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The Heisenberg ferromagnetic spin chain equation (HFSCE) is very important in modern magnetism theory. HFSCE expounded
the nonlinear long-range ferromagnetic ordering magnetism. Also, it depicts the characteristic of magnetism to many insulating
crystals as well as interaction spins. Moreover, the ferromagnetism plays a fundamental role in modern technology and industry
and it is principal for many electrical and electromechanical devices such as generators, electric motors, and electromagnets. In
this article, the exact solutions of the nonlinear (2 + 1)-dimensional HFSCE are successfully examined by an extended modified
version of the Jacobi elliptic expansion method (EMVJEEM). Consequently, much more new Jacobi elliptic traveling wave
solutions are found. These new solutions have not yet been reported in the studied models. For the study models, the new
solutions are singular solitons not yet observed. Additionally, certain interesting 3D and 2D figures are performed on the
obtained solutions. The geometrical representation of the HFSCE provides the dynamical information to explain the physical
phenomena. The results will be significant to understand and study the (2 + 1)-dimensional HFSCE. Therefore, further
studying EMVJEEM may help researchers to seek for more soliton solutions to other nonlinear differential equations.

1. Introduction and Main Results

The investigation of traveling wave solutions of nonlinear
evolution equations (NLEEs) plays a key role in the study
of the internal mechanisms of complex phenomena. In the
last few decades, we have made imperative developments
and found in the literature many powerful and skilled
methods to obtain analytical traveling wave solutions, such
as electromagnetism, liquid mechanics, atomic materials,
complex physics, electrical engineering, optical fibers, and
geochemistry [1-8]. As a result, a large number of mathema-
ticians and physicists tried to invent various methods to
obtain solutions to such equations. About describing various
complex phenomena in the field of NLEEs, soliton theory
plays a crucial role in a number of nonlinear models. Differ-
ent scientists have studied the dynamics of solitons in differ-
ent models. For instance, Beli¢ [9] investigated analytical
light bullet solutions of the generalized (3 + 1)-dimensional

nonlinear Schrédinger equation in 2007. In recent years,
Kumar et al. have made great achievements in the study of
nonlinear differential equations of water wave models by
using Lie symmetry analysis [10, 11].

In 2011, Sabry et al. interpreted three-dimensional
ion-acoustic envelope soliton excitations in electron-
positron-ion magnetoplasmas through the derivation of
three-dimensional nonlinear Schrodinger equation. [12] Helal
and Seadawy applied function transformation methods to the
D-dimensional nonlinear Schrédinger equation with damping
and diffusive terms. [13] In 2012, Giulini and Gropfardt [14]
derived the Schrodinger-Newton equation for spherically
symmetric gravitational fields in a WKB-like expansion in 1/
¢ from the Einstein-Klein-Gordon and Einstein-Dirac system.
Kumar et al. [15] obtained exact space-time periodic traveling
wave solutions of the generalized (3 + 1)-dimensional cubic-
quandt nonlinear Schrodinger equation with spatial distribu-
tion coefficients. In 2017, Seadawy and Lu [16] derived the
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exact bright, dark, and bright-dark solitary wave soliton solu-
tions of the generalized higher order nonlinear NLS equation
by using the amplitude ansatz method. The powerful sine-
Gordon expansion method was utilized to search for the solu-
tions to some important nonlinear mathematical models aris-
ing in nonlinear sciences by Bulut et al. [17]. Zayed et al. [18]
investigated the soliton solutions to the nonlinear Schrodinger
equation with fourth-order dispersion and dual power law
nonlinearity.

In modern magnetic theory, the (2+ 1)-dimension
HFSCE is considered as one of the very important equations
to explain the dynamics of nonlinear magnets. The (2 + 1
)-dimensional HESCE which is a suitable equation repre-
senting many insulating magnetic crystal properties and
explaining spin-long ferromagnetic ordered interactions is
of striking interest in the soliton theory. The soliton solu-
tions for the (2 + 1)-dimensional HFSC equation are charac-
terized by high quality and qualitative studies for a lot of
phenomena and processes in various fields such as ferro-
magnetic materials, nonlinear optics, and optical fibers. In
the meantime, the Heisenberg model of ferromagnetic spin
chains with various magnetic interactions associated with
nonlinear evolution equations exhibiting a neat and tidy
behavior in the classical and semiclassical continuum limits
[19]. Inhomogeneous exchange interactions are also good
candidates for activating spin reversal processes in ferro-
magnets [20]. In 2014, Latha and Vasanthi [21] applied the
modified Kudryashov and Darboux transformation method
for construction of exact traveling wave solutions. In 2017,
Inc et al. [22] applied the complex envelope function and
the generalized tanh methods to obtain the resolution of
the soliton solutions of the two-dimensional HFSC equation.
In 2018, Ma et al. [23] utilized an improved F-expansion
method (Exp-function method) and the Jacobi elliptic
method, respectively, to explore soliton solutions of the
2D-HFESC equation. In 2018, Li and Ma [24] used the Hirota
bilinear method and chose proper polynomial functions in
bilinear forms, the one-order rogue waves solution and its
existence condition were obtained. In 2020, the different
wave structures of the 2D-HFSC equation were investigated
by Osman et al. [25] via the new extended FAN subequation
method. In 2020, Bashar and Islam [26] implemented the
modified simple equation (MSE) and improve F-expansion
method to find the exact solutions of the HFSCE. In 2021,
Hosseini et al. [27] investigated the HFSCE by the Jacobi
elliptic functions (JEFs) method. In 2022, Sahoo and Tripa-
thy [28] used the modified Khater method to study the
HESCE for the new exact solitary solutions.

Considering the (2 + 1)-dimensional HFSCE [25, 27]
which is defined as

2 2
iaV(x,y, t) N la V(xpt) +/328 V(x, 3, t)
ot 0x? 0y? (1)
BZV(x,y, ) )
— =B, V(x,y,t 0. 1)17 =0,
+ﬁ3 ayax /34 (X Y )|V(X Y )l 0
here
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B, = 64()’ +9,), B, = 64(V1 +9,), B3 = 284)’2’ Bi= 26'B.
(2)

Here the complex-valued function V(x, y, t) signifies the
wave propagation, x, y are the spatial variables, and t is the
time variable. The lattice parameter is represented as § with
the interaction coeflicients ¥y, y,,y,, while the anisotropic
parameter [25, 27] is denoted as B. In this section, we pres-
ent a mathematical analysis of the proposed model. The
complex wave transformation which has been taken into
account to seek for the solitary solutions of HFSCE is of
the next form:

V(xy, ) = D), (3)

where the amplitude is denoted as @(&) with E=x+y — yt
and 0 = -Ix + ky + wt + &, is the corresponding phase com-
ponent. By (3), we deduce that:

V,= :—qu’ + iw(p} e, (4)
Vee= 9" -2il¢' - Pg|e”, (5)
v, = :¢" —2ik¢’ - k2¢>} e, (6)
V= :¢" —i(l- k)¢’ + lk} e (7)

Inserting (3) and (4)-(7) into (1), the real part,

(B, + B+ Bs)®"" = (w+ B> + B = Bikl) @ — B,@° =0,
(8)

and the imaginary part,

X =2P,1-2B,k - Bsk + B;1, 9)

here the 3, B,, B, k, and [ are all nonzero parameters.

