Hindawi

Advances in Mathematical Physics
Volume 2022, Article ID 2129677, 14 pages
https://doi.org/10.1155/2022/2129677

Research Article

Q@) Hindawi

Statistical Inference of Stress-Strength Reliability of Gompertz
Distribution under Type II Censoring

Z. Karimi Ezmareh and G. Yari

Iran University of Science ¢ Technology, Narmak, Tehran, Iran

Correspondence should be addressed to G. Yari; yari@iust.ac.ir

Received 23 February 2022; Revised 4 August 2022; Accepted 24 August 2022; Published 3 December 2022

Academic Editor: Zengtao Chen

Copyright © 2022 Z. Karimi Ezmareh and G. Yari. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

This paper develops the problem of estimating stress-strength reliability for Gompertz lifetime distribution. First, the maximum
likelihood estimation (MLE) and exact and asymptotic confidence intervals for stress-strength reliability are obtained. Then, Bayes
estimators under informative and noninformative prior distributions are obtained by using Lindley approximation, Monte Carlo
integration, and MCMC. Bayesian credible intervals are constructed under these prior distributions. Also, simulation studies are used
to illustrate these inference methods. Finally, a real dataset is analyzed to show the implementation of the proposed methodologies.

1. Introduction

The stress-strength reliability R = P(X > Y) is an assessment
of the reliability of a component based on its strength X and
its stress Y. The idea of a stress-strength reliability was
introduced by Birnbaum [1] and spread two years later by
Birnbaum and McCarty [2].

Recently, the study on reliability has been considered by
the authors, which we refer to some recent studies. Qixuan
and Wenhao [3] worked on the Bayesian and classical esti-
mation of stress-strength reliability for inverse Weibull
lifetime models. Abravesh et al. [4] obtained classical and
Bayesian estimation of stress-strength reliability in type II
censored Pareto distributions. Akgiil et al. [5] presented
inferences on stress-strength reliability based on ranked set
sampling data in the case of Lindley distribution. Byrnes
et al. [6] made a Bayesian inference of R for Burr type XII
distribution based on progressively first failure-censored
samples. Zhang et al. [7] studied the reliability of generalized
Rayleigh distribution under progressive type II censoring.

Gompertz distribution which was first proposed by
Gompertz [8] is one of the most widely used distributions
in the fields of survival, lifetime data, mortality tables, com-
puter, biology, sociology, and marketing [9-12]. Some recent

studies on the distribution of Compretz include the follow-
ing: [13] presented a new and practical generalization of
the Compretz distribution. [14] developed acceptance sam-
pling plans for lot sentencing in which the quality character-
istic of the products follows the Topp-Leone Gompertz
distribution. An application of Gamma-Gompertz distribu-
tion was proposed by [15]. [16] estimated the parameters
of a new generalization of Gompertz distribution and inves-
tigated the features and application of this new model.

The study on reliability by considering Gompertz distri-
bution is one of the most important and interesting issues.
Saracoglu and Kaya [17] studied MLE and confidence inter-
vals of system reliability for Gompertz distribution in stress-
strength models. Kumar and Vaish [18] presented a study of
strength reliability for Gompertz distributed stress. Jha et al.
[19] obtained reliability estimation of a multicomponent
stress-strength model for unit Gompertz distribution under
progressive type I censoring. Asadi et al. [20] studied infer-
ence on adaptive progressive hybrid censored accelerated life
test for Gompertz distribution.

A brief explanation of the type II censoring is given. Let
X1 X+ X, and yy, 95, -+, be independent random sam-
ples from X and Y random variable, respectively. Suppose the
ordered statistics of these samples are x(;) <x(;) < ---<x(,
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and y(;) <y <<y, - X;’'s and y;’s are collected until r,
failures and r, failures occur, respectively (where r; <n, and
r, <1,).

The rest of the article is organized as follows. In Section
2, we introduce the Gompertz distribution. In Section 3, we
obtain the MLE of stress strength reliability (R). In Section 4,
we construct the exact and asymptotic confidence intervals
for R. In Section 5, we calculate the Bayes estimator of R
by considering the conjugate informative and Jeffreys nonin-
formative prior distributions. In Section 6, we provide
Bayesian credible intervals, including equi-tailed and HPD
intervals under the conjugate informative and Jeffreys non-
informative prior distributions. In Section 7, the perfor-
mance of these inference methods is compared by using
simulation studies. Finally, Section 8 performs a real data
analysis to demonstrate the application of these methods.

2. Gompertz Distribution

Let X ~ Gompertz(f3;,y) and Y ~ Gompertz(f3,,y) be two
independent random variables. The probability density
function (PDF) and cumulative distribution function
(CDF) of X and Y are given:

fx(xsB,y)=pee By Fx( 3B )_1_eiﬁ‘/ﬂﬁml)’x>0’ﬁ1)y>O’

Fys By y) = B e BV By (33 By, y) = 1= BV, > 0,8,y > 0.
(1)
The reliability function is calculated as follows:
R=P(X>Y)
- Pwcwaw

= JOO (l - e’ﬂzll’(ey'”*1)>ﬁle)’“’e’ﬁl/y(ewal)dw (2)
0

B
Bi+B,

3. MLE of R

Let x(1),X(3), "> X(,,) be a type Il censored sample from
Gompertz(f,,y) and y;), ¥5) =+ ¥,,) be a type II censored
sample from Gompertz(f,,y). Suppose these two samples
are independent. The likelihood function is given by

L(By B yioy) = ﬁnf (i3 Bo7) [Sx(x)] "

X ]’2 fy (y(j) 5 By )’) [SY (y(rz))] ny=ry
Jj=1
R T )

— 7y 1
=—— 2  fBle i= e
(ny =) (ny = 1,)! !

