Hindawi

Advances in Mathematical Physics
Volume 2022, Article ID 2501947, 8 pages
https://doi.org/10.1155/2022/2501947

Research Article

Q@) Hindawi

Two-Dimensional Fredholm Integro-Differential Equation with
Singular Kernel and Its Numerical Solutions

Abeer M. Al-Bugami

Department of Mathematics and Statistics, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Correspondence should be addressed to Abeer M. Al-Bugami; abeerl0laa@yahoo.com

Received 4 October 2022; Revised 31 October 2022; Accepted 8 November 2022; Published 8 December 2022

Academic Editor: Su Yan

Copyright © 2022 Abeer M. Al-Bugami. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

In this paper, we introduce the nonlinear Fredholm integro-differential equation of the second kind with singular kernel in two-
dimensional NT-DFIDE. Furthermore, we study this new equation numerically. The existence of a unique solution of the equation
is proved. The numerical results of NT-DFIDE are obtained by the following methods: Toeplitz matrix method (TMM) and
product Nystrom method (PNM). The given applications showed the efficiency of these methods.

1. Introduction

There are many well-written texts on the theory and applica-
tions of integral equations in different sciences. From 1960
to the present day, many new numerical methods have been
developed for the solution of many types of integral equa-
tions, such as the Toeplitz matrix method, the product
Nystrom method, the Galerkin method, the Runge-Kutta
method, and the Block by block method (see Linz [1], Baker
et al. [2], and Delves and Mohamed [3]). Authors, in [4],
used the iterative method based on quadrature formula to
solve T-DNFIEs. Fattahzadeh, in [5], solved T-DLFIE and
NFIE of the first kind based on the Haar wavelet. Authors,
in [6], solved T-DIE of the first kind by multistep method.
Pashazadeh Atabakan et al. [7] solved linear FIDEs using
the well-known Chebyshev-Gauss-Lobatto collocation
points. Rabbani and B. Zarali, in [8], solved a system of
LIDEs with initial conditions by using modified decomposi-
tion method. Arqub et al., in [9], solved the FIDE numeri-
cally in a reproducing kernel Hilbert space. Pandey, in
[10], studied the LFIDEs numerically. Erfanian and Zeida-
badi, in [11], solved the NFIDE numerically. Saadatmandi
and Dehghan, in [12], discussed the higher-order LFIDDE
with variable coeflicients. In [13], Al-Bugami studied the
numerical algorithm for the solution of nonlinear two-
dimensional Volterra integral equation arising from torsion

problem. In [14], Al-Bugami studied N-FIDE of the second
kind in two dimensions with continuous kernel. The authors,
in [15-18], studied the different types of integral equations
with singular kernel numerically. In [19], Khajehnasiri studied
the numerical solution of nonlinear 2D Volterra-Fredholm
integro-differential equations by two-dimensional triangular
function. The authors, in [20], used bivariate Jacobi polyno-
mials for solving Volterra partial integro-differential equations
with the weakly singular kernel.

The N-FIDE of the second kind in two dimensions with
singular kernel has application as the contact problem in the
theory of elasticity with singular kernel, where the coeflicient
bed of the compressible materials is neglected.

Consider

Z" (m,n) + A(m, n)Z' (m, n) + B(m, n)Z(m, n) = Q(m, n)
b d
- AJ J L(m, n, t,s)y(t,s, Z(t,s))dtds.
(1)

Under the boundary conditions,

Z(a,c)=qry,
Z(b,d)=q,r,.
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Z is the unknown function, which represents solution of
the NT-DIDE (1). Z' and Z" are the first and second deriv-
atives of Z, respectively. Also, A is a constant. A(m,n), B
(m,n) € Cla, b] x C[c, d] with its derivatives. p(m, n,t,s) is
the singular kernel.

Integrating (1), twice, and then letting m=b and n=d,
Equation (1) reduces to

b pd
Z(m,n) =f(m,n) + AJ J p((m—1t), (n=ys))y(t,s, Z(t,s))dtds.
(3)

Equation (3) represents T-DFIDE in the nonlinear case.