In 2021, based on the ideas of the Jacobi elliptic func-
tions, Yang and Zhang [29] used the unified F-expansion
method to study the Korteweg-De Vries partial differential
equations. In 2021, Unal et al. [30] also investigated the
exact solutions of space-time fractional symmetric regular-
ized long wave equation using ideas of JEFs.

Twelve kinds JEFs are available in literature [31]. Basic
JEFs are expressed as sné = sn(&;m) or cné =cn(&;m) or d
n& = dn(&; m) and other basic JEFs such as sd, cd, nd, sc, nc,
dc, ns, cs, and ds. In addition, if m = 0 and m = 1, then the JEFs
turn into trigonometric and hyperbolic functions. Here, m is
the modulus and is a complex number. If m is real, it can be
arranged 0 < m? < 1.

2. The Extend Modified Version of the Jacobi
Elliptic Expansion Method

Based on the ideas of [30], we consider the following form of
Equation (8), and we give the details of the extend modified
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version of the Jacobi elliptic expansion method (EMVJEEM)
and employ this method to seek for new and more general
traveling wave exact solutions to Equation (8).

Step 1. Regarding that the solution of Equation (8) can be
expressed by a polynomial in K as follows:

@)= ) aK/(¥), (10)

=N

in Equation (8), K = K(&) is satisfied the following differen-
tial equations:

(K)@©=pK'®+ak2@+r ()

where p,q, and r are arbitrary constants. N can be deter-
mined by the uniform equilibrium term between the highest
derivative and the nonlinear term appearing in (8). All the
solutions K(&) of (11) are listed in Table 1.

Step 2. Taking (10) into (8) and using (11), (8) is con-
verted into another polynomial in K. Calculating all the
coefficients of the polynomial to zero produces the system
algebraic equations for a,,--, ay, p, ¢, and r.

Step 3. The constants a,,-+, ay can be obtained by solv-
ing the system of algebraic equations obtained in Step 3.
Since (11) may have the following many possible solutions.
Thus, the exact solutions for given (8) can be derived. Here:

Step 4. Putting the inverse transform T~! into the solu-
tions @(&) (§ =x+y — xt), we can get all exact solutions V
(x, y, t) = D(x, y, t)elhr+et+e) of the original Equation (8).

Remark 1. In 2021, Hosseini et al. [27] only considered the
four cases in Table 1 (such as Cases 1, 2, 9, and 10). Obvi-
ously, we consider a broader scenario in Table 1, and there-
fore, more new solutions will be obtained in this paper.

3. Employing the EMVJEEM to Equation (8)

Taking into account the homogeneous equilibrium term

between @'’ and @7 in (8), it is easy to deduce N = 1. The
solution of (9) can be listed as follows:

CD(E):alK+a0+b1%, (12)

here a,, a,, and b, are unknown constants and will be deter-
mined later.

By using (12) and (11) and collecting all terms with the
same power K together, we deduce

@' (§)=a,K'(§) - b, K ()K'(§), (13)

(D”(E) = 2P“1K3(E) +a,qK (&) + blqK_l(E) + 2b1”K_3(£)'
(14)

Substituting (14) into (9), we obtain

(B, +B,+B3) (2pa1K3 +a,gK +bgK™* + 2b1rK_3)

+ (ﬁ3kl—w—/3112—[32k2) (a0+a1K+b1 Il<> (15)

1\ 3
- +a,K+b,— | =0.
ﬁ4<ao a 1K)

Sorting out all terms with the same power of K together,
we obtain

(Zpal + ca?)K3 + ((ﬁl + By + By)aq+a (ﬁ3kl -—w- ﬁ1lz - ﬁ2k2>
- 3ﬁ4a(2)a1 - 354“%1)1( +((Bi+ B+ Bs5)big

1
+ by (Bskl = w = B, = B,K*) = 3B,agh, —3pB,a,b7) %
1
+ (Zblr(ﬁl +B+ ;) - /5417?) I + (ao (ﬁ3kl —w- /3112 - ﬁzkz)
1
- ﬁ4ag - 6‘10“1171[;4) - 3a0afﬁ4K2 - 3:84“017% e =0.

(16)

For the same term of function K, we are extracting their
unknown coeflicients and setting them to zero to get the
next equation:

ay (ﬁakl —w- ﬂllz - ﬁzkz) - ﬁ4a8 —6aya,p,f, =0,

(B + By + By)aq +ay (ﬁz.kl —w-B - ﬁzkz) - 3B,a5a, — 3B,aib, =0,
(B +B,+ ABS)blq + (ﬂakl W= ﬁllz - ﬁzkz)hl - 3[;4“3171 - 3ﬁ4“1bf =0,
3a,aif, =0,

3[’)4“0}7% =0,

2b,r(By+ B+ By) - ﬁ4hi =0,

2pa; - a3 =0.

(17)

Solving this system of equations, the unknown coeffi-
cients are found:

b, =+ M
Y By ’

2
and (B, + B, +B3)q+ Pkl —w— B, P — B,k*)" =36pr(B, +
B, + B;). From (3), we know that @(&) is the real function.
Hence, K(&) takes the real cases in Table 1, the forms as
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QUD F UOWL JUP F QUOUL JUD T JUP U F Jup ¥ [4 4 g1
- 1 Qus— Qus I M+ NANS -1)
(gup T o)1= (qup 7 Juow)s 952 + 35— 9597 3 . : oo
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follows:

D) =K () +b g
=t Z—iK(E) (19)
2r(By+ B+ Bs) 1 .
By K(¢)
Case 1. If p=m?, g=—(1+m?), and r = 1, then K(&) = +snf
or *cdé,
DOy (x+y—xt)= im\/[;sn(x +y—xt)
2(B,+ By + Bs) 1
By sn(x+y—xt)’
(20)

or

Doy (x+y — xt) =+m, /[%cd(x+y— xt)