5] 1£)
y Z)’(]‘) -Bly Z(ew”) -1
=i

xBre 7l e

o Fulmer (1)

Balrar(-1)

Ty 6]
n,ln,) V[Zx(i>+zy(j)
_ 11! B =
T

} Biby o0,
e e s
(n =) (ny = 1y)!
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where
1] ]
b= - Z e+ (ny —ry)e —ny |, (4)
= i
1] ]
b=~ Z e’ + (ny —ry)e” ) —n, | (5)
V|5

Then, the log-likelihood function is

1(B1> By ¥I%: y) =log (ny!ny!) —log [(ny —1y)!(ny —1,)!]

+y [Zx(i) + Zy(j)} +r, log B, + 1, log B3,
=1 =
A
Y |i=

[Z e”0 + (ny —r,)eP 2 — nz}
(6)

To obtain the MLE of parameters f3,, 3, and y, it is suf-
ficient to derive the log-likelihood function with respect to
parameters f3;, 3, and y and equal them to zero:

ol [ |
=g 2.0+ (ny = ry)e —ny | =0, (7)

a_ﬁl_ﬁ_l Y=

ol 1
=L (n, —ry)e” —n,| =0, (8)

o2 Z Mo
B, B V1
7y Ty F)
77 lzxo') + Z%)]
=1 =1
[zx e+ (my = ), >eyxm)] ¥
g
=1

ol r
—_— = — +
dy

ny = rz))’(rz)ewm] :

From Equations (7) and (8), we get

> Y7 T
ﬁl =

- [Zrlle)’X(,') + (”1 _ rl)eYX(yl) _ ”1] - b_{’ (10)
’B _ Y2 _n
2= = .
[zjleew (nz _ rz)ew(,z) _ n2:| b; (11)

Now, by substituting (10) and (11) into (9), the MLE of
parameter y(y) is obtained. Then, to get B1 and Bz’ we
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substitute y into Equations (10) and (11). Therefore, the
MLE of R is

Tz:f%. (12)

4. Confidence Interval of R

In this section, the exact and asymptotic confidence intervals
for R are calculated.

4.1. Exact Confidence Interval. Let x),x ), X be a
type II censored sample from Gompertz(ﬁ)l,y). Consider
W, =B /y(er —1),i=1,2,-,r), where w; <w, <--<w,
is a type II censored dependent sample from the standard
exponential distribution (SED). Now, apply the following

conversion:

Wi=(n =i+ 1)(W, = Wy,). (13)
It can be concluded that Wi, W), -, W;l ~ind SED,
Therefore,
L !
zz WiNX%Z(rl—l))' (14)

i=2

Similarly, suppose y(;), ¥ (5)s =+ ¥,y be a type II censored
sample from Gompertz(f,, y). Define M; = 3,/y(e”) - 1),
j=12,---, 15, where m; <m, <---<m, is a type II censored
dependent sample from the SED. Now, apply the following
transformation:

M= (ny—j+1)(M; - M, ;). (15)
It results that M}, M, -+, M, ~ ™I SED. So,
2 , 5
2 M~ Ko vy (16)

Based on the independence of Y', W, and Z;izM]" can
be written

-y W
Fo= T2l >Z’r§2 i~ Fag-n20,-1) (17)
(r - 1>Zj=2Mj

Then, confidence interval for R is

1 1
(1 + Qy/QFygp(2(ry = 1),2(r; = 1)) 1+ Q/Q Fepp(2(ry = 1), 2(r, — 1))>,

(18)

3
where
r—1
Q== Y m =i 1) (0 - o),
Y =
o (19)
Q= L2y (= (70 ),
y ]:2

4.2. Asymptotic Confidence Interval. In this section, the
asymptotic confidence interval for R is calculated using
Wald statistics. Based on Wald statistics, we have

1/r) +1/r,)"*(R-R
o A dn) TR-B) b o1 (0
7

R e A~ o~ o~ 2
where 7= Var(R) = B, B/(B, + B,)".

Theorem 1. Let r; — 00 and r, — 00, then

[z(i + i)]I/Z(R—R) LN(0E),  (21)

ry n

where «° =2([31,82)2/(/31 + [32)2 .

Proof. Given that the maximum likelihood estimator is
asymptotically normal [21], when r; — oo and r, — oo,
then

(5 =)} 0

where

®= (23)

B 0
0o B

Define h(f,, 3,) = B,/f3; + B,- According to Taylor expan-
sion h(ﬁl, Ez) around f3; and f3,, we have

~ ~ T Bl _ﬁl
R=h(B), B,) =h(By, B)+Vh(By, )" | 6

R By =B,
:R+L -B, B, ] B -

BB BB |5,

+Gp,a.8.,

(24)

where the remaining sentences in the following relation
apply:

61 =0p

((31—ﬁ1)2+(ﬁz—ﬁz)ﬂ. (25)



Based on (22) and (24), when r;, — o0 and r, — 00,
then

=2 :+:>_152,
(27)
where
§* =Var P 5 Ay z}' b
(Br+B,)" (B+By) _EZ—[J’Z_
=|: _[52 /31 :|.Var -ﬁl_/‘gl_
(Bi+B) (Bi+ho) [ B,— B, |
[ B
(B +B)’ { BB ]
B | BB (BB
(6,6’
Var[\/r—lgﬁl_ﬁlﬂ 0
. Var[\/ﬁgﬂz—ﬁzﬂ
B By
(B +B.)? { B } "
B | BB BB | g
B+ B n
(181+ﬁ2)2 KoK (1 1
s el
L (B + B ]
(28)
Therefore,
-1
Var (2(r11+1’12)> (R_R)] = (29)

