u
WP(5 1) =+ ao(ln ()" /7%{4 . {tang (@51) - cot <@5}> r}em




Case 4. When ao <0 and A =0,

W16 (x, 1) = +6a0 (In (7)) ;0"}"{1 tanh,, (x/faaE])z}e'z/,

p16 2 |_10kp, ¢ =22,

W¥3°(x, t) = +6I1ao(In (o)) W{l tanhﬂ(\/ om.d]) }e )
10xp. =121,

¥V (x, t) = £6a0(In (_sz/))z —Tyfll{l—cmhﬂ(\/fam:j) }ez/,

10xp,

W17 (x, ) = +6TTac (In ()% |- v {1 - cothﬂ(\/%f,)z}e’z',

W1 (x, 1) = £6a0(In ()2 |- ;0""‘{ [tanh, (2v/-a05)) + VAT sech, (2v-a05)) | }
Z 1
1% (x, t) = +6ITac(In (f))? —;L’;?{l - [—tanhm(sz/) + iV AW sechy (2v/-a0Z)) r}e’sr

10xp,

- Yz?fl{l - [*COthM(ZmE]) £ VAN csc hw(ZmE»]z}e’tr

W1 (x,t) = +6a0(In (o))’

10xp,

= =112 T

7%{1 - [—cothd(Z\/faa:j) +VMN csc hﬂ(Zx/fao‘:])} }e i
_10kp, | V-ao v-ao : iT;
Yz%1{4 [tanhd< 3 Hj) + coth,, 3 H]) e,

w3 (x,t) :1?ao(ln (o)) ;0’;1;1{ [mnh_, (‘/;WE]) +coth,, (J;WEJ) r}efz,.

¥y (x, 1) = +6I1ao(In (o))’

W (x, 1) = t%aa(ln ()

(45)
Case 5. When o =a and A =0,
?’ZI(x, t)= i6ocz(ln (Qf))z - 10%p, {tand (ocEA)z + l}eisf,
! Y, %, !
(46)
10
P2 (x, t) = +611a* (In (of))? V[~ Kpl {tand (ag; ) + 1} e’
(47)
P2 (x, t) = +60*(In (<)), | - 106, {cotd( 2% + 1}61"1]’
! Y, %, !
(48)
P2 (x, t) = +611a* (In (of))* 10kp, { t, (a2 )2 + l}e’~1,
2 Y, 7, !
(49)
Y3 (x,t) =+6a*(In (f))* |- ;2;1;11{ [tanﬂ (205)) + VMW sec,(2aE)) r + 1}exzj
(50)
23 2 2 10xp, = 17 i
Y3 (x, t) = +6I1a’(In () 7Y2;;1{ [tan“(sz.:j) i\/WSCCW(ZlXEj)] + l}e i,

(51)

¥2(x, 1) = +62(In (o)) _%{ [ —cot, (208)) + VAT csc,, (205)) ]2 + 1}@,
(

YZ%I
52)

10xp,
Y, 7,

Y2 (x,t) = +6I1a* (In ())*y |-

{ [—cotd (205)) £ VAN csc,y(205)) r + 1}61'2,,

(53)
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¥ (x, ) = += o?(In (o) 12;‘2{{& “(Z ])—cot&,( ])]2+4}e’%,
(54)
w2 (x t)=i¥a2(ln(d))2 ;(zgll{b d(gij)—cm&{(—:})] +4}e*~f
(55)

Case 6. When 0 =—a and A =0,

W3 (x, t) = 2602 (In () /—;L’;gpf{tanhy,(txij)z - 1}8‘5,,
279%1
1

W2(x, 1) = £6I1a (In (o)) |- YO"P ‘{tanh 5 -1},

W (x,t) = +6a*(In (of ’/ 105, {cothd (e5)) —1 %
2 1

10xp 2
- Yz%ll {cothﬂ (a))" - l}e’sf

{ {—tanhd(ZaE]) + iV sec hy(2aE;) }2 - l}efzr

¥ (x, 1) = +6I1a* (In (f))?