2B+ B+ Bs) 1
B, cd(x+y—xt)’

(—Ix+ky+wt+e,)

Va(x+y—xt) =Psy(x+y - Xt)

==t (m\/ﬁzjn(x+y - xt)

2(181 + 182 + ﬁ3) 1 ei(—lx+ky+wt+sz)
By sn(x +y = xt)

(21)
or
Vap(x+y—xt) =Ps(x+y— Xt) i(~letky+wt+e,)
X+ t
( \/;4 d(x+y = xt)
(:81 + ﬁz + ﬁ3) 1 i(-lxtkyrotte)
ﬁ4 (x +y- Xt)
(22)

and (B, + B, + B) (1 +m?) — (Bskl —w— B, — B,k?))" =
36’"2([31 +B,+ B5)-
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Case 2. If p=1,q=—(1 + m?), and r = m?, then K(&) = +ns
or +dcé,
Dy3(x+y—xt) = \/; s(x+y = xt)
m 2(By+ B+ Bs) 1
B Be  ns(xty—xt)
(23)

or

Dy (x+y—xt)== ﬁidc(x+y— xt)
\/ 4

tm 2(By+ Byt Bs) 1 .
- B4 de(x+y—xt)’

Ix+ky+wr+sz)

Vis(x+y—xt) =DPy(x+y - Xt)

<\/’,_?4 ns(x +y - xt)

+m (ﬂl + ﬁz + ﬁ3) 1 ei(—lx+ky+wt+sz)
N By ns(x+y - xt) '

(24)

Vag(x+y = xt) = Dy (x + y = yt)elCHrorete)

<\/;4 c(x+y—xt)

+m (/31 + ﬁz + [33) 1 ei(—lx+ky+wt+ez)
Ps de(x+y = xt)

(25)

and (B, + B, +B;)(1+m2) = (Bki w0 =B, = B,K*))" =
36m* (B, + B, + Bs)-

Case 3. 1f p=1,q=2-m? and r =1 - m?, then K(§) =

Dys(x+y—xt) = i\/ﬁzcs(x +y—xt)

f(l m)(By+By+By) 1
B es(x+y—xt)’

+csé,

Vas(x+y = xt) = Ds(x +y — xt)elhrrere)

= <+\/ﬁ:4cs(x +y—xt)

N \/2(1m2)(ﬁ1+ﬂ2+/53) ! )ei(zx+ky+w,+sz>
} A, sy = x0) ’

(26)

and (B, + B, + B3) (2~ m?) + (Bokl —w— B, — B,k?))" =
36(1 -

m*) (B, + B, + Bs)-
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Case 4. 1f p=1-m?,q=2-m? and r =1, then K(&) = +sc£,

2 1—m2
Dyg(x+y = xt) ==+ )

sc(x +y = xt)

2(B, +ﬁz+ﬁ3) 1 .
B, se(x+y=xt)’

Vig(x+y = xt) :(D36(x+y xt)e gltiviyrati)

( mz)sc(x +y—xt)

2( + ﬁz + ﬁ}) 1 ei(—lx+ky+wt+£2)
Bs se(x+y = xt)

(27)

and (B, + B, + B3)(2—m?) + (Bskl - w— B, 12— B,k?))" =
36(1 - mz)(ﬁl + B, +ﬁ3)-

Case 5. 1fp=1,q=2-m? andr=m* - 1, then K(§) =

Dy (x+y—xt)= i\/gdn(x +y—xt)

f(mz DB +B+By) 1 .
By dn(x+y - xt) '

+dné,

Ix+ky+wt+e,)

Vi (x+y—xt) =Py(x+y - Xt)ei(i

= <+\/ﬁzdn(x +y = xt)

\/ (m - 1)(B,+B,+By) 1
B, dn(x+y - xt)

) i(~Ix+ky+wt+e,)
e >

(28)

and (B, + B, + By)(2—m?) + (Bskl - w— B, 12 — B,k*))" =
36(m* = 1)(B, + B, + B5)-

Case 6. If p=m? -1, g=2-m?, and r=-1, then K(§) =+
ndg,

2(m?-1)

Dyg(x+y—xt)== 8 nd(x+y— xt)
4

(~Ix+ky+wt+e,)

Vig(x+y—xt) =Dsg(x+y - Xt)

:<+ 2(m° 1)

3 nd(x+y - xt)

_z(ﬁl + BZ + ﬁ}) 1 ol (ltkyrwtre;)
B nd(x +y - xt)

(29)

and (B, + B, + )2~ m?) + Bkl —w— B2~ B,Kk)) =
_36(”"2 —1)(B, + B, + 133)

Case 7. If p=1-m?, q=2m* -1, and r=-m?, then K(&)
= +ncé,

2(1/;4mz)nc(x +y—xt)

+\/_2m2(ﬁ1+ﬁ2+ﬁ3) 1 .
- By ne(x+y—xt)’

(30)

and (B, + B, + B,)(2m? 1) + (Bl - w— B, >~ B,*))" =
~36(1— m2)m2(B, + B, + By).

Vig(x+y—xt) =Dsp(x+y - Xt)ei(_lx+ky+wt+£2)

(o)
VT

+ *21’}’12(,81 + ﬁz + ﬁS) 1 >ei(lx+ky+wt+£2)’

(x+y-xt)

By ne(x+y - xt)
(31)
and ((B, + B, + B;)(2m? — 1) + (Bskl — w0 — B, — B,k?))" =
=36(1—m?*)m*(B, + B, + B3).

Case 8. If p=-m?, g=2m? -1, and r=1-m?, then K(&)
= +cné,

Dy p(x+y—xt) = xmy /;cn(x +y—xt)
4

+\/2(1—m2)(ﬁ1+ﬂz+ﬂ3) L
) B, nlxry—xt)’

(~lx+ky+wt+e,)

Vio(x+y = xt) = Dy (x +y = xt)e

(im\/;jjcn(x +y-xt)

. \/2(1 —m*)(B, + B, + B3) 1 >ei(—lx+ky+wt+£2)
B B4 cn(x+y = xt) ’

(32)

and ((B, + B, + B;)(2m? — 1) + (Bokl —w — B, — B,k?))" =

=36(1—m?)m*(B, + B, + B5)-
Case 9. If p=m? =1, g=2m? - 1, and r=m?, then K(§) =
+msdé,
2(m? -1
Dy (x +y = xt) (mﬁ )msd(“y*)cf)
4

2(B, + B, +Bs) 1 .
B, medGry-x0)’




Vin(x+y—xt) =Dy (x+y - Xt) (~Ix+ky+wt+e,)

= (i 2(7”;74_1)”15,1(,( +y = xt)

([31 + 52 + ﬁS) 1 ei(—lx+ky+wt+sl)
By msd(x+y=xt) ’

(33)

d (B, + B, +By)(2m* = 1) + (Bskl - w— B, = B,Kk))’ =
36(””2 - 1)m2(ﬁ1 + B, + ﬁz.)