Equation (26) holds because according to the property of
MLE R—5R. O
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Corollary 2. A 100(1-&)% asymptotic confidence interval

for R is
R-7 1+1T2+A 1+1 (30)
- Z - ) Z - - b
22 roor HZg)2 ro

A s o~ o~ 2
where 1= f3,B,/(B,+ B,) -

o 2
Proof. De;ﬁne = (B,B8,) (B, +By)* and 7°=(B,B,)/
(B, + B,) . According to the asymptotic property of the
MLE, #/n tends to 1 in probability. On the other hand,
according to Theorem 1,

(1/r, + 1/r2;‘”2(1*2—R) 2N, 1) (1)

Therefore, according to the Slutsky theorem, we have

(Ury+1/ry)) " 2(R=R) _ (Ur,+1/r))""?(R=R)/n p
—

= = — N(0,1).
d nin ©.1)
(32)
Thus,
P(R-7% 1+1<R<1A2+A 1+1 1-¢&
-7z — + —<R< z —+—|=1-¢&.
HZgp o HZgpn P
(33)
O

5. Bayesian Estimation of R

Bayes [22] and Laplace [23] found that the uncertainty about
the parameters of a model, which we represent with 6, could
be modeled on ® through a probability distribution such as
71(0), called the prior distribution. With this approach, the
inference is based on the conditional distribution 0 on x,
7(0]x). This conditional distribution is called the posterior
distribution. In this section, Bayesian estimation is obtained
by using the conjugate informative and Jeffreys noninforma-
tive prior distributions.

5.1. Conjugate Informative Prior. Let 3, ~Gamma(«,,#,)
and f3, ~ Gamma(a,,7,) and are independent. The PDF of
these priors is as follows:

1
’/l 1_1 —
T[(ﬁl>=1-v(‘lxl)ﬁ? erllﬁl’al’rll>0’
(34)
*
1 a1 —
ﬂ(ﬁZ) = F((sz) ﬂZ le UZﬁz’ab }12 > 0;
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where «;,%,,a, and 7, are the hyperparameters. Then, the
joint prior possibility distribution is

(B B) = (B () = s B S el

(35)

(B1s By yI%:¥)

LBy By s % y)(B1 By)

The posterior probability distribution is calculated as
follows:

oc B -1 e—/}l (’11+b1 ! ) ﬁgfrrfle—ﬁz (;12+h2/) , (36)

where b and b}, were given in (4) and (5), respectively. For
i=1,2, we can write

Bi|x, y ~ Gamma(a;, 7} ), (37)

where af =a; +r; and } =, + b,. [24] proposed «, =1, =
@, =1, =0.001, and Robert [25] suggested an empirical
Bayesian approach to determining the values of hyperpara-
meters. According to the approach presented by Robert, to
get «; and #,, we maximize the following function:

(o]

(x| ) J F(xlar, (B [y, ),

0

n, eV 2o JOO

Iay)(n =)l o
ny T 2k

1

o+ =1 e_ﬁl (’11+b1 , ) dﬁl

r(e)(m =)t (m +)"
(39)

We have

M(x|ay, 1) =log [m(x|ay, 77,)]

n,!
=1 o
% {(”1 —rp)!

~log (&) = (o, +1,) log (17, +b})

] +a,; logn, +log I'(a; + 1))

(39)

a; and 7, are obtained by solving the following
equations:

oM
3o o8y (r + ) —y(a) ~log (111 * bi) =0,

1 (40)

" ISICLB L By sxy) By By)dBLdB,

oM«

57’11_'11

a +rp

=0, 41
7l1+b; 4l

where y shows the digamma function. By solving Equation
(41), n, is

a,b!
M= 1. (42)

"

By substituting (42) into (40), we get

0=log | —1 ) +y(r, +a,) - y(ay)
1, +b

[0

“tog () v vle) ()
o |

_ 1

=log (r1+oc1> " kz:(:)ocl+k'

Similarly, this method can be repeated to calculate «,
and #,. So, #, is as follows:

a,b,

=_22 44
M ) (44)

Also, a, is obtained by solving the following equation:

r,—1
a 3 1
=1 2 . 4
0 Og(r2+(x2>+zcx2+k (45)

k=0

Abravesh et al. [4] showed that Equations (43) and (45)
have no answer and set a; =a, =1 to solve this problem.

Then, 5, = b}/r, and n, = by/r,.

5.2. Posterior Distribution of R. To calculate the posterior
distribution of R, we have the following transformations:

_ B
R_ﬁ1+ﬁ2’ (46)

V=5, (47)




Transformations (46) and (47) are equivalent to f3; =
V(1-R/R) and B,=V. The posterior distribution of R
and V can be calculated by the following formula:

n(r,v|x,y) =|J| -rr(v (;) » V|X, y). (48)

In the above formula, J is called Jacobin and is calcu-
lated as follows:

8,81 aﬁz L—-r

o ov - M| v
|J| = |det = |det = .

aIBI aﬁZ v 0 r

= . )

or  Or r

(49)

The marginal distribution of R is calculated from the
joint distribution in (48) as

n(r|x,y) :-[ T (r, VX, y)du
0

00 PO aj-1
_[Troomom (i V=] 51 iy gy,
o ™ T(af)I(a3) r

(1/r-1)%"

it a3)
P2l (Ur = 1) + 3]0

F(af)I'(a3)

<r<1.