~_ 10xp,
YZ%I

W8 (x, 1) = +60*(In (£))*

10xp,
N,

V2(x, t) = +6I1a* (In (f))* |- { [—tanhd(erEJ) + iV sec hﬁ,(ZocEJ)}z - l}e’2

10xp,

29 6ol 2
W (x, t) = 26 (In (7)) Y, %,

{ [—cothd (205;) + VA cschy, (2a5)) ]2 - l}e"lz

_ 10xp,

Y2 (x,t) = +6I1a’(In ())?
5 (%1) (In () Y, %,

{ [—cothd (205)) £ VAN csc by (2a5;) r - 1}5&',

PO (x,t) = t;az(ln ()=

_ }1'(:;‘?1 { [tanh;{ (g 51‘) +coth,, (g Ef) } - 4}6151

3 (x 1) = i?(xz(ln (o))

(56)
Case 7. When A? = 4a0 and
Case 8. When A=a =0,
106p, 1 o
lix, 1) =46, |- L~ ¢i%,
1 (X ) Yz%l Ei e’
(57)

10kp, 1 o
V3! (x, t) = £6I1, [— L~ %,
2 ( ) Yz%l 512

Case 9. When A #0 and « =0,

h,, (AZ;) - sinh,, (AZ;
W2, 1) = 760 (In (of))2ull |~ 10KP1I cosh,, (A5)) —sinh,, (AZ;) e,
Y271 | [cosh,, (AF;) sinh,, (AZ;) + 4]

_loxp, [ cosh,(A5)) ~sinh, (AZ)) 5
Vo1 | [cosh, (AZ)) - sinh, (AZ,) +.42]” |

o 101<p1 sinh,, (AZ;) + cosh,, (AE)) o
[smhW (Ag)) + cosh a(AZ)) + /V}
h,, h,, (AZ; .
W3 (x, ) = 6TTA% (In (o)) IOKP sin ) + coshy (A5)) e,
smhd /L, + coshd(l_, )+ ]

(58)

W3 (x, £) = F6ITN(In ()2l

P (x, ) = F6A*(
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FiGgure 1: 3D periodic wave profile |¥, (x, t)| of Equation (26) for BFD parameter (a) 4 =0.9, (b) y =1 and CFD parameter (c) y = 0.9 and
(d) p =1 with other physical parameters by considering a =2, A=1,0=3, 4 =e, #/=0.2, /' =0.1,k=0.1,[1=2,p, =r, =0.2, 5, =-0.3,

and 6, = 1.

Case 10. When A =F,0 =mF (m+0) and a =0,

10xp I
W3 (x, t) = 26K *m(In (2f))?, |- ! _
ER)) (In (o)) YZ%II(/%— v ,7,5/)2 UV

T
e'~i

ml o) A7 } :
N T

10xp, |
W3 (x, t) = 611K *mMl(In (4))*} |- ! + -
3 (%) (In (o)) Yzzll(/%—m/tfd‘%%)z U=V

iT
i

M A TE AE } ;

(59)

It is noted that all the obtained solutions are valid when-
ever xp,Y,%, <0. Here, the formula for hyperbolic and
trigonometric functions are defined as

sinh,y(Z) = M cosh,y(E) = M
MAZ - VA= MAZ + N A=
tanh,(8) = ———————, cothy (&) = %’
M+ NAE MAZ — N5

— 2 ~ 2
secha(8)= Gam T rae S = e
o MAE - N L M Nl
sing (&) = 5 ,€08,(5) = —

L MAE - N AT L MAE + N ATE
(%)= g e ) S e
i 2 i 2
seca(B) = rgm s wae aB)= o g
(60)

where Z is the independent variable and %, /4 >0 are
arbitrary constants called as deformation parameters.
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Ficure 2: Contour plots of |¥, (x, t)| of Equation (26) for (a) y=0.9 and (b) y =1 for BFD, (c) 4 =0.9 and (d) = 1 for CFD, and 2D wave
profile (Solid line = BFD; Dash Line = CFD) of the effect of (e) time for = 0.75 and (f) fractional parameter y for t = 150. The remaining

parameters are as in Figure 1.

5. Graphical Representations and Discussions

Based on the attained hung amount of solitary wave solu-
tions for the considered STF-CQNLSE in birefringent fibres
with the sense of BFD and CFD, some of them are illustrated
graphically (see Figures 1-6) for demonstrating the effective-
ness of fractional parameter y along with relevant physical
discussions. In our analysis, the parametric values of y are
assumed as 0 < ¢ <1 and the other free parameters are con-
sidered based on the conditions of EDAM.