Case 10. If p=m?, q=2m* -1, and r=m? - 1, then K(&)
=+(1/m)dst,

2
Dypp(x+y = xt) =i\/ﬁ:d5(x+y—xf)

2 =B+t By) 1 —ds(x+y = x1);
Bs

(~Ix+ky+wt+e,)

Vip(x+y—xt) = Pspp(x+y - Xt)

( \/7dsx+y Xt)
B

2 DB BB Ly, Xt)> S—
: B

(34)
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and ((B, + B, + B;)(2m? — 1) + (Bskl — w — B, — B,k?))" =
36m?(m* = 1)(B, + B, + Bs).

Case 11. If p=m*-m?, g=2m? -1, and r=1, then K(&)
= +sdé,

Dy3(x+y—xt)= 1/ d(x+y—xt)

2(By+ Byt Bs) 1
B, sd(x+y—xt)

V313(x ty- Xt (D313 x +y- Xt) (=lx+ky+ot+e,)

( fw A

ﬁl + ﬁz + ﬁ3 1 ei(—lx+ky+wt+sz)
B, sd(x+y-xt) ’

(35)

d (B, + B, + Bs)(@m? = 1) + (Bskl —w— B 12 = B,k*)) =
36(m* —m?) (B, + B, + )

Case 12. If p=1, g=2m? -1, and r=m* — m?, then K(&)
= +ds&,

(D314(x+)’_)(t):i\/ﬁ%ds(x+)’_)(f)i\/2(m - ),(Bljl +B2+ﬁ3)ds(x+1y—)(t) ;

Vaa(x+y = xt) =Ds4(x +y - xt)e

d (B, +, +By) (2’ ~ 1)+ (Bskl - w12 = B,k*))’ =
3 (m -m )(ﬁ1+ﬁz+ﬁ3)

Case 13. If p=-m* + m?, q=2m* - 1, and r = -1, then K (&)
=+(1/m)ncé,

21 /;4m2)nc(x +y-xt)

Dy5(x+y - xt) ==

=2(B;+ B, +Bs) m .
Bs ne(x+y—xt)’

Vais(x4y = xt) = Dygs(x + y - gt) el rrorse)

= (1 z(ll;:nz)nc(x +y=xt)

_2(ﬁ1 + ﬁz + ﬁS) m ei(—lx+ky+wt+sz)
By ne(x+y - xt)

(37)

i(~lx+ky+wt+e,)= <1 \/%ds(xﬂ/fxt)t

(36)

2(mA-m2) (B +By+B3)
By

- 1 eil-betkyswtser)
SCety—xi)

d (B + B, +B) (20 = 1)+ (B - =By - B,k*) =
3 (m —-m )(ﬁ1+ﬁ2+ﬁ3)

Case 14. If p=-1, g=2m* -1, r=m? — m*, then K(&) =
mcné,

-2
Dy 6(x+y—xt)= tmy lﬁ—cn(x +y—xt)

\/(1 m)(B+By+pBy) 1
B, en(x+y—xt)’

Vie(x+y—xt) =Dyp6(x+y — Xt) (~Ix+ky+wt+e, )

= m\/ch(x +y-xt)

. \/2(1—m JBirByvBy) 1 ><)
Bs en(x+y = xt)

(38)
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o

nd (B, + B, +B,)(2m? = 1) + (B —w = B,P = B,K*))" =

36(m* —m?) (B, + B, + Bs)-
Case 15. 1 p=1/4, g = (1+m?)/2, and r = (1 — m?)*/4, then
K(&) =ds& + cs& or —ds& ¥ csé,
1
Dapz(x+y = xt) =% /ﬁ(dS(“y— xt) £ es(x+y—xt))
(By+ B, +By) (1 - m?)? 1
283, (ds(x+y—xt)cs(x+y—xt))’
(39)
or
1
Dypg(x+y - xt) = iy/ﬁ(—dS(xw—xt) Fes(x+y - xt))
(By+By+ ) (1 - mz) 1 .
2B, (=ds(x+y—xt) Fes(x+y—xt))’
(40)
Vi (x+y=xt)=Qy5(x+y - Xt)ei(il“kymmzj
= (1 %(ds(x +y—xt)tes(x+y—xt))
+ (B + By + By) (1= m?)? 1 ) (~Ix+ky+ot+e,)
- 23, (ds(x+y—xt) £es(x+y—xt)) ’
(41)
or
Vag(x+y = xt) =Pyg(x+y - Xt)ei(ilﬂkymml)
= (t Zi(fds(x +y—xt)Fes(x+y—xt))
. BBt By 1 )e< T
2B, (=ds(x+y—xt) Fes(x+y—xt))
(12)

nd (B, + B, + B)(1+m?)2 12) + (Bskl = w = P = B,k?))°
( (1- ) /4)(ﬁ1+ﬁ2+/33)

Case 16. 1f p= (1 —m?)’/4, g = (1 + m?)/2, and r = 1/4, then
K(&) =sn&/dn& + cn& or —sn&/dn& + cné,

Dypp(x+y—xt)=+ ix+) = 1) )

( —m2>2<
2 dn(x+y— xt) xcn(x+y— xt)

(Bi+ B+ Ps) (d"(x +y—xt) Een(x+y- xt)>
2B, sn(x+y—xt) ’

(43)

or

—sn(x+y - xt) >

X+y—xt)£cn(x+y— xt)

(Bt Pt ps) <d"(x ty—xt)Een(x+y- Xt)> :
28, “sn(x1y-x0) ’

Dyp(x+y—xt) =+ (1;/;?1) (dn(

(44)

i(~Ix+ky+wt+e,)

Vag(x+y = xt) = P319(x +y = xt)e

. (1 m2)< sn(x+y— xt) >
B 283, dn(x+y— xt) tcn(x+y— xt)

(:Bl + 132 + ﬁ3) d”<x ty- Xt) * Cn<x ty- Xt> i (lxtkyrattey)
23, sn(x+y— xt) ’

(45)

—Ix+ky+wt+e,)

Vigo(x+y = xt) = Py (X +y = Xt)

- (+ (1-m?)? ( —sn(x+y — xt) )
2B, dn(x+y— xt) £cn(x+y—xt)