(50)
5.3. Jeffreys Noninformative Prior. In this section, by using

Jeffreys noninformative prior [26], the Bayesian estimation
of R is obtained. The Jeftreys prior is as follows:

(B By) o v/ det [I(By, B,)], (51)

E Foad) E Foad)
op: 9p,0B,
I(ﬁvﬁz) == . (52)

E 7821 E a—ZZ
oB.B) \o]

Considering Jeffreys prior 7; oc 1/f3,3,, the marginal
posterior distribution is given by

where

B;|x,y ~ Gamma (ri, b:) ,i=1,2. (53)

Similar to the process in Subsection 5.2, the marginal
posterior distribution can be obtained:

ror

Bl O;T(r, +1y)
I(r)I(ry)

(Lr—1)n!

0<r<l1.
r [b;(l/r—1)+b;}

my(rx.y) =

Tty

(54)
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5.4. Lindley Approximation. Lindley [27] proposed a method
for approximating the ratio of integrals. The Lindley approxi-
mation of R can be calculated using the following formula:

I(t)+I1(7)
E(R(7)|data) = 4 K¢ dt

J'el(T)+H(T) dr
~ 1
~R(T)+ 3 (Z (pij + ZPiHi) O+ .Zk:llijkploiijo'kl> >
i, ijk,

(55)
where X =[0;(T)] = [—lij(?)]_l, T is MLE of t and

0’1

ok 07,07,07;,

o

(56)
Here, | is log-likelihood function and IT is log-prior
distribution.
5.4.1. Informative Prior. Based on the prior distribution (35)
and R = f3,/f3; + 3,, we obtain
IT=log (B, B,) = a; log 17, —log I'(a; ) + (e — 1) log B,
— 1By + &, logn, —log I'(ay) + (a; — 1) log B, = 11,8,

(57)
So,
. - oIl oy -1
o TR
I = oIl _a,—-1
A
OR -B,
L35 T g2
Bi (Bi+p)
_OR _ B
& B, (B +B,)" (58)
0’R 28,
P == ——,
Yoo (BB
o= o°R 2B,
YR (BB
Py = O’R _ ﬁz_ﬁl )
0 0B,0p, (B, +B,)°
Inverse of the Hessian matrix is given by
2
B
"
Z= e (59)
0o =2
b}
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Sort {R;,i=1,2,-,
Consider C; = (R;,
Consider W R -8~

A A v

Generate a MCMC sample {R;,i=1,2, -,
I} and suppose R;) < Ry < ++<R(;

Rj: g1 ]) J=b2

Select] such that er = min {Wj,j =1,2,-,
Introduce C; as a 100(1 - §)% HPD interval for R.

k} from 7(R|x,y);
I=1(1-81;
I=1(1-81%

ArgoriTHM 1: Chen-Shao algorithm for R.

S0, 01y = PiIr1, 05y = B3/, 01, =0 =0 and
ol 2r .
iii:a_lg:')’:_;’l:1,2. (60)

Finally, the Lindley approximation of the Bayes estima-
tor of R is

RBayes = R(?) + ; (Z (Pq + Zp IT; )G + Z ll]kplaljakl>

i,jk,l
2

~oan 1
:R(:Bv /52) + 5;(% +2p,I1;)o; + zgl:liiiPiU?i

(61)
5.4.2. Noninformative Prior. Under Jeffreys prior (7r;(,, 8,) =
1/B,3,), we have
—log f, ~log B,
1 1 62
[N (62)
B B,

Therefore, the Bayes estimator of R using the Lindley
approximation is

I, =-

~ 1
RBayes = R(T) + 5 <z (Pij + zpini)aij + Z lijkplgijgkl)

ikl

:R<E1’ﬁ2> Z(P1;+2P1Hz)011+ thﬂpl i
s N BB 2
=R :81)/32 b |/~ A \3 | =~ /~  ~\2
(B Bo)+ | (Bi+By) ' Bi(Bi+By) | (63)
A

2 |(BrB) BB

5.5. Monte Carlo Integration. The Monte Carlo integration
method was introduced by Metropolis and Ulam [28] and Neu-
mann [29]. Let 6,,0,, -+, 0, be a random sample from poste-
rior density 71(0|observations). In this case, according to the
strong law of large numbers, for large k, an approximation for
the expected values of posterior is equal to

k
E(C(0)|observation) = Z (64)

i=1

This method was very simple and does not involve compli-
cated calculations. The only problem this method may have is
generating a random sample of posterior density.

Now, the Bayes estimator of R is obtained using this

method. Let { ﬁgl), [3(2) N)} be the random sample
from 7(B;|x,y),i= 1,2, then for large N,

5.5.1. Informative Prior. To calculate the Bayes estimator of
R under the conjugate prior (35), we assume /3,(1), [3,@, RN
BN ~iid Gamma(a, + 1,y 1, + b)), i = 1,2. So,

~I 1Y ; ; 1Y ;j)
Ry = ﬁZR(ﬁ?)»ﬁgﬁ) = NZ(@) (66)

J=1 J=1

5.5.2. Noninformative Prior. Under the Jeffreys prior, we
consider ﬁgl), [352), ey ﬁl(.m ~ i Gammal(r,, b;), i=1,2. Then,

B ISl gy LB
RMc—ﬁzR(ﬁlj’ﬁzj)‘N;<W' (67)

J=1

5.6. MCMC. To solve the stated problem of the Monte Carlo
integration method, a more general method is used to generate
approximate random variables from the posterior distribu-
tion, called the Markov chain Monte Carlo (MCMC) method
[30]. The Metropolis-Hastings algorithm is used to create
Markov chains with a given distribution. The application of
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MC