2. Existence of a Solution of NT-DFIDE

Consider the following conditions, by using the Picard
method:

(i) The kernel p((m —n), (t —s)) € C([a, b] x C[c, d]) and
satisfies the discontinuity conditions

d 1/2

UzL lp((m—t),(n- S))|2dtds = A < co(Aisaconstant)
(4)

(ii) f(m,n)eC|a, b] x C[c, d], and its norm is defined as

= s [ Udﬁ(m, )| an =M, = Clab]x Cled

mynejJ a ¢
(5)

(iii) The unknown function Z(m,n) satisfies the
Lipschitz condition with respect to its argument
and its normal is defined as

1Z(m, )| - Ub fzm ) dma| Ceczn, ©

a

Theorem 1. The solution of the T-DFIE with singular kernels
exists and is unique under the condition

1l
A< - (7)
We state the following lemmas.

Lemma 2. The infinite series Y ;ogy;(m, n) is uniformly con-
vergent to a continuous solution function Z(m, n).
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Proof. We construct the sequence of the functions Z, (m, n)
as

b pd
yZ,, (m,n) =f(m,n)+ AJ J pm—t,n—s)Z,, _(t, s)dtds,
(8)

with

Zy(m, n) = f(m, n), ©)

(11)

Using the properties of the modulus, formula (10) takes
the form
|
U

With the aid of formula (10), we have

([, (rm, )| <

b pd
J J pm—t,n—3s)(Z,._\(t,s) = Z,,_,(t,s))dtds

- (12)

([, (11 m) || <

Jbrp(m —t,n—s)dtds
. (13)

A
- s, t
#]m*_l( >||\

Then,

1

A,y (58] (14)
7 AW (5]

¥, (ms )| <
which takes the form

1
([ (s )| < ][y (“= A< 1>- (15)

Let, in (12), n =1, we get

Iy (m, )|l <

A bpd 172 bl .
p‘ <-[a-[cp (mit)nis)dtds> g}l%}([a[c (V/O(t’s)dt) ds

(16)

Using (i) and (ii), we have

1
Iy )| < - AMIA] < oM. (17)

So, by the mathematical induction method, we get

v, (mm)]| <o M,n* =0, 1,2, - (18)
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Then, we can write
Z(mm)= Y wi(m. ) (19)

The series (19) is uniformly convergent since the terms
y,;(m, n) are dominated by

1 /oy
E,= 5 <a +x> a(x, t),

E, = % (?3_1/ - y> alx,f) (226).

Lemma 3. A continuous function ¢(x,y) represents a unique
solution of Equation (3).

Proof. We first prove that ¢(x,y) defined by (19) satisfies
Equation (3), and then, we set

Z(m,n) =Z,(m,n) +q,(m,n), (qn,(m, n) — 0as n'—>oo).
(21)

Then, we get

b pd
Z(m ) =gy (m) = 2f )+ [ [ plm—t.-)
~(Z(t,s) — q,_,(t,s))dtds.

22)

Then, we have

b rd
mm;\é)? Z(m,n) — if(m, n) - %J J p(m—t,n—s)Z(t,s)dtds
<max|q,(m,n)|+ A rr (m—t,n—s) max (t,s)|dtds
_m,nel‘q" 4 | ‘#| p > m,ne]lqn -1\ ‘ :

adc

aJc

(23)

The previous inequality takes the form

HZ(m, n) - if(m, n)— ﬁij‘dp(m —t,n—s)dtds Z(t, s)dtds

a

c

1

< [lgy ()| + @4+ (59 <a= mAw)-

(24)

To show that ¢(x, y) is the only solution, we assume that
¢(x, y) is also a continuous solution of (3); then, we get

’Z(m, n) - Z(m, n)’ < th\p(m —t,n-9)||Z(t,5) - Z(t,s) ‘dtds.

a

(25)

Equation (25) leads to

HZ(m, n) - Z(m, n)H < aHZ(t, §) = Z(t,5)

A
,(a:—|)t|<1)‘
|ul

(26)

Since E;f(x)dx =(h(E-1)/In (E))f, (1.74), then (26)

is true only if ¢(x, y) = §(x, y); that is, the solution of (3) is
unique. o

3. Numerical Processors for Solving NT-DFIDE

3.1. TMM. The numerical experiments are prepared to illus-
trate these considerations, and the estimating error is
calculated.