<ﬁ1+ﬁz+ﬁ3><dn<x+y Xt ten(x+y- xt)>> E—
2B, —sn(x+y = xt)

(46)

d (B, + B, + B)((1+m?)12) + (Bskl = w = B, 1P = B,k*))?
=(9(1 - m2)2/4)([31 +B,+Bs)-

Case 17. 1f p=—1/4, g= (1+m?)/2, and r=—(1 — m?)*/4,
then K (&) = mcené + dn& or —mené ¥ dnk,

Dy (x+y—xt) ==, lz_—l(mcn(x+y—)(t) tdn(x+y-xt))

¢ (1-m2P(B, + B, + By)
z/a

mcn(x +y- Xt) tdn(x+y- Xt)>
(47)

or

Dy (x+y—xt) == ﬁ(—mcn(x +y - xt) Fdn(x+y - xt))
4

N \/—(1 - m2)2 (B, + By + By)
* 26,

1
. <—mcn(x +y—xt)Fdn(x+y- Xt)) ’
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Va(x+y—xt) =Dy (x+y— Xt) (~Ixtky+awt+e,)

= <1 Z;A(mcn(x +y—xt)xdn(x+y - xt))

N f(l -2 (B, + By + Bs)
* 26,

. 1 ez(—lwkyﬂutﬂ2 ) ,
men(x +y — xt) £dn(x+y— xt)
(48)

or

Vin(x+y = xt) = @py(x +y = xt)e' Chrripratier)

= (1\/;(—14%11(36 +y—xt) Fdn(x+y—xt))

\/ (1=m?)>(B, + B, + B5)
2ﬁ4

e( Ix+ky+wt+e,)
—mcn(x +y - xt) +dn(x+y xt) ’
(49)

and (B, + B, + o) (1 +m?12) + (Bskl - — B, — BKY))
= (9(1—m2)*/4) (B, + B, + Bs).

Case 18. If p=—(1/4), q=

(1+m?*)/2,and r=—(1-
then K(&) =

m?)’ /4,
men€ + dn or —mcen& ¥ dné,

Dyps(x+y—xt)== \/?(mcn(xw xt) £dn(x+y - xt))
\/(1— 2 (B, + By + )
2B,

(ow=meawn)
(50)

or

®324(x+y—)(t):i\/—ﬁ;( men(x +y— xt) Fdn(x+y - xt))

. \/—<l—m2>2<ﬁ1+ﬁ2+ﬁ3>
: 26,

( 1 )
—men(x+y—xt) Fdn(x+y-xt))’
(51)
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Vs (x +y = xt) = DPaps(x + y — xt)e' i(~Ixtky+wt+e,)

( \/g(mcn(x+y Xxt) £dn(x+y—xt))

N \/—(1 - m2(B, + B, + )
: 26,

. 1 ei(—lx+ky+wt+sz)
men(x +y— xt) £dn(x+y— xt) ’

(52)

or

Vapu(x+y = xt) = Pspy(x+y - Xt)ei(ilﬁkyw”%)

( \/;4( men(x+y— xt) Fdn(x+y - xt))

+\/(1 —m?)* (B, + B, + Bs)
- 2B,

1
.<—mcn(x +y—xt) Fdn(x+y - xt)

> )ei(—lx+ky+mt+sz) ,
(53)

and (B, + B, + o) (1 +m?12) + (Bskl —w — B, — B,KY))°
= (9(1 - m2)*14) (B, + B, + Bs).

Case 19.1f p= —((1 - m?)*/4), g = (1 + m2)/2, and r = —(1/4)
, then K(&) = 1/mcn& + dn& or —(1/mcné + dnf),

1_
Pos(¥ 4y = x1) = V (mcn (x+y—xt) +dn(x+y Xt))

ﬁl +/3’z Bs)
28

(men(x+y—xt) £dn(x+y - xt)),

(54)

or

D (x+y— xt) =

7

2/34

(mcn(x+y xt) tdn(x+y - Xt))

+ W(—(mcn(x +y—xt)tdn(x+y-xt)));

(~Ix+ky+wt+e,)

Viags(x +y = xt) = Pyps(x +y = x1)é

—(1-m?)?
2B,
’ (mm(x +y—xt) +dn(x+y—Xt)>
+ _(ﬁl +ﬁ2 +ﬁ3)

2B,

(men(x+y— xt) £dn(x+y— Xt))) herkyratie,)

(55)
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or

(~Ix+ky+wt+e,)

= Dyq(x +y = xt)e

-(1- m2
mcnx+y Xt) +dn(x+y xt)

+ 4_(’31 ;Z)j +'83)(—(mcn(x +y—xt)

Vie(x+y = xt)

+ dn(x +y— Xt)))ei(—lx+ky+wt+sz)) (56)

(B, + By + By) (1 + m2/2) + (Bski — w— B 1P — B,k%))”
=(9(1 - m2)2/4)(ﬁ1 + B, + ﬁ3)

Case 20. Ifp=(1-m?)/4,q=
then K(&) = nc€ + sc& or —nc& F sc&,

and

D=0 =0y [ U el sy ) st - 10)

N \/(1 - 1) (B, + B, + By)
) 28,

' (ﬂf(“y—xt) 1—fSC(xw—xf))’

(57)

or

M(—nc(x +y—xt) Fsc(x+y—xt))

Dapg(x+y—xt) =+ 25,
N \/(1 — ) (B, + By + )

2B,
1

' (—"C(x Y- X Fsc(x+y - Xf)> ;

(58)

& (=Ix+ky+wt+e,)

. \/<l—m2><ﬁ1+ﬁ2+ﬁ3>
) 26,

.(nc(x +y—xt)tsc(x+y-— Xt))

(59)

(1+m?*)/2,and r = (1 —m?)/4,

(ne(x+y—xt) £sc(x+y—xt))

) i(~lxtky+wt+e,)
e >

11

or

i(~Ix+ky+wt+e,)

Vas(x+y = xt) =Dapg(x +y = xt)e

- (i a- mz)(—nc(x+y7 Xt) Fsc(x+y—xt))

2B,
\/(1 m)(By+ By + Bs)
2B,
1 i(~Ix+ky+wt+e,

'(—nc(x+y—xt)isc(x+y—xt)>)e( o »
(60)
and (B, + B, + By)(1+m212) + (Bkl - = B, P = B,k))”

= (9(1 - m2)*14) (B, + B, + Bs).
Case 21. 1f p=(m*> - 1)/4,q= (1 + m?*)/2,and r = (m*> — 1)/4,

then K(&) = msd& + nd€ or —msd& ¥ ndé,

Dppg(x+y—xt)== (mzﬁ; 1)(msd(x +y—xt)xnd(x+y-xt))