MCMC

0.010295 (0.012573)
0.011231 (0.014295)
0.007728 (0.016904)
0.007793 (0.019736)
-0.000681 (0.017157)
-0.000749 (0.019676)

0.006669 (0.006495)
0.007375 (0.007236)
0.005395 (0.008246)
0.004971 (0.009175)
-0.000596 (0.008737)
-0.000502 (0.008889)

-0.006733 (0.008151)
-0.006959 (0.009400)
0.004501 (0.007476)
0.006082 (0.008662)
-0.006873 (0.013339)
-0.007212 (0.015539)

-0.005904 (0.004985)
-0.006247 (0.005666)
0.002187 (0.004340)
0.003254 (0.004896)
-0.005408 (0.007667)
-0.006585 (0.008730)

0.007466 (0.004211)
0.007113 (0.004477)
0.000583 (0.003835)
0.000408 (0.004046)
-0.002798 (0.005059)
-0.002854 (0.005423)

0.006229 (0.003175)
0.006013 (0.003299)
0.001015 (0.002807)
0.001044 (0.002948)
-0.002345 (0.003726)
-0.002606 (0.003900)

MC

MCMC

-0.012485 (0.010080)
0.003521 (0.011480)
0.019974 (0.015494)
0.037776 (0.018229)
-0.020104 (0.016047)
-0.004391 (0.018341)

-0.053973 (0.008464)
-0.045037 (0.008308)
-0.030126 (0.010706)
-0.019705 (0.011154)
-0.062010 (0.013115)
-0.053220 (0.013700)

-0.005916 (0.006567)
-0.000261 (0.007695)
-0.003448 (0.009072)
0.002493 (0.010620)
-0.013705 (0.005678)
-0.007743 (0.006572)

-0.038466 (0.006042)
-0.034790 (0.006342)
-0.037787 (0.007786)
-0.036707 (0.008483)
-0.049995 (0.006245)
-0.046598 (0.006817)

-0.005248 (0.002967)
0.001252 (0.003141)
-0.000352 (0.004518)
0.006694 (0.004831)
0.004086 (0.003858)

-0.025586 (0.003080)
-0.019025 (0.002924)
-0.021084 (0.004090)
-0.014817 (0.004119)
-0.018673 (0.003403)
-0.013123 (0.003508)

8
TaBLE 1: The bias and MSE values (MSE in parentheses) of estimators for §, =1,8,=1,y=1,R=1/2.
n, on, r T, Prior MLE Lindley
10 10 Conjugate 0.011339 (0.015528) 0.010107 (0.012152)
Jeffreys — 0.010822 (0.014271)
10 10 9 8 Conjugate 0.009474 (0.021751) 0.003927 (0.016272)
Jeftreys — 0.004289 (0.019732)
8 8 Conjugate -0.000753 (0.021541) -0.000852 (0.016715)
Jeffreys — -0.000815 (0.019670)
10 30 Conjugate  -0.015306 (0.010153) 0.010855 (0.008091)
Jeffreys — 0.009125 (0.009500)
10 30 9 28 Conjugate -0.003033 (0.009196) 0.024440 (0.007826)
Jeffreys — 0.024301 (0.009185)
g, Comugate 0017882 (0.016928)  0.015887 (0.013174)
Jeftreys — 0.013523 (0.015708)
30 30 Conjugate 0.007389 (0.004586) 0.007087 (0.004188)
Jeftreys — 0.007269 (0.004444)
Conjugate 0.000869 (0.004186) -0.000089 (0.003779)
30 30 29 27
Jeffreys — -0.000090 (0.004044)
7 27 Conjugate -0.002992 (0.005576) -0.002802 (0.005017)
Jeffreys — -0.002939 (0.005384)
TaBLE 2: The bias and MSE values (MSE in parentheses) of estimators for 8, =1, 8, =2,y=1,R=2/3.
ny n, 7, Prior MLE Lindley
10 10 Conjugate 0.009500 (0.012304) -0.015630 (0.010022)
Jeffreys — 0.002976 (0.011512)
10 10 9 8 Conjugate 0.047141 (0.019723) 0.013442 (0.015408)
Jeffreys — 0.035412 (0.018268)
8 8 Conjugate 0.002840 (0.019525) -0.023443 (0.015882)
Jeffreys — -0.004222 (0.018351)
10 30 Conjugate -0.002736 (0.008137) 0.008917 (0.006132)
Jeftreys — 0.014354 (0.007555)
10 30 9 28 Conjugate  -0.000636 (0.011272) 0.013486 (0.008512)
Jeffreys — 0.018633 (0.010370)
8 27 Conjugate -0.011756 (0.007082) 0.006556 (0.004932)
Jeffreys — 0.012011 (0.006199)
30 30 Conjugate 0.003700 (0.003215) -0.005787 (0.002979)
Jeffreys — 0.001298 (0.003137)
Conjugate 0.009701 (0.009701) -0.001228 (0.004512)
30 30 29 27
Jeffreys — 0.006303 (0.004813)
97 27 Conjugate 0.013939 (0.004330) 0.003420 (0.003420)
Jeffreys — 0.011203 (0.004182)

0.011117 (0.004171)

this algorithm in mechanical physics was first developed by
Metropolis et al. [30]. A few years later, Hastings and Keith
generalized the algorithm in more statistical detail [31]. Using
the MCMC method, the following integral is approximated:

E(R|x,y) = Jorn(r|x, y)dr. (68)

Let ry, 7y, -
7(r|x,y), we have

5.6.1. Informative Prior. Considering the conjugate

E(Rx,y) =

— =

1
Z Ty
=1

--,7; be an ergodic MCMC sample from
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TaBLE 3: The bias and MSE values (MSE in parentheses) of estimators for §, =2,8,=1,y=1,R=1/3.