Consider the linear integral Equation (3), and let the
domain of integration Q = [a, b] x [c, d].

b pd
Z(m,n) = f(m,n)+ /\J J p((m—1t), (n—s))y(t,s, Z(t, s))dtds.

adc

(27)

We can write the integral term of Equation (27) as

b pd
J J p((m—t), (n—ys))y(ts Z(t,s))dtds

aJc

_ z I=-NN_1 Z rszMp((m _ t), (I’l — g))y(t, S, Z(t, S))dtdS,

n

(28)

where in  [7f(x)dx=h/12[5f, +8f, - f,] + (h*124)f2(8),
Se(xgx;) (1.77), we get

n'h+h pm'h+h
J J p((m—t), (n—=s))y(t.s, Z(t,s))dtds

n'h m'h
= Ay (m, n)z(n’h,m’h) + By, (n'h+h,m'h+h) +R,
(29)
where A,,(m,n) and B, (m,n) are two arbitrary
functions to be determined and R is the error.

Then, we put Z(t,s) =1.1,ts in Equation (29). If the
error R is assumed negligible, then we obtain

a1 [(n'h+h) (m’h+h)1 i ; ]

h (n’h+m’h+h) (n’h+m’h+h)

(30)

) (m’h)f}

1

(31)




Hence, Equation (28) becomes

J‘;I;Z(m—t, n-s)y(t, s, Z(t,s))dtds
N-1 M-1

ZM [An’,m’ (m, n)y (n,h, mh, Z(n,h, m’h> )

' ,
n=-Nm=—

+B, y (m,n)] y(n,h, m'h, Z(n,h, m,h))
N

1l
H‘M‘

:Z Ay (m, n)y(n'h, m'h, Z(n,h, mrh))
:% B(n 1) ( 1)(m n)y (nh m h, Z(nh mh))
D, . (m, n)y(n,h, m'h, Z(n,h, m,h)),

(32)

where

A_y(mn)yn' =m'=-N,

D, (mn)=< A (mmn)+B,_(mmn) -N< n'=m'<N,
By_(m,n) n'=m'=N
(33)
Thus, the integral Equation (3) becomes
N M
A Y ) Dy, (mn)
n'=—Nm'=-M (34)
. y(n/h, m'h,Z(n'h, m’h)) =f(m, n).
If we put m = kh, n = lh, then we get
N M ,
-A D . n’h,mh,Zr !
n[gNm,:Z;M n,m kly( n'm ) (35)

=fu-N<k<N-M<I<M.

3.2. The PNM. Consider the T-DFIE of the second kind.

Z(m,m) = f(m, n) +Ajbrp<<m

aJdc

—t), (n—s))y(t, s, Z(t, s))dtds.

(36)

When the kernel p((m—t), (n—-s)) is a singular term,
we can often factor out the singularity in k by writing

pl(m = 1), (1)) = k{(m = 1), (n=$)k((m = 1), (1= 5)),
(37)
where k((m—1),(n—s)),k((m—1t),(n—s)) are badly

behaved and well-behaved functions of their arguments,
respectively. We rewrite (36) in the form
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bd_
Z(m, n) =f(m,n)+AJ J k((m—t),(n-ys)) (38)

~k((m—1t), (n—s))p(t,s, Z(t, s))dtds.

We approximate the integral term in (38) when m = m;,
n=mn; by

b b
J J k(m;—t,n; = s)k(m; — t,n; - s)
))dtds = ZZwuwllk m; i—5)

j=01=0
Y(tpsp Z(tp 1)),

y(t s Z(
(39)

where w;; and w;; are the weights. We may write

Jbric(mi —t,n;—s)k(m

aJdJa

N=212M=2/2 (t,. (Syer
“dds= ) ) J] Jl k(m; = t,n; =) (40)
=0 =0

i—Ln=s)y(t s, Z(t,5))

i i
L Jsy

- k(m; - t, n; — s)dtds,

i

where m;=t,=n;=s;,=a+1h,i=0,1,---,N with h=(b-a)
/N and N even. Now, if we approximate the nonsingular part
of the integrand, we find

b b ~
J J p(ti—t,s;—s)k(t;—t,s; = s)p(t, s, Z(t,

NZ22MZ212 oty Sy
IR R
j=0  1=0

« (taje1 = 1) (Sat1 =) (tajr2 = 1) (Sats2 = 9)
(21*) (2h?)
-(ti — )8~ szl)y(t, s, Z(tzj, 521))
N (t - th) (s=sx) (t2j+2 - t) (Sar2 = $)
(W) (r*)
- 521+1)V(t> S Z(t2j+1’ 521+1))
=) (t - t2j+1) (s = Sa11)
(2n*) (2h)

i~ bjras Vi~ Vo)V (65 Z(t2j+2’ o) }dtds

N M
=Zzw llk i t;i—

0 =0

s))dtds

k (41)