X \/(mz ~1)(B,+ B, + By)
26,

. ( : )
msd(x+y—xt)tnd(x+y—xt))’
(61)

or

U)o+ y - 1) % (x4 y = 1)

o =1
(X +y—xt)== 28,

N wmz (B, + B, + By)
28,

. ( 1 ) .
—msd(x+y—xt)Fnd(x+y—xt))’
(62)

Ix+ky+wt+ez)

Vigg(x+y = xt) = Ppo(x +y - Xt)

_<+ (mzzﬁ 1)(msd(x+y xt) £ nd(x+y = xt))

s \/(mz (B, + B, + By)
26,

. 1 ) ( Zx+ky+wt+sz)’
msd(x +y— xt) £nd(x+y— xt)
(63)
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or

i(~lxtky+ot+e,) ,

Ds30(x +y = xt)e

(m?~1)

Viso(x+y—xt) =

=+ 2, (-msd(x+y— xt) Fnd(x+y—xt))
\/ (72 = 1) (B, + By + )
B 2B,

i(—Ix+ky+wt+te,)
e >

.<—msd(x +y—xt)Fnd(x+y- Xt)>)
(64)

and (B, + B, + o) (1 +m?12) + (Bskl - w - B, — B,KY))
= (9(m> = 1) 14)(B, + B, + B)-
Case 22. If p=1/4, g = (m* —2)/2, and r = m*/4, then K(&)

=ns& + ds& or —ns& F ds&, or dc& + /1 —m?nc, or —dc€ ¥
V1-m2nc&

D3y (x +y = xt) = i\/;(m(xw xt) tds(x+y—xt))

m(By + By + Bs)
2,

+

. ( : )
ns(x+y—xt)tds(x+y—xt))’
(65)

or
1
Dyyy(x+y—xt) == ﬁ(—ns(x +y—xt) Fds(x+y - xt))
\ 2P4

m* (B, + P, + B;)
2B,

. ( : )
—ns(x+y—xt) Fds(x+y—xt))’
(66)

or

1
Dsys(x+y—xt) = 2—(dc(x+y—xt)i\/l—mznc(x+y—)(t)>
\/ 4

m* (B, + B, + B5)
2B,

1
. (dc(x+y xtH) £V1-m2nc(x+y— Xt)) '
(67)

Visi(x+y = xt) = Ds3( x+y xt)e

Advances in Mathematical Physics
or

Dypy(x+y—xt)== %(—dc(x+y— X FV1-mlne(x+y- Xt))
4

m*(B, + P, + Bs)
2B,

+

1
.<—dc(x +y—xt)FV1-m?nc(x+y - Xt)) ;
(68)

i(—Ix+ky+wt+e,)

m (B, + B, + ﬁ3)
28,

'(ns(xw—xt) idS(x+y—xt))

N&‘

< —nsx+y xt)tds(x+y—xt))

) i(—Ix+ky+wt+e,)
€ >

(69)

or

z( Ix+ky+wt+e,)

Vi (x +y = xt) = Qygp(x +y — xt)e

N}
w1

1
( —(-ns(x+y—xt) Fds(x+y - xt))

m (B, + By + Bs)
2B,

. ! ei(—lx+ky+mt+52)
—-ns(x+y— xt) Fds(x+y— xt) ’

(70)

or

— @333 (x +y- Xt)ei(—lx+ky+wt+ez)

< \/;(dc(x +y—xt) £ \/—ch(x +y- Xt))

m* (B, + B, + P5)
2,

Viss(x+y - xt)

I+

. L )ei(flx+ky+wt+sz)
de(x+y—xt) = V1-m?nc(x+y— xt)

(71)
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or

— @334 (x +y- Xt)ei(—lx+ky+wt+ez)

(o Bt Tt

Visa(x+y—xt)

+ m (B, + B, + B5)
- 2B,

) 1 6( Ix+ky+wt+e,)
—dc(x+y— xt) FV1-m?nc(x+y— xt)

(72)

and (B, + B, + B5)(m* =2/2) + (B3kl —w — ﬁ1lz - ﬂzkz))z
= (9m*14)(B, + B, + Bs)-

Case 23. If p=m*/4, = (m* - 2)/2, and r=1/4, then K(£)
=sn&/1 £ dnk& or —sn&/1 + dn&, or cn&/dn& +/1 - m2, or —
cnéldnE +/1 - m?

g [t _snlxty-xt)
®335(x+y—xt)——\/%(m>
(Bi+B,+Ps) (1 tdn(x+y- Xt))

28, sn(x+y—xt)
(73)

or

L mt [ =sn(x+y—xt)
Dy36(x +y Xt)—i\lm(m

(B + B, +Bs5) <1 tdn(x+y- xt)),

25, —sn(x+y - xt)
(74)
or
[ ety
Dy (x+y - xt) = \/:34<dn(x P m)
(By+ Byt Bs) (dn(x+y—xt) +1-m?
2B, cn(x+y— xt) >
(75)
or
e )
(B + Byt Bs) fdn(x+y—xt) £ VI-m?\
2B, —cn(x+y— xt) >
(76)

13
Vias(x+y = xt) = Dy3s5(x +y = xt)e’ hetroties)
4 sn(x+y—xt)
2[34 1+dnx+y xt)
+ (ﬁl + ﬁz +ﬂ3) 1+ dn(x Y- Xt) e lx+ky+mt+ez)
N 2B, sn(x+y = xt)
(77)

or

(~Ix+ky+wt+ey)

Vise(x+y = xt) = Pyz6(x +y - Xt)

(s m_4 —sn(x+y—xt)
) (‘J;(l id"(xw—xt))
(Bu+ By +By) <1 tdn(x+y- xt)))e Su—
28, —sn(x+y— xt)

(78)

—Ix+ky+wt+e,)

Vigp(x+y—xt) =Dsy(x+y - Xt)ei(

s m* cn(x+y— xt)
V2B \dn(x+y—xt) £ V1-m?

