
 

 

 

_____________________________________ 

 

*Corresponding author: E-mail: dorisojua@gmail.com; 

 

  

 

Journal of Advances in Mathematics and Computer Science 

 
36(9): 1-16, 2021; Article no.JAMCS.65900 
ISSN: 2456-9968 

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) 

 

_______________________________________________________________________________________________________________________________________ 

 

Comparing Calibration Product Type Estimators of Population 

Mean In Stratified Sampling under Two Constraints Using 

Different Distance Measures 

 
D. N. Ojua1*, J. A. Abuchu2, E. O. Ojua3 and E. I. Enang1 

 

1Department of Statistics, University of Calabar, Calabar, Nigeria. 
2Department of Mathematics, University of Calabar, Calabar, Nigeria. 

3Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Nigeria. 

 

Authors’ contributions  

 

This work was carried out in collaboration among all authors. Authors DNO and EIE designed the study, 

performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Author JAA 

managed the literature searches. Author EOO managed the analyses of the study and wrote the first draft of the 

manuscript. All authors read and approved the final manuscript. 

 

Article Information 

 
DOI: 10.9734/JAMCS/2021/v36i930397 

Editor(s): 

(1) Dr. Burcu Gurbuz, Uskudar University, Turkey. 

Reviewers: 
(1) Abdelhadi Assir, Hassan First University of Settat, Morocco. 

(2) Shpetim Rexhepi, State University of Tetovo, Macedonia. 

(3) Ette Harrison Etuk, Rivers State University, Nigeria. 
Complete Peer review History: https://www.sdiarticle4.com/review-history/65900 

 

 

 

Received: 10 January 2021 

Accepted: 13 March 2021 

Published: 21 October 2021 

_______________________________________________________________________________ 
 

Abstract 

 
Calibration approach adjusts the original design weights by incorporating an auxiliary variable into it, to 

make the estimator be in the form of a regression estimator. This method was employed to propose 

calibration product type estimators using three distance measures namely; chi-square distance measure, the 

minimum entropy distance measure and the modified chi-square distance measure using double constraints. 

The estimators of variances of the proposed estimators were also obtained. An empirical study to ascertain 

the performance of these estimators using a secondary data set and simulated data under underlying 

distributional assumptions of Gamma, Normal and Exponential distributions with varying sample sizes of 

10%, 15%, 20% and 25% were carried out. The result with the real life data showed that the calibration 

product type estimator 𝑦̅𝑝𝑐42 from chi-square distance measure estimated the population mean with 

minimum bias than 𝑦̅𝑝𝑐5 and 𝑦̅𝑝𝑐6 obtained from the other distance measures. The result from real life data 
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also revealed that the estimator 𝑦̅𝑝𝑐41 obtained from chi-square distance measure under two constraints was 

more efficient than the other three estimators. The result from simulation studies showed that the proposed 

calibration product type estimators outperform the conventional product type estimator in term of efficiency, 

consistency and reliability under the Gamma and Exponential distributions with the exponential distribution 

taking the lead. The conventional product type estimator however was found to be better under normal 

distribution. It was also observed that as sample size increases there was no significant change in the 

performance of these proposed estimators which justifies the preference with small sample size.     

 

 

Keywords: Finite population; auxiliary variable; stratified sampling; calibration estimators; population mean. 

 

1 Introduction 

 
The regression estimator is an unbiased estimator of the population parameter which uses information on the 

auxiliary variable x which is correlated with the study variable y. The ratio estimator is used when the variables 

x is positively correlated with y, while the product type estimator is preferred when the variate x is negatively 

correlated with y. Robson [1], Murthy [2] and Perri [3] had established that both the ratio and product type 

estimator are good estimators of the population parameters if the regression line is a straight line and passes 

through the origin. However in many practical situations the regression line does not pass through the origin and 

in such situations the ratio and product estimators do not perform as well as the regression estimator [4].  

 
Calibration approach adjusts the original design weight by incorporating an auxiliary variable into it, and makes 

the estimator to be in the form of a regression estimator. This method has been used by several authors such as 

Deville and Sarndal [5], Tracy, Singh and Arnab [6], Clement and Enang [7], Koyuncu and Kadilar [8], Singh 

and Arnab [9] amongst others to propose some estimators which have a form of the regression estimator. But so 

far in sampling literature, the product type estimator has not yet been written in form of a regression estimator. 

This work seeks to use the calibration approach to rewrite the conventional product type estimator in form of a 

regression estimator.  

 

1.1 Definition of terms 

 
𝑋̅ℎ is the population mean of the auxiliary variable 

𝑥̅ℎ is the sample mean of the auxiliary variable 

𝑌̅ℎ is the population mean of the variable of interest 

𝑦̅ℎ is the sample mean of the variable of interest 

𝑆ℎ𝑦
2  is the population variance of the variable of interest 

𝑠ℎ𝑦
2  is the sample variance of the variable of interest 

𝑆ℎ𝑥
2  is the population variance of the auxiliary variable 

𝑠ℎ𝑥
2  is the sample variance of the auxiliary variable 

𝑆ℎ𝑥𝑦  is the covariance between the auxiliary variable and variable of interest 

𝜌𝑥𝑦 is the correlation between the variable of interest and the auxiliary variable 

𝑁 is the population size 

𝑛 is the sample size 

𝑁ℎ is the stratum population size 

𝑛ℎ is the stratum sample size 

𝑄ℎ is a positive constant 

MSE is the mean square error  
 

1.2 Percentage average relative efficiency (%𝑹𝑬̅̅ ̅̅ )  
 
The relative efficiency of two procedures is given by the ratio of their efficiencies and is often defined using 

variance or mean square error. This shall be used to measure the average efficiency of each proposed estimator. 

It can be computed as: 
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%𝑅𝐸̅̅ ̅̅ (𝑦̂̅𝑝𝑐𝑝) = { √
𝑀𝑆𝐸(𝑦̂̅𝑝)

𝑀𝑆𝐸(𝑦̂̅𝑝𝑐𝑝)
} × 100                                                    

(1) 

 

Where  

 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅ (𝑦̂̅𝑝𝑐𝑝) =
1

ℎ
∑ 𝑀𝑆𝐸(𝑦̂̅𝑝𝑐𝑝)

𝐻

ℎ=1

 

(2) 

It should be noted that a %𝑅𝐸̅̅ ̅̅ (𝑦̂̅𝑝𝑐𝑝) of value greater than 100 predicts a relative increase in efficiency of the 

proposed estimator, while a %𝑅𝐸̅̅ ̅̅ (𝑦̂̅𝑝𝑐𝑝) of value less than 100 indicates a loss in efficiency of the proposed 

estimator. 

 

1.3 Percentage average absolute relative bias %(𝑨𝑹𝑩̅̅ ̅̅ ̅̅ )  
 
If 𝑦̂̅𝑝𝑐𝑝, then, for each stratum ℎ = 1,2, … , 𝐿, the relative bias is given by: 

 

𝑅𝐵(𝑦̂̅𝑝𝑐𝑝) =
1

𝑅
∑ (

𝑦̂̅𝑝𝑐𝑝

𝑦̅𝑝

− 1) 

𝑅

𝑟=1

 

(3) 

and the percentage average absolute relative bias  %(𝐴𝑅𝐵̅̅ ̅̅ ̅̅ ) is computed as 

 

%𝐴𝑅𝐵̅̅ ̅̅ ̅̅ (𝑦̂̅𝑝𝑐𝑝) = {
1

𝐿
∑ 𝐴𝑅𝐵

𝐿

ℎ=1

(𝑦̂̅𝑝𝑐𝑝)} × 100  
(4) 

where  

 

𝐴𝑅𝐵(𝑦̂̅𝑝𝑐𝑝) = |
1

𝑅
∑ (

𝑦̂̅𝑝𝑐𝑝

𝑦̅𝑝

− 1)

𝑅

𝑟=1

|    
(5) 

Where R is the number of runs. 