'(ti — b i

. (t- tzj)(s

s)Y(6s Z(ts ),

.
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TaBLE 1: Numerical values and absolute error values by using TMM and PNM, n = 20, at linear case k = 1.
1 m " " T™MM PNM
Padt Urmm Errorpyy Upnm Errorpyy
-1.0 -1.0 1.0000 0.99120 0.008797 0.98999 0.010000
-0.8 -0.8 0.6400 0.62784 0.012154 0.62790 0.012094
-0.6 -0.6 0.3600 0.35051 0.009489 0.34924 0.010750
-0.4 -0.4 0.1600 0.15502 0.004974 0.15224 0.007754
-0.2 -0.2 0.0400 0.03874 0.001256 0.03590 0.004092
0.01 0 0 0.0000 0.00229 0.000229 0.00006 0.000060
0.2 0.2 0.0400 0.03874 0.001256 0.43951 0.003951
0.4 0.4 0.1600 0.15502 0.004974 0.16759 0.007599
0.6 0.6 0.3600 0.35051 0.009489 0.37048 0.010488
0.8 0.8 0.6400 0.62784 0.012154 0.65197 0.011978
1.0 1.0 1.0000 0.99120 0.008797 1.00991 0.009916
-1.0 -1.0 1.0000 0.99912 0.000878 0.99899 0.001001
-0.8 -0.8 0.6400 0.63879 0.001212 0.63879 0.001209
-0.6 -0.6 0.3600 0.35905 0.000945 0.35892 0.001076
-0.4 -0.4 0.1600 0.15950 0.000495 0.15922 0.000776
-0.2 -0.2 0.0400 0.03987 0.000124 0.03958 0.000411
0.001 0 0 0.0000 0.00002 0.000023 0.67 x107° 0.67 x 107>
0.2 0.2 0.0400 0.03987 0.000124 0.04039 0.000393
0.4 0.4 0.1600 0.15950 0.000495 0.16075 0.000759
0.6 0.6 0.3600 0.35905 0.000945 0.36104 0.001048
0.8 0.8 0.6400 0.63878 0.001212 0.64119 0.001197
1.0 1.0 1.0000 0.99912 0.000878 1.00099 0.000991
where ;= jh, t;,; = (j+ 1)h,s;=s;,; =5 —s,; =—h, and the 4. Numerical Problems
weight functlons w;jw; are given by 4.1. Application For a Logarithmic Kernel. Consider
L (2 7 ’
wi,Owi,0:4_;12Jt L K(t,— t,s;— s)(t, — 1) Zz (m,n)+AZ1(m1 n) +BZ(m, n)
o = f(m, n) —AJ J In [m—t| In |n—s|(Z(t,s))kdtds.
(s, = 9)(t, = t)(s, — s)dtds, Y
bjra Sai2 (43)
Wioj 1 Wiy = J J k(t si=s)(t=ty)
Under the boundary conditions,
(s 521) (tz 2~ ) (Sa12 — 5)dtds,
) Z(-1,-1)=1,
Wi oW = —4J J k(t;=t,s;=s)(t = tyjs) Z(1,1)=1. (44)
4h™ )i, L), ’

(5= 8y20) (t = tyjoy) (5= 531 ) dtds

1 J bajs2 rzmk( )( )
+ — =18, —5)(tyi g — ¢
4 i > 2j+1
an' )y,

Sa1

’ (52]"*'1 - S) (t2j+2 - t) (52j+2 - S) dtdS,
1 (I~ (M
W; NW; = mjt J k(t;=t,s;—s)(t—ty_s)
N-2

SM-2

(s =spa)(t =ty y)(s = s )dtds.
(42)

The exact solution is Z (m,n) = m.n; if we set k=1 in

(43), we get
Z'"(m, n) + AZ' (m, n) + BZ(m, n)

1 gl 45
=f(m,n)—)tj J In |m—t| In |n—s|(Z(t,s))dtds, (45)

-1J-1

which is called the LT-DFIDE, and if we set k > 2 in (43),
we obtained the NT-DFIDE, of the second kind, with A =
0.01,0.001, A= (-2/m+mn),B=1. We solve Equation (43)
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TABLE 2: Numerical values and absolute error values by using TMM and PNM, n = 20, at nonlinear case k = 2.