Figures 1(a)-1(d) display the 3D periodic wave profiles
|#,(x,t)| by considering Equation (26) along with the
influence of BFD parameter (CFD parameter) and a =2,
A=1,0=3 d=e M=02, /=01, k=0.1, [I=2, p, =
r;=0.2, sy =-0.3, 6, =1. In order to properly understand
the influences of both BFD and CFD parameters,
Figure 2 displays the contour plots and 2D wave profiles
|#,(x,t)| by considering the same Equation (26) and the
same typical values of other parameter as in Figure 1. It
is depicted from Figures 1 and 2 that the wavelength
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F1GuRre 3: Optical rouge wave profiles of |¥, (x, t)| and |¥,(x, t)| as in Equation (38) and Equation (39), respectively, for (a) BED parameter
u=0.85, (b) CFD parameter y = 0.85, the effect (solid line = BFD; dash line = CFD) of time for (c) 4 =0.98 and (d) u =1, (e) the effect of
fractional parameter for t = 750. The remaining parameters are =0.1, A=0.5,0=0.2, &/ =e, #/=-0.1, /=05, k=0.1,[1=2,p, =0.2,
r;=-0.2,5,=0.3,and 6, = 1.
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Ficure 4: Optical bright soliton profiles of |¥,(x,t)| and |¥,(x, t)| as in Equation (40) and Equation (41), respectively, for (a) BFD
parameter p = 0.95, (b) CFD parameter y = 0.95, the effect (Solid line = BFD; Dash Line = CFD) of time for (c) ¢ =0.95 and (d) u =1, (e)
the effect of fractional parameter for ¢ = 1200. The remaining parameters are «=0.1, A=0.9, 0 =05, ' =¢, M =N =1, k=0.1, II =2,
p;=02,r,=-02,5=03,and 0,=1.
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F1GURE 5: 3D periodic wave profiles of |¥, (x, t)| and |¥,(x, t)| as in Equation (54) and Equation (55), respectively, for BFD parameter (a)
u=0.95, (b) p=1 and CFD parameter (c) u=0.95, (d) u =1. The other parameters are considered as x=0=0.5, A=0, &/ =e, # =0.2,

N=01,k=01,1T=2,p,=r, =02,5,=-0.3,and 0, = 1.

(frequency) are shorter (higher) for conformable derivative
rather than beta derivative. In addition, the wavelength
(frequency) are shorter (increasing) with the increase of
both BFD and CFD parameter.

Figure 3 represents the 3D and 2D resonance solitary
wave (like killer wave, singular soliton) profiles by consider-
ing Equation (38) and Equation (39) with the variation of
both BFD and CFD parameter for time. To display these fig-
ures, the other parametric values are considered as a=0.1,
A=05,0=02, d=e M=-01, /=05, k=0.1, [T=2,
P, =02, r,=-02, 5,=0.3, and §,=1. It is interesting to
show from Figure 3 that for different choice of arbitrary

parameters, one can produce unstable soliton, that is, rouge
waves for fractional value of the parameter y from Equation
(38) and Equation (39), but it would always produce singular
soliton for y = 1. The amplitudes of rouge waves are increas-
ing with regard to increase of fractional parameter, but
decreasing and behaves pulse like with the increasing values
of time.

Figure 4 presents the 3D and 2D resonance bright soli-
ton profiles with the variation of time for both of BFD and
CFD parameter by considering Equation (40) and Equation
(41). To display these figures, the other parametric values are
considered as «a=0.1, A=0.9, 0=0.5, A =¢, M =N =1,
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Ficure 6: Contour plots of |7, (x, t)| of Equation (54) for (a) BFD parameter p = 0.95 and (b) CFD parameter y = 0.95, and 2D wave profiles
(solid line = BFD; dash line = CFD) with the effect of time for (¢) ¢ =0.75, (d) u=1 and (e, f) with the effect of fractional parameter for

t=900. The remaining parameters are as in Figure 5.

k=0.1,1I=2,p, =02, r,=-02,5 =03, and 6,=1. It is
depicted from Figure 4 that the amplitudes of bright soli-
tons are decreasing with the increasing values of fractional
parameter y for any given time. For non-local value =
0.95 of BFD (solid line) and CFD (dash line) parameter,
the amplitudes of the bright solitons are increasing with
pulse like behavior due to the increase of time. But, the
amplitudes of the bright solitons are remaining constant

and the bright solitons behaves pulse with the variation
of time only for the local value of y=1.