 

1.4 Average coefficient of variation (𝑪𝑽̅̅ ̅̅ ) 
 
This measure shall be used to measure the reliability of the proposed estimators compared to the conventional 

product type estimator in stratified sampling. The percentage average coefficient of variation of 𝑦̂̅𝑝𝑐𝑝 is given as: 

%𝐶𝑉̅̅ ̅̅ (𝑦̂̅𝑝𝑐𝑝) = {
1

𝐿
∑ 𝐶𝑉(𝑦̂̅𝑝𝑐𝑝)

𝐿

ℎ=1

} × 100 

(6) 

Where 

 

𝐶𝑉(𝑦̂̅𝑝𝑐𝑝) =
√𝑀𝑆𝐸(𝑦̂̅𝑝𝑐𝑝)

𝑦̅𝑝
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The interpretation is that, high values of %𝐶𝑉̅̅ ̅̅ (𝑦̂̅𝑝𝑐𝑝) indicate unreliable estimates while low value predicts 

reliable estimates.  

 

2 Proposed Estimators 

 
Theorem 2.1: Given the product type estimator 

 

𝑦̅𝑝𝑠 = ∑ 𝑊ℎ (𝑥̅ℎ𝑦̅ℎ) (𝑋̅ℎ)⁄𝐿
ℎ=1    

 

a calibration product type estimator 𝑦̅𝑝𝑐𝑝4 for population mean 𝑌̅ given as 

 
𝑦̅𝑝𝑐𝑝4

= ∑ 𝑊ℎ (𝑥̅ℎ𝑦̅ℎ) (𝑋̅ℎ)⁄
𝐿

ℎ=1

+ ((∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ
2𝑦̅ℎ

𝐿

ℎ=1
𝑋̅ℎ⁄ ) (∑ 𝑊ℎ𝑄ℎ

𝐿

ℎ=1
) − (∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ𝑦̅ℎ

𝐿

ℎ=1
𝑋̅ℎ⁄ ) (∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

𝐿

ℎ=1
) (∑ 𝑊ℎ𝑄ℎ

𝐿

ℎ=1
) (∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

2
𝐿

ℎ=1
)⁄

− (∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

𝐿

ℎ=1
)

2

) (𝑋̅ − ∑ 𝑊ℎ𝑥̅ℎ

𝐿

ℎ=1
) 

 

can be obtained by  

 

𝑀𝑖𝑛𝐷 = ∑
(𝛾ℎ4−𝑊ℎ)2

𝑊ℎ𝑄ℎ

𝐿
ℎ=1   

s.t. 

 

∑ 𝛾ℎ4
𝐿
ℎ=1 = ∑ 𝑊ℎ                         

𝐿
ℎ=1   

 

∑ 𝛾ℎ4𝑥̅ℎ
𝐿
ℎ=1 = 𝑋̅  

 

Where the constraints states that the sum of the design weight is equal to the sum of the calibrated weight and 

the sum of the calibrated weight multiplied by the strata mean of the auxiliary variable equals the population 

mean of the auxiliary variable.  

 

Proof: Given the product type estimator, an estimator as defined as 

 

𝑦̅𝑝𝑐𝑝4 = ∑ 𝛾ℎ4

𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿

ℎ=1
 

(7) 

 

where the weight 𝛾ℎ4 are chosen such that the distance measure 
  

∑
(𝛾ℎ4 − 𝑊ℎ)2

𝑊ℎ𝑄ℎ

𝐿

ℎ=1
  

 

Is minimized subject to the constraint 

 

∑ 𝛾ℎ4
𝐿
ℎ=1 = ∑ 𝑊ℎ                         

𝐿
ℎ=1   (8) 

and 

 

∑ 𝛾ℎ4𝑥̅ℎ

𝐿

ℎ=1
= 𝑋 ̅  

(9) 

 

Combining the distance measure, (8) and (9) gives the optimization function 

 

𝜑(𝛾ℎ4, 𝜆41, 𝜆42) = ∑
(𝛾ℎ4−𝑊ℎ)2

𝑊ℎ𝑄ℎ

𝐿
ℎ=1 − 2𝜆41(∑ 𝛾ℎ4 − ∑ 𝑊ℎ

𝐿
ℎ=1

𝐿
ℎ=1 ) − 2𝜆42(∑ 𝛾ℎ4𝑥̅ℎ − 𝑋̅𝐿

ℎ=1 )     (10) 
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Differentiating equation (10) partially with respect to 𝛾ℎ4, 𝜆41𝑎𝑛𝑑 𝜆42 and equating to zero gives 

 

𝛾ℎ4 = 𝑊ℎ[1 + 𝜆41𝑄ℎ + 𝜆42𝑄ℎ𝑥̅ℎ]  (11) 

 

𝜆41 =
−(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

𝐿
ℎ=1 )(𝑋̅−∑ 𝑊ℎ𝑥̅ℎ

𝐿
ℎ=1 )

(∑ 𝑊ℎ𝑄ℎ
𝐿
ℎ=1 )(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

2𝐿
ℎ=1 )−(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

𝐿
ℎ=1 )

2  
(12) 

and 

 

𝜆42 =
(∑ 𝑊ℎ𝑄ℎ

𝐿
ℎ=1 )(𝑋̅−∑ 𝑊ℎ𝑥̅ℎ

𝐿
ℎ=1 )

(∑ 𝑊ℎ𝑄ℎ
𝐿
ℎ=1 )(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

2𝐿
ℎ=1 )−(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

𝐿
ℎ=1 )

2      
(13) 

 

substituting (12)  and (13) into (11) gives 

 

𝛾ℎ4 = 𝑊ℎ +
(𝑊ℎ𝑄ℎ𝑥̅ℎ)(∑ 𝑊ℎ𝑄ℎ

𝐿
ℎ=1 )−(𝑊ℎ𝑄ℎ)(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

𝐿
ℎ=1 )

(∑ 𝑊ℎ𝑄ℎ
𝐿
ℎ=1 )(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

2𝐿
ℎ=1 )−(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

𝐿
ℎ=1 )

2 (𝑋̅ − ∑ 𝑊ℎ𝑥̅ℎ
𝐿
ℎ=1 )   

(14) 

 

substituting equation (14) into equation (7) we obtain  

 

𝑦̅𝑝𝑐𝑝4 = ∑
𝑊ℎ𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿
ℎ=1 +

(∑
𝑊ℎ𝑄ℎ𝑥̅ℎ

2𝑦̅ℎ
𝑋̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ𝑄ℎ

𝐿
ℎ=1 )−(∑

𝑊ℎ𝑄ℎ𝑥̅ℎ𝑦̅ℎ
𝑋̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

𝐿
ℎ=1 )

(∑ 𝑊ℎ𝑄ℎ
𝐿
ℎ=1 )(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

2𝐿
ℎ=1 )−(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

𝐿
ℎ=1 )

2 (𝑋̅ −

∑ 𝑊ℎ𝑥̅ℎ
𝐿
ℎ=1 )    

(15) 

 

Which is the proposed calibration product type estimator for population mean 𝑌̅  in stratified random sampling. 