+ B+ B+ Bs)
2%,
. dn(x ty- Xt) tV1l-m? pl(-Ixtkyrwtte;)
cn(x+y—xt) ’

(79)

—Ix+ky+wt+e,)
>

Viasg(x+y—xt) =Dazg(x +y - Xt)ei(

+\/E —cn(x+y— xt)
V2B \dn(x+y—xt) V1 -m?
(Bi+ B+ Bs)
28,

. d”(x ty- Xt) tV1-m? ol (letkyrwtte;)
—cn(x+y—xt) ’

(80)

and (B, + B, + Bs)(m* =2/2) + (Bykl - w— B, = B,°))°

= (9m*14)(B, + B, + B3)-
Case 24. If p=1/4, q=(1-2m?)/2, and r = 1/4, then K (&)
=ns€ + cs& or —nsE Fcs&, or dc& + /1 —m2sck, or —dc€ F
V1 —m2sc€
Do (x+y = xt) = \/;(ns(x+y Xt) £ es(x+y = xt))

(Bt By +Bs) ( 1 )

2p3, ns(x+y— xt) £es(x+y— xt) ’

(81)



14

or

Dago(x+y = xt) = Vi;("ﬂx+y Xt) Fes(x+y = xt))

(Bt B+ Bs)
2B,

’ <—”5(x ty- xt)l1 cs(x+y- Xt)> ’
(82)

or

Dy (x+y—xt)= i\/%@c(x +y—xt) £ V1-mlsc(x+y— Xt))

(Bt B+ Bs)
2B,

1
V1-m2sc(x+y— Xt)) ’
(83)

. <dc(x+y)(t) +

or

Dypp(x+y—xt)== ﬁ(fdc(x+y7 Xt) £ V1-—m?sc(x+y— Xt))
4

(By+ B+ Bs)
2B,

1
V1-m2sc(x+y— Xt)> '
(84)

' (—dc(x +y—xt)

—Ix+ky+wt+e,)
>

Dyzg(x+y - Xt)el(

= (1\/%@5()( +y—xt) tes(x+y—xt))

4 (By+B,+B5) 1 oi(-berkpratee,)
- 28, ns(x+y— xt) tes(x+y— xt) ’

(85)

Viso(x+y = xt) =

or

Vigo(x+y = xt) = Dy (x +y — xt)elCrrmerse),

= <t\/%(—ns(x +y—xt) Fes(x+y—xt))

(B, +B, +:Bs)< 1 >
2B, —ns(x +y— xt) Fes(x +y— xt)

i(~letky+otte,)
e >

(86)

Advances in Mathematical Physics

or
Vo (x+y = xt) =Dz (x +y - Xt) (betkyratee;) |
1
=+ —(dC(x +y—xt)+ V1 - misc(x+y - Xt))
2B,
i [Bit Bt By
2B,
. 1 )ei(—lx+ky+wt+ez)
de(x+y—xt) VI —msc(x+y - xt)
(®7)
or

(~Ix+ky+wt+e, )

Dypp(x+y- Xt)

1
< i( de(x+y—xt) ¥

. Byt Byt Bs)
N 2B,

Vip(x+y—xt) =

mzsc(x +y- Xt))

i(~Ix+ky+wt+e,)
€ >

(dcx+y xt) FV1—msc(x +y - Xt)>
(88)

and (B, + B, + B;)(1=2m12) + (Bykl = w— B, = B,%))°
=9/4(B, + B, + Bs)-

Besides, if m — 0 and m — 1, then the Jacobi elliptic
functions become vestigial trigonometric and hyperbolic
functions ([31]). Now we give specific examples as follows:

Case 3 If m — 0 then cs& — cot &, then

Dys(x+y—xt) = \/;4 cot (x +y— xt)

2By + B+ Bs)
Bs

tan (x +y— xt);

(89)

i(~Ix+ky+wt+e,)

Vis(x+y—xt) =Ds5(x +y - xt)e

= (i\//zcot (x+y-xt)

2B+ Bt B (4 Xt)> S
By
(90)
and (2(B, + B, + ;) + (Bskl —w - /31[2 - ﬁzkz))z =36(B, +

Byt Bs)-

If m — 1 then cs& — csché, and

Dy (x+y—xt)== ﬁicsch (x+y—xt);
\ Pa



Advances in Mathematical Physics 15

Vis(x+y = xt) = Dyg(x + y — xt)elCxrhrratre) Casel5. If m — 0, then dsé +cs& — csc &+ cot& or
5 —ds& F cs& — —csc E F cot &,
=+ 'ﬁ—CSCh (x+y Xt) lx+ky+wt+52)
4 Dy, (x+y—xt)==+ L(csc (x+y—xt)£cot (x+y—xt))
(91) \ 28,
B+ B+ B5) 1
, 26, csc (x+y—xt)xcot (x+y—xt)’
and ((B, + B, + B3) + (Bskl —w = B, = B,K*))" =0. (92)
or

Dyg(x+y—xt)== %(—csc (x+y—xt)Fcot (x+y—xt))
\/ 4

(B +By+ ) 1 .
28, (—csc (x+y—xt) Feot (x+y—xt))~

(93)

(~lxt+ky+wt+e,)

Vi (x+y = xt) = Qg7 (x+y - Xt>

1
- (i\/z_;(csc (x+y = xt) £ cot (x +y — xt)) (94)

\/(/31 + /32 + ﬁ3)(1 B ) 1 pi(lxtky+wtte,)
28, (csc (x+y— xt) £cot (x+y— xt)) ’

or

. 1
Vag(x+y = xt) = Dyyq(x +y = y)el ) = (i\ 5 (e (ot y=xt) F ot (x+y = 1))
4

(95)
(ﬁl + ﬁz + ﬁ.’))(l _ mZ) 1 ei(—lx+ky+wt+sz)
28, (—csc (x+y— xt) Feot (x +y— xt)) ’
and ((B, + B, +B;) (1 +m?)/12) + (Bkl - w -~ /3112 - ﬁzkz))z Viss (6 +y = xt) = @yzs (x +y = yr)el B0
= (9(1 = m2)*14) (B, + B, + Bs)- 1 < tanh (x+y - xt) )
Case23. If m — 1, then (sn&/1 + dn&) — (tanh &/1 + 2B, \1 £ sech (x+y - xt)
secht) and (03 ) (1 5= st
2B, tanh (x +y — xt)
(96)

_, | L ( tanh(x+y—xt)

Dygs(x+y—xt) =+ ﬁ(m)

(B, + B, +,33)<1 +sech (x +}’—Xt)> ; and ((/31 + ﬁz + ﬁ3)(—1/2) + (ﬁskl W= ﬁllz - ﬁlk2>>2 =9/4
28, tanh (x +y—xt) )’ (B + By +Bs)-
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Figure 1: The 3D, 2D, and contour images of ®@55(¢.).

4. Comparison

In this paper, employing the EMVJEEM to the HFSCE, we
found that various forms exact solutions for HFSCE. In
2021, Unal et al. [30] investigated the exact solutions of
space-time fractional symmetric regularized long wave equa-
tion using ideas of the Jacobi elliptic functions. In our paper,
Equation (10) is @(§) = zjli_Naij(E). Here, j starts from the
negative number to the corresponding positive number.
However, in [30], j only takes 0, 1, -+, N, this is the biggest
difference of [30]. From there, j can take the negative num-
ber; our form is more extensive than [30].