A m " w TMM PNM
pact Urmm Erroryyy Upnm Errorpay
-1.0 -1.0 1.0000 0.99939 0.000605 0.998146 0.0018535
-0.8 -0.8 0.6400 0.63839 0.001604 0.637179 0.0028200
0.6 0.6 0.3600 0.35881 0.001182 0.357505 0.0024945
-0.4 -0.4 0.1600 0.15939 0.000605 0.158220 0.0017792
-0.2 -0.2 0.0400 0.03962 0.000375 0.038720 0.0012790
0.01 0 0 0.0000 0.00026 0.000260 0.001018 0.0010188
0.2 0.2 0.0400 0.03962 0.000375 0.038870 0.0011290
0.4 0.4 0.1600 0.15939 0.000605 0.158457 0.0015420
0.6 0.6 0.3600 0.35881 0.001182 0.357663 0.0021336
0.8 0.8 0.6400 0.63839 0.001604 0.637399 0.0026000
1.0 1.0 1.0000 0.99939 0.000605 0.999817 0.0019020
-1.0 -1.0 1.0000 0.99993 0.000060 0.639719 0.0001821
-0.8 -0.8 0.6400 0.63989 0.000160 0.159821 0.0002809
0.6 0.6 0.3600 0.35988 0.000117 0.359747 0.0002527
-0.4 -0.4 0.1600 0.15993 0.000060 0.359821 0.0001780
02 0.2 0.0400 0.03996 0.000037 0.039871 0.0001280
0.001 0 0 0.0000 0.000025 0.000025 0.000102 0.0001021
0.2 0.2 0.0400 0.039962 0.000037 0.039887 0.0001122
0.4 0.4 0.1600 0.159939 0.000060 0.159845 0.0001542
0.6 0.6 0.3600 0.359882 0.000117 0.359786 0.0002133
0.8 0.8 0.6400 0.639839 0.000160 0.639739 0.0002600
1.0 1.0 1.0000 0.999939 0.000060 0.999809 0.0001902

TaBLE 3: Numerical values and absolute error values by using TMM and PNM, n = 20, at linear case k = 1.