The proposed estimator is in form of a regression equation with ∑
𝑊ℎ𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿
ℎ=1  as the intercept and 

(∑
𝑊ℎ𝑄ℎ𝑥̅ℎ

2 𝑦̅ℎ
𝑋̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ𝑄ℎ

𝐿
ℎ=1 )−(∑

𝑊ℎ𝑄ℎ𝑥̅ℎ𝑦̅ℎ
𝑋̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

𝐿
ℎ=1 )

(∑ 𝑊ℎ𝑄ℎ
𝐿
ℎ=1 )(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

2𝐿
ℎ=1 )−(∑ 𝑊ℎ𝑄ℎ𝑥̅ℎ

𝐿
ℎ=1 )

2  as the slop. 

 

Substituting 𝑄ℎ = 1𝑎𝑛𝑑 𝑄ℎ =
1

𝑥̅ℎ
 in (15) gives 

 

𝑦̅𝑝𝑐𝑝41 = ∑
𝑊ℎ𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿
ℎ=1 +

(∑
𝑊ℎ𝑥̅ℎ

2 𝑦̅ℎ
𝑋̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ

𝐿
ℎ=1 )−(∑

𝑊ℎ𝑥̅ℎ𝑦̅ℎ
𝑋̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ𝑥̅ℎ

𝐿
ℎ=1 )

(∑ 𝑊ℎ
𝐿
ℎ=1 )(∑ 𝑊ℎ𝑥̅ℎ

2𝐿
ℎ=1 )−(∑ 𝑊ℎ𝑥̅ℎ

𝐿
ℎ=1 )

2 (𝑋̅ − ∑ 𝑊ℎ𝑥̅ℎ
𝐿
ℎ=1 )   

(16) 

 

and 

𝑦̅𝑝𝑐𝑝42 = ∑
𝑊ℎ𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿
ℎ=1 +

(∑
𝑊ℎ𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ

1

𝑥̅ℎ

𝐿
ℎ=1 )−(∑

𝑊ℎ𝑦̅ℎ
𝑋̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ

𝐿
ℎ=1 )

(∑ 𝑊ℎ
1

𝑥̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ𝑥̅ℎ

𝐿
ℎ=1 )−(∑ 𝑊ℎ

𝐿
ℎ=1 )

2 (𝑋̅ − ∑ 𝑊ℎ𝑥̅ℎ
𝐿
ℎ=1 )   

(17) 

 

Where equation (16) and (17) are called the regression and ratio type calibration product type estimator for 

population mean for stratified sampling respectively. 

 

Theorem 2.2: Given the product type estimator, a calibration product type estimator 𝑦̅𝑝𝑐𝑝5 for population mean 

𝑌̅ given as  

 

𝑦̅𝑝𝑐𝑝5 = ∑
𝑊ℎ𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿

ℎ=1
 

 

can be obtained by  
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𝑀𝑖𝑛𝐷 = ∑
1

𝑄ℎ
{𝛾ℎ5 𝑙𝑜𝑔 (

𝛾ℎ5

𝑊ℎ
) − 𝛾ℎ5 − 𝑊ℎ} 𝐿

ℎ=1   

 

s.t. 

 

∑ 𝛾ℎ5
𝐿
ℎ=1 = ∑ 𝑊ℎ                         

𝐿
ℎ=1   

 

∑ 𝛾ℎ5𝑥̅ℎ

𝐿

ℎ=1
= 𝑋̅ 

 

Proof: Given the product type estimator, an estimator as defined as 

 

𝑦̅𝑝𝑐𝑝5 = ∑ 𝛾ℎ5

𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿

ℎ=1
 

(18) 

 

where the weights 𝛾ℎ5 are chosen such that the distance measure  

 

∑
1

𝑄ℎ
{𝛾ℎ5 𝑙𝑜𝑔 (

𝛾ℎ5

𝑊ℎ
) − 𝛾ℎ5 − 𝑊ℎ} 𝐿

ℎ=1    

 

is minimized subject to constraints  

 

∑ 𝛾ℎ5
𝐿
ℎ=1 = ∑ 𝑊ℎ                         

𝐿
ℎ=1                                                                          

 

and 

 

∑ 𝛾ℎ5𝑥̅ℎ
𝐿
ℎ=1 = 𝑋 ̅     

 

By combining the distance measures and the constraints gives the optimization function 

 

𝜑(𝛾ℎ5, 𝜆51, 𝜆52) = ∑
1

𝑄ℎ
{𝛾ℎ5𝑙𝑜𝑔 (

𝛾ℎ5

𝑊ℎ
) − 𝛾ℎ5 − 𝑊ℎ} −𝐿

ℎ=1 2𝜆51(∑ 𝛾ℎ5 − ∑ 𝑊ℎ
𝐿
ℎ=1

𝐿
ℎ=1 ) −

2𝜆52(∑ 𝛾ℎ5𝑥̅ℎ − 𝑋̅𝐿
ℎ=1 )   

(19) 

 

Differentiating equation (19) partially with respect to 𝛾ℎ5,𝜆51 𝑎𝑛𝑑 𝜆52, and equating to zero gives 

 

𝛾ℎ5 = 𝑊ℎ𝑒𝑥𝑝[𝜆51𝑄ℎ + 𝜆52𝑄ℎ𝑥̅ℎ]   (20) 

and taking 𝜆51 = 1 arbitrarily gives 

 

𝜆52 =
− ∑ 𝑄ℎ

𝐿
ℎ=1

∑ 𝑄ℎ𝑥̅ℎ
𝐿
ℎ=1

 
 

 

substituting 𝜆51 𝑎𝑛𝑑 𝜆52 into (20) gives 

 

𝛾ℎ5 = 𝑊ℎ𝑒𝑥𝑝 [𝑄ℎ −
(𝑄ℎ𝑥̅ℎ) ∑ 𝑄ℎ

𝐿
ℎ=1

∑ 𝑄ℎ𝑥̅ℎ
𝐿
ℎ=1

] 
(21) 

 

substituting equation (21) into equation (18), we obtain  

 

𝑦̅𝑝𝑐𝑝5 = ∑
𝑊ℎ𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿

ℎ=1
   

(22) 

 

In this case, we observed that when 𝜆51 is taken to be one arbitrarily and appropriate substitution done in the 

calibration equation, the calibration equation reduces to the conventional product estimator in stratified 
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sampling. Hence the proposed calibration product type estimator is equal to the conventional product type 

estimator. 

 

Theorem 2.3: Calibration product type estimator 𝑦̅𝑝𝑐𝑝6 for population mean 𝑌 ̅can be obtained from the product 

type estimator by  

 

𝑀𝑖𝑛𝐷 = ∑
(𝛾ℎ6−𝑊ℎ)2

𝛾ℎ6𝑄ℎ

𝐿
ℎ=1   

 

s.t. 