Comparing with [29, 32], our article still varies greatly.
In this paper, Equation (11) is (K')*(£) = r + gK2(£) + pK*
(&). However, in [29, 32], what is similar to Equation (11)
is (K')}(§)=a, +a,K +a,K* + a,K* + a,K*. Due to the
importance of Formula (11), this is obviously a big difference
between our paper and [29].

From the perspective of the complex calculation pro-
cess, our paper is more complex than [27, 30]. At the same
time, the results in our paper are more concise and clearer
than [29, 32].

Recently, the complex method [33, 34] is used to study
the exact solutions of nonlinear evolution equations and
found the Weierstrass elliptic functions (WEFs) solution,
hyperbolic function or trigonometric meromorphic solu-
tions, and rational solutions. In our paper, we also can find
more solutions by the EMVJEEM, including hyperbolic
function solutions or trigonometric solutions. The WEFs

solutions (&) satisfy the equation (K ')Z(E) =4K*(&) - g,K

(&) — g5. In this paper, Equation (11) is (K')z(ﬁ) =pK*(&)
+gK?(&) + r. In the above two equations, K of 3 power var-
ies greatly from K of 4 power. At the same time, the relation-
ship between the JEFs and WEFs is

085 92 95) =ky = (ky = ks)mz(v ky—ks; m), (97)

here m? = (k, — k;)/(k; —k;) is the modulus number of
JEFs and k;(i = 1,2, 3, k; > k, > k3) are the roots of equation
48" - g,§ - g, = 0.

It is well know that if m — 1 and e, — e, then cn(&;
m) — sech (), or if m— 0 then cn(&;m) — cos (§).
Equation (97) is the bridge linking among the WEFs, hyperbolic
function, trigonometric function, and JEFs.

5. Computer Simulations

In this section, we are trying to explain the results through
computer simulation images and further analyze the nature
of the @55 (&), @5,7(8), @55(§), and @35 (&) in the equations.

Figure 1 The 3D, 2D, and contour images of @;5(&),
when m — 0, we take the values of 3, =1, §,=4, 3, =3,
B,=4,y=1,and g = 1; the graphs demonstrate the localized
interactions of diverse solitons of @55(&) on the domain. We
also find the waves train in Figure 1(a).

Figure 2: The 3D, 2D, and contour images of @, (&), when
m — 1, we take the values of 8,=2, y=1, and g=1; the
graphs depict the single kink solitary wave solution @;5(§)
on the domain.
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FiGure 3: The 3D, 2D, and contour images of @5,,(&).

Figure 3: The 3D, 2D, and contour images of @,(£), we Figure 4: The 3D, 2D, and contour images of @,5(£), we
take the values of 3, =1, 8,=4, 3,=3, f,=2, y=1, and  take the values of 3, =1, 8,=4, 3,=3, f,=2, y=1, and
q=1; the graphs clearly demonstrate the multiperiodic =~ g =1; the graphs show the periodic curved parabolic struc-
characteristic of @;,,(§) on the domain. ture of @5;4(&) on the domain.
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Figure 5: The 3D, 2D, and contour images of @535(&).
Figure 5: The 3D, 2D, and contour images of @,;5(&) by The all above wave profiles solutions of HFSCE keep
considering the values 3, =1, 8,=4, ;=3, f,=2, y=1,  their velocities, shapes, and amplitudes invariant during

and g = 1; the graphs demonstrate the interactions between  the appropriate value of some specific parameters. In
one soliton with kink waves of @,;5(&) on the domain. Figures 1, 3,and 4(a), we can see M-shaped waves train. In
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Figures 2 and 5(a), we also see the multiple bright and dark
peak solitons and also seen their behavior in contour
(Figures 1-5(c)) and 2D (Figures 1-5(b)) structures,
respectively.

6. Conclusion and Future Study

The EMVJEEM was implemented perfectly for the first time
in the framework of these techniques to design these new
types of soliton solutions for this model. The achieved soli-
ton solutions show the potentially traveling wave solutions
to the (2 + 1)-dimensional HFSCE. The resulting sample of
the achieved solutions offers a rich podium to study the non-
linear spin dynamics in magnetic materials. The derived
solutions having abundant applications to handle spin
dynamics in magnetic materials and transmission of high-
frequency waves in tranquil medium. We have successfully
used EMVJEEM to construct a rich variety of exact solutions
of HFSCE under various family cases in this paper. By
choosing suitable best values for the constant parameters,
these new complex soliton solutions established the dynam-
ical behaviors through 3D and 2D wave profiles via simula-
tion. When compared with [27, 35], our paper has the largest
number solutions. Because there are 42 types of linear inde-
pendent solutions for 23 different cases in the presented
method. Hence, these new exact solutions will play an impor-
tant role in understanding and investigating the HFSCE.

In summary, the results of the full text eloquently prove
that the above EMVJEEM is very efficient and powerful in
solving the exact solutions of nonlinear evolution equations
now and in the future. We can apply EMVJEEM of this
research to other nonlinear evolution equations.

In the meanwhile, we notice if there is additional noise, the
equation becomes a stochastic differential equation (SDE),

(B +B,+ ﬁs)CD” - (w + /3112 + ﬁzkz - ﬁ3kl>® - /34@3 -&=0.
(98)

This model, compared to the previous model (8), is more
pervasive in scientific computing experiments, for the reason
that such noise exists in both complicated nature phenome-
non and artificial model errors. Usually, the noise is Gaussian
white noise. According to the theory of existence and unique-
ness of solution to SDE, one can find solution to the SDE prob-
lem (98) under certain conditions [36].

Numerical solutions can also be found by various
methods, for example, the Runge-Kutta method [37], the
Euler method [38, 39], and the Milstein method [40, 41]. Since
the Runge-Kutta method is far more complicated than the
Euler method and the Milstein method, one usually performs
the Euler method and the Milstein method in real applica-
tions. One can perform numerical experiments to the SDE
and compare the strong and weak convergence, numerical
errors, and stability of the numerical methods [42].

For the noise perturbed system (8), one can observe the
property of energy landscape and the phenomenon of exit
from basin of attraction under the framework of the large
deviation theory [43]. We will discuss about that in later
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work. From the data assimilation point of view, when Equa-
tion (8) has unobservable state @ and noisy observations of
@, one can perform filtering strategy to recover the state @,
based on a the Bayesian framework [44]. We will also explore
this issue in future work.
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