1 m " " T™M PNM
Exact Uramt Errorpy Upnumt Errorpyy
-1.0 -1.0 1.0000 1.00037 0.000378 1.00067 0.000673
-0.8 -0.8 0.6400 0.64077 0.000775 0.64067 0.000673
-0.6 -0.6 0.3600 0.36077 0.000772 0.36067 0.000742
-0.4 -0.4 0.1600 0.16076 0.000768 0.16067 0.000672
-0.2 -0.2 0.0400 0.04074 0.000747 0.04067 0.000674
0.01 0 0 0.0000 0.00116 0.001160 0.00067 0.000674
0.2 0.2 0.0400 0.04074 0.000747 0.04067 0.000674
0.4 0.4 0.1600 0.16076 0.000768 0.16067 0.000674
0.6 0.6 0.3600 0.36077 0.000772 0.36067 0.000674
0.8 0.8 0.6400 0.64077 0.000775 0.64067 0.000749
1.0 1.0 1.0000 1.00037 0.000378 1.00067 0.000675
-1.0 -1.0 1.0000 1.00003 0.000037 1.00006 0.000067
-0.8 -0.8 0.6400 0.64007 0.000077 0.64006 0.000067
-0.6 -0.6 0.3600 0.36007 0.000077 0.36006 0.000067
-0.4 -0.4 0.1600 0.16007 0.000076 0.16006 0.000067
-0.2 -0.2 0.0400 0.04007 0.000074 0.04006 0.000067
0.001 0 0 0.0000 0.00011 0.000115 0.00006 0.000067
0.2 0.2 0.0400 0.04007 0.000074 0.04006 0.000067
0.4 0.4 0.1600 0.16007 0.000076 0.16006 0.000067
0.6 0.6 0.3600 0.36007 0.000077 0.36006 0.000067
0.8 0.8 0.6400 0.64007 0.000077 0.64006 0.000067
1.0 1.0 1.0000 1.00003 0.000037 1.00006 0.000067
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TABLE 4: Numerical values and absolute error values by using TMM and PNM, n = 20, at nonlinear case k = 2.
1 m " " T™M PNM
Padt Urmm Errorpyy Upnm Errorpyy
-1.0 -1.0 1.0000 0.995933 0.004066 0.996224 0.003775
-0.8 -0.8 0.6400 0.636315 0.003684 0.636219 0.00378
-0.6 -0.6 0.3600 0.356318 0.003681 0.356222 0.003777
-0.4 -0.4 0.1600 0.156321 0.003678 0.156226 0.003773
-0.2 -0.2 0.0400 0.036307 0.003692 0.036229 0.003770
0.01 0 0 0.0000 0.003283 0.003283 0.003769 0.003769
0.2 0.2 0.0400 0.036307 0.003692 0.036299 0.003770
0.4 0.4 0.1600 0.156321 0.003678 0.156226 0.003777
0.6 0.6 0.3600 0.356318 0.003681 0.356222 0.003777
0.8 0.8 0.6400 0.636315 0.003684 0.636220 0.000377
1.0 1.0 1.0000 0.995933 0.004066 0.996226 0.003777
-1.0 -1.0 1.0000 0.999593 0.000403 0.999623 0.000376
-0.8 -0.8 0.6400 0.639632 0.000367 0.639622 0.000377
-0.6 -0.6 0.3600 0.359632 0.000367 0.359622 0.000377
-0.4 -0.4 0.1600 0.159632 0.000367 0.159623 0.000376
-0.2 -0.2 0.0400 0.039631 0.000368 0.396236 0.000376
0.001 0 0 0.0000 0.000327 0.000327 0.000376 0.000376
0.2 0.2 0.0400 0.039631 0.000368 0.039623 0.000376
0.4 0.4 0.1600 0.159632 0.000367 0.159623 0.000376
0.6 0.6 0.3600 0.359632 0.000367 0.359622 0.000377
0.8 0.8 0.6400 0.639322 0.000367 0.639622 0.000377
1.0 1.0 1.0000 0.999593 0.000406 0.999623 0.000376

using TMM and PNM. In Tables 1 and 2, we present the
exact, numerical solutions and the corresponding errors for
some points of m, n, 0<m,n<1, at n=20. In Tables 1
and 2, ug,, . is the exact solution, uyg, is the approximate
solution of TMM, Errorpy, is the absolute error of PNM,
Upny 1S the approximate solution of PNM, and Errorpy,, is
the absolute error of PNM.

4.2. Application for the Carleman Kernel. Consider

Z""(m,n) + AZ' (m, n) + BZ(m, n)

- (46)
= f(m,n) - AJ J lm—t| V| — 5|2 (Z(t, 5))"dtds.

-1J41
Under the boundary conditions,

Z(-1,-1) =1,

Z(1,1)=1. )

The exact solution is Z (m, n) = m.n; if we set k=1 in
(46), one has

Z'"(m,n) + AZ' (m, n) + BZ(m, n)
1l 48)
=f(m,n) - /\J_J_l |m—t|™" |n—s| 7> (Z(t, s))dtds,

with 1=0.01,0.001,v; =v, =0.004, A= (-2/m+n),B=1.
In Tables 3 and 4, we present the exact, numerical solutions
and the corresponding errors for some points of m, n, 0 <
m,n <1, at n=20.

5. The Conclusion

The goal of this work is to study the T-DFIDE in linear and
nonlinear case. This paper proposed an effective two numer-
ical methods to obtain the solution. For this purpose, TMM
and PNM have been presented. The given numerical prob-
lems showed the efficiency of the TMM and PNM. From
the previous results, we deduce in linear and nonlinear case;
it was found that TMM converges faster than PNM, where
the kernel takes the logarithmic form, while when the kernel
takes the Carleman form, PNM converges faster than TMM.
In addition, the absolute error values for TMM and PNM
were also decreased when the value of A was decreased.
The codes were written in Maple program.
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