 

∑ 𝛾ℎ6
𝐿
ℎ=1 = ∑ 𝑊ℎ                         

𝐿
ℎ=1   

 

∑ 𝛾ℎ6𝑥̅ℎ

𝐿

ℎ=1
= 𝑋̅ 

 

given as 

 

𝑦̅𝑝𝑐𝑝6 = ∑
𝑊ℎ𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿
ℎ=1 (𝐿 +

(∑ 𝑄ℎ
𝐿
ℎ=1 )(∑ 𝑊ℎ

2𝑄ℎ𝑥̅ℎ
𝐿
ℎ=1 )−(∑ 𝑄ℎ𝑥̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ

2𝑄ℎ
𝐿
ℎ=1 )

𝑋̅2[(∑ 𝑊ℎ
2𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑄ℎ

𝐿
ℎ=1 𝑥̅ℎ)−(∑ 𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ

2𝑄ℎ𝑥̅ℎ
𝐿
ℎ=1 )]

(𝑋̅2 −

∑ 𝑊ℎ
2𝑥̅ℎ

2𝐿
ℎ=1 ))

−1
2⁄

  

 

 

Proof: Given the product type estimator, a calibration estimator defined as 

 

𝑦̅𝑝𝑐𝑝6 = ∑ 𝛾ℎ6

𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿

ℎ=1
 

(23) 

 

where the weights 𝛾ℎ6 are chosen such that the distance measure  

 

∑
(𝛾ℎ6−𝑊ℎ)2

𝛾ℎ6𝑄ℎ

𝐿
ℎ=1    

 

is minimized subject to constraints  

∑ 𝛾ℎ6
𝐿
ℎ=1 = ∑ 𝑊ℎ                         

𝐿
ℎ=1                                                                          

 

and 

 

∑ 𝛾ℎ6𝑥̅ℎ

𝐿

ℎ=1
= 𝑋 ̅   

 

 

Then, by combining the distance measure and the constraints gives the optimization function 

 

𝜑(𝛾ℎ6, 𝜆61, 𝜆62) = ∑
(𝛾ℎ6−𝑊ℎ)2

𝛾ℎ6𝑄ℎ
− 2𝜆61(∑ 𝛾ℎ6 − ∑ 𝑊ℎ

𝐿
ℎ=1

𝐿
ℎ=1 ) − 2𝜆62(∑ 𝛾ℎ6𝑥̅ℎ −𝐿

ℎ=1
𝐿
ℎ=1

𝑋̅)     

(24) 

 

Differentiating equation (24) partially with respect to 𝛾ℎ6,𝜆61 𝑎𝑛𝑑 𝜆62, and equating to zero gives 

 

𝛾ℎ6 =
𝑊ℎ

[1−2𝜆61𝑄ℎ−2𝜆62𝑄ℎ𝑥̅ℎ]
1
2

  (25) 

 

 

𝜆61 =
−(∑ 𝑊ℎ

2𝑄ℎ𝑥̅ℎ
𝐿
ℎ=1 )(𝑋̅2−∑ 𝑊ℎ

2𝑥̅ℎ
2𝐿

ℎ=1 )

2𝑋̅2[(∑ 𝑊ℎ
2𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑄ℎ

𝐿
ℎ=1 𝑥̅ℎ)−(∑ 𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ

2𝑄ℎ𝑥̅ℎ
𝐿
ℎ=1 )]

  
(26) 
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and 

 

𝜆62 =
(∑ 𝑊ℎ

2𝑄ℎ
𝐿
ℎ=1 )(𝑋̅2−∑ 𝑊ℎ

2𝑥̅ℎ
2𝐿

ℎ=1 )

2𝑋̅2[(∑ 𝑊ℎ
2𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑄ℎ

𝐿
ℎ=1 𝑥̅ℎ)−(∑ 𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ

2𝑄ℎ𝑥̅ℎ
𝐿
ℎ=1 )]

    
(27) 

 

Substituting (26) and (27) into (25) gives 

 

𝛾ℎ6 =  𝑊ℎ [1 +
(𝑄ℎ)(∑ 𝑊ℎ

2𝑄ℎ𝑥̅ℎ
𝐿
ℎ=1 )−(𝑄ℎ𝑥̅ℎ)(∑ 𝑊ℎ

2𝑄ℎ
𝐿
ℎ=1 )

2𝑋̅2[(∑ 𝑊ℎ
2𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑄ℎ

𝐿
ℎ=1 𝑥̅ℎ)−(∑ 𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ

2𝑄ℎ𝑥̅ℎ
𝐿
ℎ=1 )]

(𝑋̅2 − ∑ 𝑊ℎ
2𝑥̅ℎ

2𝐿
ℎ=1 )]

−
1

2
   

(28) 

 

substituting equation (28) into equation (23) gives  

 

𝑦̅𝑝𝑐𝑝6 = ∑
𝑊ℎ𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿
ℎ=1 (𝐿 +

(∑ 𝑄ℎ
𝐿
ℎ=1 )(∑ 𝑊ℎ

2𝑄ℎ𝑥̅ℎ
𝐿
ℎ=1 )−(∑ 𝑄ℎ𝑥̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ

2𝑄ℎ
𝐿
ℎ=1 )

𝑋̅2[(∑ 𝑊ℎ
2𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑄ℎ

𝐿
ℎ=1 𝑥̅ℎ)−(∑ 𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ

2𝑄ℎ𝑥̅ℎ
𝐿
ℎ=1 )]

(𝑋̅2 −

∑ 𝑊ℎ
2𝑥̅ℎ

2𝐿
ℎ=1 ))

−1
2⁄

   

(29) 

 

Which is the proposed calibration product type estimator for population mean 𝑌̅  in stratified random sampling, 

as required to prove. 

 

Substituting 𝑄ℎ = 1𝑎𝑛𝑑 𝑄ℎ =
1

𝑥̅ℎ
 in (29) gives 

 

𝑦̅𝑝𝑐𝑝61 = ∑
𝑊ℎ𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿
ℎ=1 (𝐿 +

𝐿(∑ 𝑊ℎ
2𝑥̅ℎ

𝐿
ℎ=1 )−(∑ 𝑥̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ

2𝐿
ℎ=1 )

𝑋̅2[(∑ 𝑊ℎ
2𝐿

ℎ=1 )(∑ 𝑥̅ℎ
𝐿
ℎ=1 )−𝐿(∑ 𝑊ℎ

2𝑥̅ℎ
𝐿
ℎ=1 )]

(𝑋̅2 − ∑ 𝑊ℎ
2𝑥̅ℎ

2𝐿
ℎ=1 ))

−1
2⁄

   
(30) 

 

and 

 

𝑦̅𝑝𝑐𝑝62 = ∑
𝑊ℎ𝑥̅ℎ𝑦̅ℎ

𝑋̅ℎ

𝐿
ℎ=1 (𝐿 +

(∑
1

𝑥̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ

2𝐿
ℎ=1 )−𝐿(∑ 𝑊ℎ

2 1

𝑥̅ℎ

𝐿
ℎ=1 )

𝑋̅2[𝐿(∑ 𝑊ℎ
2 1

𝑥̅ℎ

𝐿
ℎ=1 )−(∑

1

𝑥̅ℎ

𝐿
ℎ=1 )(∑ 𝑊ℎ

2𝐿
ℎ=1 )]

(𝑋̅2 − ∑ 𝑊ℎ
2𝑥̅ℎ

2𝐿
ℎ=1 ))

−1
2⁄

  

(31) 

 

Equation (30) and (31) is the regression and ratio calibration product type estimator for population mean for 

stratified sampling respectively. 

 

3 Variance Estimators of the Proposed Estimators 
 
 Theorem 3.1: Given the product type variance estimator, its weight can be adjusted by 

  

𝑀𝑖𝑛𝐷 = ∑
(𝜔ℎ4

𝑜 −𝐷ℎ)
2

𝐷ℎ𝑄ℎ

𝐿
ℎ=1       

 

s.t. 