Lindley

MC

MCMC

0.017747 (0.011277)
0.000054 (0.012776)
0.001998 (0.015037)
-0.017516 (0.018642)
-0.006422 (0.014205)
-0.028748 (0.016873)

0.014489 (0.011353)
-0.000131 (0.012800)
0.002221 (0.015536)
-0.014752 (0.018694)
-0.010386 (0.014360)
-0.028721 (0.016784)

0.055189 (0.009427)
0.046938 (0.009554)
0.049048 (0.010972)
0.039356 (0.011794)
0.039886 (0.010667)
0.027892 (0.011565)

0.029157 (0.006079)
0.006823 (0.006389)
0.029192 (0.008100)
0.005889 (0.008797)
0.040819 (0.009588)
0.012477 (0.009715)

0.010961 (0.005102)
-0.007084 (0.006079)
0.008836 (0.006968)
-0.009568 (0.008326)
0.016503 (0.007684)
-0.005752 (0.008934)

0.044632 (0.005154)
0.031843 (0.004776)
0.044723 (0.006398)
0.031616 (0.006042)
0.053626 (0.007476)
0.035300 (0.007476)

n n, r 7, Prior MLE
Conjugate  -0.006236 (0.013546)
10 10
Jeftreys —
Conjugate -0.020955 (0.020210)
10 10 9 8
Jeffreys —
g g Conjugate  -0.036934 (0.018266)
Jeftreys —
Conjugate  -0.019006 (0.006476)
10 30
Jeffreys —
Conjugate  -0.022646 (0.008856)
10 30 9 28
Jeffreys —
8 37 Conjugate -0.020403 (0.009430)
Jeftreys —
Conjugate  -0.005453 (0.004098)
30 30
Jeffreys —
Conjugate -0.003748 (0.004346)
30 30 29 27
Jeffreys —
Conjugate  -0.007624 (0.003878)
27 27
Jeftreys —

0.003841 (0.003746)
-0.003058 (0.003991)
0.005040 (0.004015)
-0.002042 (0.004232)
0.002911 (0.003491)
-0.004931 (0.003755)

0.003399 (0.003739)
-0.002791 (0.004009)
0.005143 (0.004039)
-0.001604 (0.004234)
0.002431 (0.003503)
-0.005036 (0.003742)

0.023368 (0.003607)
0.018217 (0.003467)
0.026241 (0.003894)
0.019994 (0.003906)
0.023633 (0.003301)
0.017996 (0.003314)

1: Select ny, ny, B, B, 115 15, and y values;

2: Generate (7,,7,, -, 7, ) and (8,,6,,--,6, )
3:  Consider x; = (1/y) log ((y/B,)7; +1),i=1,2, -
4
5

Sort x;s and y;s and suppose x(;) <x(5) < -+-<x(, ) and y(,

Report (x(l),x(z), '-',X(,l)) and ()’(1) Y

respectively.

from the SED;
oy and y, = (11y) log ((y/B,)8, + 1).i=

V) <Yy
, y(rz)) as the type II censored samples from Gompertz(f;,y) and Gompertz(f3,, ),

1,2, my;

ArcoriTHM 2: The type II censored sample generation algorithm.

distribution (35) for 3, and f3,, we obtain the posterior distri-
bution (50). By generating an ergodic sample 71, 73, -+, ] from
71; using the Metropolis-Hastings algorithm, the R Bayesian
estimator is as follows:

E(R|x,y) =

l
> ()

N.|>—l

5.6.2. Noninformative Prior. Similarly, using the Jeffreys prior
and the posterior distribution (54) for 8, and f3,, we generate
an ergodic sample r}, 7, -+, ] from 7 7 using the Metropolis-
Hastings algorithm; the R Bayesian estimator is given by

1
-33 )

E(R[x,y)

~|>—t

6. Bayesian Credible Interval

In fact, the Bayesian view offers confidence interval that are
more realistic than its classic counterpart. We start this
section with two definitions.

Definition 3. Set C, is called a &-credible region whenever

P (0eCylx)>1-¢&, (72)
where P is the 6 posterior probability function of condi-
tion x.

Definition 4. The & -credible region C, is called a region with
the highest posterior density (HPD) whenever it can be writ-
ten as follows:

C,(v)={0:(0x) = v}, (73)
where v is the largest fixed number that applies to
P.(0eCy(v))=1-¢. (74)

Although the 100(1 - &)% HPD interval is an optimal
answer among the &-credible intervals, in some cases, it is
not easy to calculate directly, and approximate methods
must be used to obtain it [32]. It is usually easier to calculate
approximate intervals with equal tails than HPD interval