Finally, Figures 5 and 6 demonstrate the 3D contour
plot and 2D resonance periodic wave profiles by consider-
ing Equation (54) and Equation (55) with the variation of
both BFD and CFD parameter as well as time. To display
these figures, the other parametric values are considered as
a=0=05 A1=0, d=e, M=0.2, /=0.1, k=0.1, [T=2,
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p;=r=02, 5,=-0.3, and 0,=1. It is depicted from
Figures 5 and 6 that soliton types periodic waves are pro-
duced for any values of BFD and CFD parameter and the
increasing values of time. But, only the wavelength of such
waves are increasing along the space domain for a specific
time with a fractional value of the BFD and CFD param-
eter. Further, the wavelength of these waves are remark-
ably decreased when the values of the fractional
parameter are sufliciently increased. It is also observed that
the frequency of these waves are increased dramatically for
local value p=1 rather than any nonlocal value of BFD
and CFD parameter. Consequently, Figure 6(f) is clearly
shown that the blue light (short wavelength) travels faster
than red light (long wavelength).

It is noted that Yildirim et al. [23] have only secured
dark and singular type optical solitons by adopting exp-
function expansion algorithm. In another report [24], they
recovered bright, dark, and singular solitons by Riccati func-
tion approach, sine-Gordon function technique, and F-
expansion scheme. Additionally, Zahran and Bekir [25]
implemented extended simple equation method to recover
some periodic and singular type solutions by taking four
forms of nonlinearity. But in all these studies, their model
equation is identical with this considered STF-CQNLSE
when the parametric value y=1 is taken only. Further,
Dutta et al. [26] have also investigated similar types of solu-
tions by considering the equation for parabolic law nonline-
arity having conformable derivative by utilizing the extended
sinh-Gordon expansion method. But the novelty of the cur-
rent study is that we investigate more new solitonic struc-
tures, like periodic pulse, combo bright-dark, rogue
structures, etc. along with their obtained solutions based
on the existence criteria of the solutions as well as some
parametric values which were not found in previous litera-
tures. We also illustrated whether there is any effect of the
fractional parameter in the equation considered and found
that it has a considerable impact on the optical wave struc-
tures. This new EDAM technique is being implemented for
the first time to derive several forms of optical solitons from
the considered model equation, and some of the solutions
return similar wave structures for other techniques sug-
gested in the literature. Thus, the derived solutions take on
an entirely new form because of the fractional order. As a
result, this technique can be utilized to construct more gen-
eral forms of solutions not only for the STF-CQNLSE under
consideration, but also for any model equation in other
disciplines.

6. Concluding Remarks

The classical derivative operators are sometimes unable to
address the physical issues in the dynamical systems. This
actually happens when the complexity may arise suddenly
in a certain regime of space or time due to the impact of
nonlocality or nonconservative energies or any other physi-
cal reasons in birefringent fibres. To overcome such diffi-
culty, one may use the fractal, or so-called the BFD and
CFD. Such derivatives are treated as the local or nonlocal
derivatives based on the parametric value of fractional
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parameter. Thus, the coupled cubic-quartic nonlinear Schro-
dinger equations having Kerr-law nonlinearity and both of
BFD and CFD space-time evolution have been considered
to study the optical pulses in birefringent fibers. The effective
integration scheme, that is EDAM has been successfully
implemented to determine the optical wave solutions. It is
observed that the fractal nonlocal operator parameter is
remarkably changed the optical wave phenomena in bire-
fringent fibres. In this way, one may study optical wave phe-
nomena in birefringent fibres by considering the presented
model having other nonlinearities. Note that some useful
new solutions have been determined by considering the con-
straint conditions. However, one can study the stability anal-
ysis for traveling waves by forming the planar dynamical
system, but beyond the scope of this study.
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