 

∑ 𝜔ℎ4
𝑜𝐿

ℎ=1 = ∑ 𝐷ℎ
𝐿
ℎ=1   

 

∑ 𝜔ℎ4
𝑜

𝐿

ℎ=1
𝑆ℎ𝑥

2 = 𝑉(𝑥̅𝑠𝑡) 

 

to obtain the calibration product type variance estimator 𝑉̂(𝑦̅𝑝𝑐𝑝4) for population mean 𝑌̅ given as  
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𝑉̂(𝑦̅𝑝𝑐𝑝4) = ∑
𝐷ℎ𝛾ℎ4

2

𝑊ℎ
2 𝑠𝑝

𝐿
ℎ=1 +

(∑
𝐷ℎ𝑄ℎ𝛾ℎ4

2 𝑆𝑝𝑆ℎ𝑥
2

𝑊ℎ
2

𝐿
ℎ=1 )(∑ 𝐷ℎ𝑄ℎ

𝐿
ℎ=1 )−(∑

𝐷ℎ𝑄ℎ𝛾ℎ4
2 𝑆𝑝𝑆ℎ𝑥

2

𝑊ℎ
2

𝐿
ℎ=1 )(∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )

(∑ 𝐷ℎ𝑄ℎ
𝐿
ℎ=1 )(∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

4𝐿
ℎ=1 )−(∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )

2 (𝑉(𝑥̅𝑠𝑡) −

𝑣̂(𝑥̅𝑠𝑡))     
 

Proof: Given the product type variance estimator, a calibration variance estimator given as 

 

𝑉̂(𝑦̅𝑝𝑐𝑝4) = ∑
𝜔ℎ4

𝑜 𝛾ℎ4
2

𝑊ℎ
2

𝐿

ℎ=1
𝑠𝑝 

(32) 

 

where the weights  𝜔ℎ4
𝑜 , are chosen such that the distance measure 

 

∑
(𝜔ℎ4

𝑜 −𝐷ℎ)
2

𝐷ℎ𝑄ℎ

𝐿
ℎ=1    

 

 is minimized subject to the constraint 

 

∑ 𝜔ℎ4
𝑜𝐿

ℎ=1 = ∑ 𝐷ℎ
𝐿
ℎ=1   (33) 

 

and 

 

∑ 𝜔ℎ4
𝑜

𝐿

ℎ=1
𝑆ℎ𝑥

2 = 𝑉(𝑥̅𝑠𝑡)  
 (34) 

 

Combining the distance measure and equation (27) and (28), it gives the optimization function 

 

𝜑(𝜔ℎ4
𝑜 , 𝜆411 , 𝜆422) = ∑

(𝜔ℎ4
𝑜 −𝐷ℎ)

2

𝐷ℎ𝑄ℎ

𝐿
ℎ=1 − 2𝜆411(∑ 𝜔ℎ4

𝑜 − ∑ 𝐷ℎ
𝐿
ℎ=1

𝐿
ℎ=1 ) −

2𝜆422(∑ 𝜔ℎ4
𝑜𝐿

ℎ=1 𝑆ℎ𝑥
2 − 𝑉(𝑥̅𝑠𝑡))   

(35) 

 

Differentiating equation (35) partially with respect to 𝜔ℎ4
𝑜 , 𝜆411 𝑎𝑛𝑑 𝜆422 and equating to zero gives 

 

𝜔ℎ4
𝑜 = 𝐷ℎ[1 + 𝜆411𝑄ℎ + 𝜆422𝑄ℎ𝑆ℎ𝑥

2 ]   (36) 

 

𝜆411 =
−(∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )(𝑉(𝑥̅𝑠𝑡)−𝑣̂(𝑥̅𝑠𝑡))

(∑ 𝐷ℎ𝑄ℎ
𝐿
ℎ=1 )(∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

4𝐿
ℎ=1 )−(∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )

2    
(37) 

 

 

and 

 

𝜆422 =
(∑ 𝐷ℎ𝑄ℎ

𝐿
ℎ=1 )(𝑉(𝑥̅𝑠𝑡)−𝑣̂(𝑥̅𝑠𝑡))

(∑ 𝐷ℎ𝑄ℎ
𝐿
ℎ=1 )(∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

4𝐿
ℎ=1 )−(∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )

2  
(38) 

 

Substituting (37) and (38) into (36) gives 

 

𝜔ℎ4
𝑜 = 𝐷ℎ +

(𝐷ℎ𝑄ℎ𝑆ℎ𝑥
2 )(∑ 𝐷ℎ𝑄ℎ

𝐿
ℎ=1 ) − (𝐷ℎ𝑄ℎ)(∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )

(∑ 𝐷ℎ𝑄ℎ
𝐿
ℎ=1 )(∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

4𝐿
ℎ=1 ) − (∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )2

(𝑉(𝑥̅𝑠𝑡) − 𝑣̂(𝑥̅𝑠𝑡)) 
(39) 

 

Substituting (39) into (32) we obtain  

 

𝑉̂(𝑦̅𝑝𝑐𝑝4) = ∑
𝐷ℎ𝛾ℎ4

2

𝑊ℎ
2 𝑠𝑝

𝐿
ℎ=1 +

(∑
𝐷ℎ𝑄ℎ𝛾ℎ4

2 𝑆𝑝𝑆ℎ𝑥
2

𝑊ℎ
2

𝐿
ℎ=1 )(∑ 𝐷ℎ𝑄ℎ

𝐿
ℎ=1 )−(∑

𝐷ℎ𝑄ℎ𝛾ℎ4
2 𝑆𝑝𝑆ℎ𝑥

2

𝑊ℎ
2

𝐿
ℎ=1 )(∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )

(∑ 𝐷ℎ𝑄ℎ
𝐿
ℎ=1 )(∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

4𝐿
ℎ=1 )−(∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )

2 (𝑉(𝑥̅𝑠𝑡) − 𝑣̂(𝑥̅𝑠𝑡))  

(40) 
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which is the proposed calibration product type variance estimator for population mean 𝑌̅  in stratified random 

sampling as required to prove. 

 

Substituting 𝑄ℎ = 1𝑎𝑛𝑑 𝑄ℎ =
1

𝑥̅ℎ
 in (40) gives 

 

𝑉̂(𝑦̅𝑝𝑐𝑝41) = ∑
𝐷ℎ𝛾ℎ41

2

𝑊ℎ
2

𝐿
ℎ=1 𝑠𝑝 +

(∑
𝐷ℎ𝛾ℎ41

2 𝑠𝑝𝑆ℎ𝑥
2

𝑊ℎ
2

𝐿
ℎ=1 )(∑ 𝐷ℎ

𝐿
ℎ=1 )−(∑

𝐷ℎ𝛾ℎ41
2 𝑠𝑝𝑆ℎ𝑥

2

𝑊ℎ
2

𝐿
ℎ=1 )(∑ 𝐷ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )

(∑ 𝐷ℎ
𝐿
ℎ=1 )(∑ 𝐷ℎ𝑆ℎ𝑥

4𝐿
ℎ=1 )−(∑ 𝐷ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )

2 (𝑉(𝑥̅𝑠𝑡) − 𝑣̂(𝑥̅𝑠𝑡))          

(41) 

 

Which is the regression calibration variance estimator for population mean 𝑌̅ in stratified random sampling. 