10 Advances in Mathematical Physics
TaBLE 4: L and CP of confidence interval for R=1/2, 8, =1,8,=1and y=1.
", ", - r Asymptotic Exact Credible Fqui—tailed Credible equi-tailed HPD HPD
Conjugate Jeftreys Conjugate Jeftreys
10 10 L 0.410623 0.417916 0.328047 0.337885 0.385356 0.400056
CP 0.995 0.900 0.936 0.939 0.910 0.900
10 10 g g L 0.435411 0.447157 0.342757 0.354050 0.406417 0.423652
CP 0.987 0.875 0.922 0.920 0.886 0.870
8 8 L 0.443006 0.454225 0.347341 0.358796 0.412829 0.431075
Cp 0.725 0.857 0.922 0.916 0.869 0.855
10 30 L 0.344899 0.352722 0.287869 0.295543 0.327492 0.338830
Cp 0.242 0.929 0.954 0.953 0.932 0.922
L 0.359745 0.369685 0.297746 0.306382 0.340650 0.353603
10 30 9 28
Cp 1.000 0.932 0.965 0.955 0.944 0.931
g 7 L 0.373987 0.386498 0.306679 0.316532 0.353156 0.367765
CP 1.000 0.912 0.950 0.942 0.926 0.910
30 30 L 0.248407 0.249667 0.223203 0.226709 0.242077 0.245737
CP 1.000 0.934 0.946 0.943 0.943 0.940
L 0.257244 0.258682 0.230090 0.233250 0.250227 0.254282
30 30 29 27
Cp 1.000 0.941 0.949 0.949 0.942 0.938
7 7 L 0.261087 0.262638 0.233356 0.236327 0.253800 0.258014
Cp 1.000 0.928 0.937 0.935 0.929 0.927
TaBLE 5: L and CP of confidence interval for R=2/3, 8, =1,,=2and y = 1.
n, ", . " Asymptotic Exact Credible .equi—tailed Credible equi-tailed HPD HPD
Conjugate Jeftreys Conjugate Jeftreys
10 10 L 0.358133 0.371438 0.311195 0.317441 0.349515 0.355055
CP 0.987 0.867 0.907 0.908 0.882 0.869
10 10 9 8 L 0.370774 0.390539 0.324441 0.332062 0.365106 0.370252
Cp 0.925 0.850 0.902 0.902 0.869 0.844
8 8 L 0.383027 0.403275 0.329960 0.338316 0.374478 0.380763
CP 0.724 0.850 0.894 0.900 0.874 0.849
10 30 L 0.304199 0.307665 0.260316 0.264883 0.290042 0.296947
Cp 0.996 0.886 0.907 0.897 0.905 0.883
L 0.322409 0.326611 0.271776 0.277204 0.305627 0.313888
10 30 9 28
CP 1.000 0.909 0.908 0.906 0.922 0.911
8 57 L 0.333331 0.338090 0.277764 0.283595 0.314420 0.323653
Cp 0.759 0.877 0.886 0.879 0.899 0.880
L 0.219360 0.222087 0.204815 0.206564 0.217282 0.218471
30 30 Cp 1.000 0.930 0.942 0.938 0.938 0.927
L 0.225229 0.228234 0.210635 0.211962 0.223388 0.224514
30 30 29 27
Cp 1.000 0.903 0.915 0.918 0.923 0.906
27 7 L 0.229774 0.232950 0.214164 0.215451 0.227483 0.228800
CP 1.000 0.915 0.920 0.919 0.928 0.920

[33]. Chen and Shao [34] have proposed an algorithm to
construct an approximate HPD interval. We obtain confi-

dence intervals of equal tails and HPD.

6.1. An Equi-Tailed Bayesian Credible Interval. In this sub-
section, confidence intervals with equal tails are calculated

under the conjugate and Jeffreys prior distributions.
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TaBLE 6: L and CP of confidence interval for R=1/3, 8, =2,,=1and y=1.

" " ; , Asvmptotic Exact Credible equi-tailed Credible equi-tailed HPD HPD
! 2 ! 2 ymp Conjugate Jeffreys Conjugate Jeffreys
10 10 L 0.361056 0.375095 0.312100 0.318856 0.352094 0.357747

CP 0.956 0.916 0.930 0.936 0.925 0.900
10 10 g g L 0.381043 0.396260 0.324565 0.332243 0.369455 0.376389

CP 0.939 0.857 0.906 0.891 0.880 0.858
8 8 L 0.381905 0.400602 0.329760 0.337189 0.373895 0.379686

CP 0.922 0.845 0.899 0.901 0.876 0.847
10 30 L 0.301283 0.320492 0.280337 0.286296 0.302704 0.306193

CP 0.823 0.927 0.932 0.948 0.948 0.930
L 0.315321 0.337685 0.290839 0.297912 0.316907 0.321067

10 30 9 28

CP 0.095 0.933 0.934 0.938 0.936 0.919
g 7 L 0.326139 0.353599 0.301778 0.309364 0.329406 0.334021

CP 1.000 0.923 0.942 0.951 0.939 0.929
30 30 L 0.219806 0.222444 0.205892 0.206672 0.217676 0.218890

CP 1.000 0.931 0.925 0.926 0.935 0.925
L 0.227859 0.230704 0.211658 0.213410 0.225177 0.226650

30 30 29 27

CP 1.000 0.924 0.936 0.939 0.932 0.921
7 7 L 0.229601 0.232700 0.214087 0.215231 0.227314 0.228632

CP 1.000 0.909 0.919 0.919 0.918 0.906

TABLE 7: Real data.
X 156 442 285 247 173 168 253 112 125 286
166 202 852 261 133 365 559 227 309 702
v 230 568 1101 218 169 115 285 342 178 280
734 431 271 305 177 143 129 326 493 381
TaBLE 8: Estimators of R for real data.

Prior MLE Lindley MC MCMC
Conjugate 0.4169946 0.4192417 0.4202460 0.4294883
Jeffreys — 0.4192367 0.4158864 0.4422381

6.1.1. Informative Prior. We use the prior distribution (35).
The posterior distributions of 3, and f3, are as follows:

Bi|x v ™ Gamma(a}, 7). i=1,2. (75)
Therefore, one can conclude
2 BiIxy ~ x° (207 ) Vi=1,2. (76)

Given that the posterior distributions of 3, and f3, are
independent, we get

Bi1xy
B,1xy

* *
M &
* *
a1

~F(2a7,20a; (77)

).