 

and 

 

𝑉̂(𝑦̅𝑝𝑐𝑝42) = ∑
𝐷ℎ𝛾ℎ42

2

𝑊ℎ
2

𝐿
ℎ=1 𝑠𝑝 +

(∑
𝐷ℎ

1
𝑥̅ℎ

𝛾ℎ42
2 𝑠𝑝𝑆ℎ𝑥

2

𝑊ℎ
2

𝐿
ℎ=1 )(∑ 𝐷ℎ

𝐿
ℎ=1 )−(∑

𝐷ℎ
1

𝑥̅ℎ
𝑠𝑝𝛾ℎ41

2 𝑆ℎ𝑥
2

𝑊ℎ
2

𝐿
ℎ=1 )(∑ 𝐷ℎ

1

𝑥̅ℎ
𝑆ℎ𝑥

2𝐿
ℎ=1 )

(∑ 𝐷ℎ
1

𝑥̅ℎ

𝐿
ℎ=1 )(∑ 𝐷ℎ

1

𝑥̅ℎ
𝑆ℎ𝑥

4𝐿
ℎ=1 )−(∑ 𝐷ℎ

1

𝑥̅ℎ
𝑆ℎ𝑥

2𝐿
ℎ=1 )

2 (𝑉(𝑥̅𝑠𝑡) − 𝑣̂(𝑥̅𝑠𝑡))    

(42) 

 

Which is the ratio calibration variance estimator for population mean 𝑌̅  in stratified random sampling. 

 

Theorem 3.2: Given the product type variance estimator, its weight can be adjusted by  

 

𝑀𝑖𝑛𝐷 = ∑
1

𝑄ℎ
{𝜔ℎ5

𝑜 𝑙𝑜𝑔 (
𝜔ℎ5

𝑜

𝐷ℎ
) − 𝜔ℎ5

𝑜 − 𝐷ℎ}  𝐿
ℎ=1      

 

s.t. 

 

∑ 𝜔ℎ5
𝑜𝐿

ℎ=1 = ∑ 𝐷ℎ
𝐿
ℎ=1   

 

∑ 𝜔ℎ5
𝑜

𝐿

ℎ=1
𝑆ℎ𝑥

2 = 𝑉(𝑥̅𝑠𝑡) 

 

to obtain the calibration product type variance estimator 𝑉̂(𝑦̅𝑝𝑐𝑝5) for population mean 𝑌̅ given as  

 

𝑉̂(𝑦̅𝑝𝑐𝑝5) = ∑
𝐷ℎ𝛾ℎ5

2

𝑊ℎ
2

𝐿
ℎ=1 𝑠𝑝  

 

Proof: Rewriting the variance of the product type estimator as  

 

𝑉̂(𝑦̅𝑝𝑐𝑝5) = ∑
𝜔ℎ5

𝑜 𝛾ℎ5
2

𝑊ℎ
2

𝐿

ℎ=1
𝑠𝑝   

(43) 

 

Where the weights  𝜔ℎ5
𝑜 , are chosen such that the distance measure  

 

∑
1

𝑄ℎ
{𝜔ℎ5

𝑜 𝑙𝑜𝑔 (
𝜔ℎ5

𝑜

𝐷ℎ
) − 𝜔ℎ5

𝑜 − 𝐷ℎ}  𝐿
ℎ=1   

 

 is minimized subject to the constraints  

 

∑ 𝜔ℎ5
𝑜𝐿

ℎ=1 = ∑ 𝐷ℎ
𝐿
ℎ=1                                                                                                   

 

and 
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∑ 𝜔ℎ5
𝑜𝐿

ℎ=1 𝑆ℎ𝑥
2 = 𝑉(𝑥̅𝑠𝑡)  

 

Then by combining the distance measure and the constraints gives the optimization function 

 

𝜑(𝜔ℎ5
𝑜 , 𝜆511 , 𝜆522) = ∑

1

𝑄ℎ
{𝜔ℎ5

𝑜 𝑙𝑜𝑔 (
𝜔ℎ5

𝑜

𝐷ℎ
) − 𝜔ℎ5

𝑜 − 𝐷ℎ} −𝐿
ℎ=1 𝜆511(∑ 𝜔ℎ5

𝑜 −𝐿
ℎ=1

∑ 𝐷ℎ
𝐿
ℎ=1 ) − 𝜆522(∑ 𝜔ℎ

𝑜𝐿
ℎ=1 𝑆ℎ𝑥

2 − 𝑉(𝑥̅𝑠𝑡))  

(44) 

 

Differentiating equation (44) partially with respect to 𝜔ℎ5
𝑜 , 𝜆511 𝑎𝑛𝑑 𝜆522 and equating to zero gives 

 

𝜔ℎ5
𝑜 = 𝐷ℎ𝑒𝑥𝑝[1 + 𝜆511 𝑄ℎ + 𝜆522 𝑄ℎ𝑆ℎ𝑥

2 ] (45) 

  

𝜆511 = 1  
 

and 

 

𝜆522 =
−(∑ 𝑄ℎ

𝐿
ℎ=1 )

(∑ 𝑄ℎ𝑆ℎ𝑥
2𝐿

ℎ=1 )
 

Substituting for 𝜆511 𝑎𝑛𝑑 𝜆522 in (45) gives 

 

𝜔ℎ5
𝑜 = 𝐷ℎ𝑒𝑥𝑝 [1 + 𝑄ℎ −

(∑ 𝑄ℎ
𝐿
ℎ=1 )

(∑ 𝑄ℎ𝑆ℎ𝑥
2𝐿

ℎ=1 )
𝑄ℎ𝑆ℎ𝑥

2 ] 
(46) 

 

Substituting (46) into (43) we obtain  

 

𝑉̂(𝑦̅𝑝𝑐𝑝5) = ∑
𝐷ℎ𝛾ℎ5

2

𝑊ℎ
2

𝐿

ℎ=1
𝑠𝑝 

(47) 

 

Which is the proposed calibration product type variance estimator for population mean 𝑌̅ in stratified random 

sampling as required to prove. 

 

Theorem 3.3: Given the product type variance estimator, a calibration product type variance estimator 

𝑉̂(𝑦̅𝑝𝑐𝑝6) for population mean 𝑌̅ given as  

 

𝑉̂(𝑦̅𝑝𝑐𝑝6) = ∑
𝐷ℎ𝛾ℎ6

2

𝑊ℎ
2 𝑠𝑝

𝐿
ℎ=1 (𝐿 +

(∑ 𝑄ℎ
𝐿
ℎ=1 )(∑ 𝐷ℎ

2𝑄ℎ𝑆ℎ𝑥
2𝐿

ℎ=1 )−(∑ (𝑄ℎ𝑆ℎ𝑥
2 )𝐿

ℎ=1 )

(𝑉(𝑥̅𝑠𝑡))
2

[(∑ 𝐷ℎ
2𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )−(∑ 𝑄ℎ

𝐿
ℎ=1 )(∑ 𝐷ℎ

2𝑄ℎ𝑆ℎ𝑥
2𝐿

ℎ=1 )]
((𝑉(𝑥̅𝑠𝑡))

2
−

∑ (𝐷ℎ𝑆ℎ𝑥
2 )2𝐿

ℎ=1 ))

−1
2⁄

  

 

can be obtained by  

 

𝑀𝑖𝑛𝐷 = ∑
1

𝑄ℎ
{𝜔ℎ5

𝑜 𝑙𝑜𝑔 (
𝜔ℎ5

𝑜

𝐷ℎ
) − 𝜔ℎ5

𝑜 − 𝐷ℎ}  𝐿
ℎ=1      

 

s.t. 

 

∑ 𝜔ℎ6
𝑜𝐿

ℎ=1 = ∑ 𝐷ℎ
𝐿
ℎ=1   

 

∑ 𝜔ℎ6
𝑜𝐿

ℎ=1 𝑆ℎ𝑥
2 = 𝑉(𝑥̅𝑠𝑡). 

 

Proof: Given the product type variance estimator, a calibration estimator defined as 
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𝑉̂(𝑦̅𝑝𝑐𝑝6) = ∑
𝜔ℎ6

𝑜 𝛾ℎ6
2

𝑊ℎ
2

𝐿

ℎ=1
𝑠𝑝 

(48) 

 

Where the weights  𝜔ℎ6
𝑜 , are chosen such that the distance measure 

 

∑
(𝜔ℎ6

𝑜 −𝐷ℎ)
2

𝜔ℎ6
𝑜 𝑄ℎ

𝐿
ℎ=1    

 

 is minimized subject to the calibration equation  

 

∑ 𝜔ℎ6
𝑜𝐿

ℎ=1 = ∑ 𝐷ℎ
𝐿
ℎ=1                                                                                                   

 

and 

 

∑ 𝜔ℎ6
𝑜𝐿

ℎ=1 𝑆ℎ𝑥
2 = 𝑉(𝑥̅𝑠𝑡)  

 

 By combining the distance measure and the constraints gives the optimization function. 

 

𝜑(𝜔ℎ6
𝑜 , 𝜆611 , 𝜆622) = ∑

(𝜔ℎ6
𝑜 −𝐷ℎ)

2

𝜔ℎ6
𝑜 𝑄ℎ

− 2𝜆611(∑ 𝜔ℎ6
𝑜 − ∑ 𝐷ℎ

𝐿
ℎ=1

𝐿
ℎ=1 ) −𝐿

ℎ=1

2𝜆622(∑ 𝜔ℎ6
𝑜𝐿

ℎ=1 𝑆ℎ𝑥
2 − 𝑉(𝑥̅𝑠𝑡))   

(49) 

 

Differentiating equation (44) partially with respect to 𝜔ℎ6
𝑜 , 𝜆611 𝑎𝑛𝑑 𝜆622 and equating to zero gives 

 

𝜔ℎ6
𝑜 =

𝐷ℎ

[1 − 2𝜆611 𝑄ℎ − 2𝜆622 𝑄ℎ𝑆ℎ𝑥
2 ]

1

2

 
(50) 

 

 

 

𝜆611 =
−(∑ 𝐷ℎ

2𝑄ℎ𝑆ℎ𝑥
2𝐿

ℎ=1 )((𝑉(𝑥̅𝑠𝑡))
2

−∑ (𝐷ℎ𝑆ℎ𝑥
2 )

2𝐿
ℎ=1 )

2(𝑉(𝑥̅𝑠𝑡))
2

[(∑ 𝐷ℎ
2𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )−(∑ 𝑄ℎ

𝐿
ℎ=1 )(∑ 𝐷ℎ

2𝑄ℎ𝑆ℎ𝑥
2𝐿

ℎ=1 )]
    

(51) 

and 

 

𝜆622 =
(∑ 𝐷ℎ

2𝑄ℎ
𝐿
ℎ=1 )((𝑉(𝑥̅𝑠𝑡))

2
−∑ (𝐷ℎ𝑆ℎ𝑥

2 )
2𝐿

ℎ=1 )

2(𝑉(𝑥̅𝑠𝑡))
2

[(∑ 𝐷ℎ
2𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )−(∑ 𝑄ℎ

𝐿
ℎ=1 )(∑ 𝐷ℎ

2𝑄ℎ𝑆ℎ𝑥
2𝐿

ℎ=1 )]
  

(52) 

 

Substituting (51) and (52) into (50) gives 

 

𝜔ℎ6
𝑜 = 𝐷ℎ (1 +

(𝑄ℎ)(∑ 𝐷ℎ
2𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )−(𝑄ℎ𝑆ℎ𝑥

2 )(∑ 𝐷ℎ
2𝑄ℎ

𝐿
ℎ=1 )

(𝑉(𝑥̅𝑠𝑡))
2

[(∑ 𝐷ℎ
2𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )−(∑ 𝑄ℎ

𝐿
ℎ=1 )(∑ 𝐷ℎ

2𝑄ℎ𝑆ℎ𝑥
2𝐿

ℎ=1 )]
((𝑉(𝑥̅𝑠𝑡))

2
−

∑ (𝐷ℎ𝑆ℎ𝑥
2 )2𝐿

ℎ=1 ))

−1
2⁄

   

(53) 

 

Substituting (53) into (48) gives  

 

𝑉̂(𝑦̅𝑝𝑐𝑝6) = ∑
𝐷ℎ𝛾ℎ6

2

𝑊ℎ
2 𝑠𝑝

𝐿
ℎ=1 (𝐿 +

(∑ 𝑄ℎ
𝐿
ℎ=1 )(∑ 𝐷ℎ

2𝑄ℎ𝑆ℎ𝑥
2𝐿

ℎ=1 )−(∑ (𝑄ℎ𝑆ℎ𝑥
2 )𝐿

ℎ=1 )

(𝑉(𝑥̅𝑠𝑡))
2

[(∑ 𝐷ℎ
2𝑄ℎ

𝐿
ℎ=1 )(∑ 𝑄ℎ𝑆ℎ𝑥

2𝐿
ℎ=1 )−(∑ 𝑄ℎ

𝐿
ℎ=1 )(∑ 𝐷ℎ

2𝑄ℎ𝑆ℎ𝑥
2𝐿

ℎ=1 )]
((𝑉(𝑥̅𝑠𝑡))

2
− ∑ (𝐷ℎ𝑆ℎ𝑥

2 )2𝐿
ℎ=1 ))

−1
2⁄

  

(54) 
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Which is the proposed calibration product type variance estimator for population mean 𝑌̅  in stratified random 

sampling as required to prove. 

 

Substituting 𝑄ℎ = 1𝑎𝑛𝑑 𝑄ℎ =
1

𝑥̅ℎ
 in (49) gives 

 

𝑉̂(𝑦̅𝑝𝑐𝑝61) = ∑
𝐷ℎ𝛾ℎ61

2

𝑊ℎ
2 𝑠𝑝

𝐿
ℎ=1 (𝐿 +

𝐿(∑ 𝐷ℎ
2𝑆ℎ𝑥

2𝐿
ℎ=1 )−(∑ (𝑆ℎ𝑥

2 )𝐿
ℎ=1 )

(𝑉(𝑥̅𝑠𝑡))
2

[(∑ 𝐷ℎ
2𝐿

ℎ=1 )(∑ 𝑆ℎ𝑥
2𝐿

ℎ=1 )−𝐿(∑ 𝐷ℎ
2𝑆ℎ𝑥

2𝐿
ℎ=1 )]

((𝑉(𝑥̅𝑠𝑡))
2

−

∑ (𝐷ℎ𝑆ℎ𝑥
2 )2𝐿

ℎ=1 ))

−1
2⁄

  

(55) 

 

and 

 

𝑉̂(𝑦̅𝑝𝑐𝑝62) = ∑
𝐷ℎ𝛾ℎ62

2

𝑊ℎ
2

𝐿
ℎ=1 𝑠𝑝 (𝐿 +

(∑
1

𝑥̅ℎ

𝐿
ℎ=1 )(∑ 𝐷ℎ

2 1

𝑥̅ℎ
𝑆ℎ𝑥

2𝐿
ℎ=1 )−(∑ (

1

𝑥̅ℎ
𝑆ℎ𝑥

2 )𝐿
ℎ=1 )