Thus, a 100(1 -&)% Bayesian credible interval with
equal tails for R under the conjugate prior is

1
* * * * * * < R
L+ajm;/nia; F175/2(20‘1 »203)

—1-&

1
<
1+ainsinio; Fm(Zocl ,205)

(78)

6.1.2. Noninformative Prior. Similarly, considering the
Jeftreys prior, the posterior distributions of 3, and f3, are
B,1xy ~ " Gamma(r,, b;) and B,|x,y ~ ™ Gamma(r,, b)),
respectively. So, we have

Zb:ﬁi|X’Y~X2(2”i)>i: 1,2. (79)
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TaBLE 9: Confidence intervals of R for real data.

Asvmptotic Exact Credible equi-tailed Credible equi-tailed HPD HPD

ymp Conjugate Jeffreys Conjugate Jeffreys
Lower 0.2581656 0.2414667 0.2727656 0.2691575 0.3078994 0.2989704
Upper 0.5758236 0.5554383 0.5769903 0.5814321 0.5804470 0.5704925
L 0.317658 0.313972 0.272548 0.271522 0.304225 0.312275

Hence,
Tables 4-6 compare the proposed confidence intervals
birz B,1x.y using the interval lengths (L) and coverage probabilities
o : B,[%y ~ F(2r),2r,). (80) (CPs). From these tables, the following results are obtained:
172 217

A 100(1 — &)% Bayesian credible interval with equal tails
for R under the Jeffreys prior is

1 1
P — <R< —
1+ Vlbz/blf’zﬂ_s/z(z’p 2r,) 1+ 1‘1172/blr2F,§,2 (2ry,2r,)
=1-¢&.

(81)

6.2. HPD Interval. As mentioned earlier, it is difficult to obtain
the HPD interval directly. Therefore, in this subsection, the
Chen-Shao algorithm [34] is used to calculate the approximate
HPD interval for R. This algorithm is expressed as follows.

In Step 3, C;’s are 100(1 - &)% credible intervals for R.
To obtain the HPD interval under the conjugate and Jeffreys
priors, it is enough to substitute the posterior distributions
(50) and (54) in Step 1 of Algorithm 1.

7. Simulation Study

In this section, we use simulation to compare estimators and
confidence intervals of R. Therefore, for different sample
sizes, different numbers of type II censorship, and different
R values with 1000 repetitions, bias and mean square error
(MSE) values of R estimators are calculated. For the conju-
gate informative prior distribution, hyperparameters «, =
a,=1,17,=b,/r, and n, = by/r, are considered. Tables 1-3
show biases and MSEs of point estimators with R=1/2,
R=2/3, and R =1/3, respectively. Using Algorithm 2, type
IT censored samples are generated from two independent
Gompertz distributions.

The results of the proposed methods for point estima-
tion are summarized in Tables 1-3. Based on these tables,
the following results can be achieved:

(i) The MCMC method has the lowest MSE

(ii) For small sample size, the Bayesian method per-
forms better than the MLE method

(iii) The MSE of Bayesian estimators under conjugate
and Jeffreys priors is not significantly different

(iv) The MSE of all estimators decreases significantly
with increasing sample size

(i) The Bayesian credible intervals equi-tailed under the
conjugate priors have the shortest, and the exact
interval has the longest interval length

(ii) For classical and Bayesian methods, the L’s and the
CPs have been improved by increasing the sample size.

Among these interval estimators, the CPs of the exact
intervals are close to nominal level 95%.

(iii) The CPs of the Bayesian credible intervals equi-
tailed are almost the same under the conjugate
and Jeffreys priors

(iv) When R is close to 1/2, the HPD intervals have an
overestimate in estimating the CP

(v) When R is far from 1/2, the HPD intervals have an
underestimate in estimating the CP

8. Application

The sample lifetime of a steel particular type under two differ-
ent pressures of 35.5 (X) and 35 (Y) is reported in Table 7.
This data contains 20 observations in each sample. This data
has been studied by Kimber [35]. To verify that the data have
a Gompertz distribution, we perform the Kolmogorov-
Smirnov test. Based on the test statistics and P value, it is
concluded that X has a Gompertz distribution with parame-
ters 8, =0.0013 and y=0.0027(D = 0.2, P-value = 0.832)
and Y has a Gompertz distribution with parameters f3, =
0.00093 and y = 0.0027(D = 0.35, P-value = 0.1745). We con-
sider r; =r, =2. In Bayesian estimation, the values of the
hyperparameters are &, =a, =1,5, =b,/r; and 1, =by/r,.
Now, we apply the proposed methods for point estimation
and confidence interval estimation to this data. The results
are summarized in Tables 8 and 9. Based on the value of
R=P(X>Y)=0.417, it can be concluded that the lifetime
of steel under pressure 35 is greater than the lifetime of
steel under pressure 35.5.

9. Conclusion

This paper proposed a classical and Bayesian inference for
stress-strength reliability of Gompertz distribution under
type II censoring. First, the MLE of R was obtained. Then,
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exact and asymptotic confidence intervals for R were pre-
sented. In addition, Bayesian estimators of R obtained using
Lindley approximation, Monte Carlo, and MCMC under
conjugate informative and Jeffreys noninformative priors
were discussed. Also, Bayesian credible intervals with equi-
tailed and HPD intervals under conjugate and Jeffreys prior
distributions were obtained. The proposed methods were
compared with simulation studies. Finally, the application
of these methods was examined with a real data.
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