(𝑉(𝑥̅𝑠𝑡))
2

[(∑ 𝐷ℎ
2 1

𝑥̅ℎ

𝐿
ℎ=1 )(∑

1

𝑥̅ℎ
𝑆ℎ𝑥

2𝐿
ℎ=1 )−(∑

1

𝑥̅ℎ

𝐿
ℎ=1 )(∑ 𝐷ℎ

2 1

𝑥̅ℎ
𝑆ℎ𝑥

2𝐿
ℎ=1 )]

((𝑉(𝑥̅𝑠𝑡))
2

− ∑ (𝐷ℎ𝑆ℎ𝑥
2 )2𝐿

ℎ=1 ))

−1
2⁄

  

(56) 

 

4 Numerical Illustration  
 
In this section empirical evaluation of the proposed calibration estimators is done using stimulated data set with 

underlying distributional assumption of Normal, Gamma and Exponential and real – life data set from a 

secondary source to authenticate the result of our study.  

 

4.1 Empirical evaluation of estimators using real-life data  

 
In this section estimate of the mean fat content in some Nigeria pepper is obtained using the proposed 

calibration product type estimator and the conventional product type estimator. This will help to compare the 

precision of the proposed estimators. The data set used is from Ojua et al. [10] for sensitivity of some 

micronutrient composition in two Nigerian peppers to treatment with different mutagens with two variables:  

Ash and Fat. Supposed an estimate of the mean fat content 𝑌̅ in the pepper is of interest using ash as auxiliary 

variable and  𝑋̅ is assumed to be known. The data summary is presented: 
 

𝑁 = 84, 𝑛 = 43, 𝑋̅ = 5.002, 𝑌̅ = 1.8042, 𝐿 = 2  𝜌 = −0.892  𝑅 = 0.3607 𝑠𝑥
2 = 15.1722,

𝑌̅ =1.8042. 
 

The results of the analysis using excel work sheet is presented in Tables. 
 

Table 1 below shows the estimate for the mean fat in pepper, of the proposed calibration product type estimators 

with real-life data, under two constraints and the estimate for the conventional product type estimator. It was 

observed that the ratio type calibration estimator 𝑦̅𝑝𝑐𝑝42 obtained from the chi-square distance measure under 

two constraints gave a more precised estimate of the population mean than the other estimators. It was also 

observed that the estimator 𝑦̅𝑝𝑐𝑝5 gave the same estimate of the population mean as the conventional product 

type estimator.  
 

Table 2 shows the variance estimates for the proposed calibration product type estimators and the conventional 

product type variance estimator. It was observed that the regression type calibration variance estimator 

𝑉̂(𝑦̅𝑝𝑐𝑝41) obtained from the chi-square distance measure under two constraints gave a minimum variance. 
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Table 1. Mean fat estimates for the proposed calibration product type estimators 
 

Estimators Estimates 

𝑦̅𝑝 1.7271 

𝑦̅𝑝𝑐𝑝41 1.5893 

𝑦̅𝑝𝑐𝑝42 1.7274 

𝑦̅𝑝𝑐𝑝5 1.7271 

𝑦̅𝑝𝑐𝑝61 

𝑦̅𝑝𝑐𝑝62 

1.3860 

1.4096 

 

Table 2. Estimate of variance estimators for the proposed calibration product type estimator 

 

Variance estimators Estimates 

𝑉̂(𝑦̅𝑝) 0.02579 

𝑉̂(𝑦̅𝑝𝑐𝑝41) 0.002538 

𝑉̂(𝑦̅𝑝𝑐𝑝42) 0.002539 

𝑉̂(𝑦̅𝑝𝑐𝑝51) 0.02579 

𝑉̂(𝑦̅𝑝𝑐𝑝52) 0.02579 

𝑉̂(𝑦̅𝑝𝑐𝑝61) 0.03150 

𝑉̂(𝑦̅𝑝𝑐𝑝62) 0.03680 

 

4.2 Simulation study 
 
To further examine the performance of the proposed calibration product type estimators for population mean, a 

simulation study was done for R = 10,000 runs using different sample sizes using R software with seed of 

(1113329), under Normal distribution, Gamma distribution and Exponential distribution. 

 

Table 3, 4 and 5 show the percent average relative efficiency(%𝑅𝐸̅̅ ̅̅ ), percent average absolute bias (%𝐴𝑅𝐵̅̅ ̅̅ ̅̅ ), 

and average coefficient of variation (𝐶𝑉̅̅ ̅̅ )  under two constraints for Normal distribution, Gamma distribution 

and Exponential distribution respectively using different sample sizes of  10%, 15%, 20% and 25%. It was 

observed from Table 3 that the proposed calibration product type estimators were more efficient compared to 

the conventional product time estimator. Also, under the distributional assumption of exponential distribution, 

the proposed estimators where most efficient as compared to when the distributional assumption is gamma and 

normal in nature. The highest efficiency was observed when the sample size was assumed to be 15%, however, 

the efficiency was not sample size dependent because, when the sample size was increased to 20% the 

efficiency dropped and still increased at 25%. Never the less, under exponential distribution relative efficiency 

was higher across sample sizes than gamma and normal distribution (Table 3). 

 

From Table 4 the proposed estimators were shown to be more consistent as compared to the conventional 

product type estimator and also, when the distributional postulation was exponential in character the proposed 

estimators were seen to be more consistent, than when the distributional assumption is gamma and normal in 

character. Similarly, the increase in sample sizes did not make much of a difference in the consistency of the 

proposed calibration product type estimators. It was also observed that the proposed estimators are more 

reliable, under the gamma and exponential distribution, with exponential distribution taking the lead. Also under 

the normal distribution the conventional product type estimator and the proposed calibration product type 

estimators were not reliable. Also it was observed that as the sample size increases there was no significant 

increase in the reliability of the estimators (Table 5). 

 

The above observations are all pointers to the fact that the proposed calibration product type estimators in this 

present study are more efficient, consistent and reliable estimators as compared to the conventional product type 

estimator. 
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Table 3. Percent average relative efficiency for gamma, normal and exponential distribution 

 

Sample size Distributions     
 

10% GAMMA 100 400.45 726.13 1319.35 1319.35 

 NORMAL 100 55.00 63.88 70.14 70.14 

 EXPONENTIAL 100 70488.01 1103.17 723.17 723.17 

15% GAMMA 100 400.75 730.53 1331.05 1331.05 

 NORMAL 100 54.91 63.82 70.06 70.06 

 EXPONENTIAL 100 208068.87 1094.49 716.08 716.08 

20% GAMMA 100 401.28 734.28 1342.87 1342.87 

 NORMAL 100 55.10 64.09 70.35 70.35 

 EXPONENTIAL 100 65990.84 1090.96 716.47 716.47 

25% GAMMA 100 401.77 735.97 1349.51 1349.51 

 NORMAL 100 55.01 63.99 70.26 70.26 

 EXPONENTIAL 100 73407.10 1090.43 717.10 717.10 

 

Table 4. Percentage average absolute relative bias for gamma, normal and exponential distribution 

 

 Distributions      

10% GAMMA 266.893 66.6 36.7 20.2 20.2 

 NORMAL 47.623 86.6 74.5 67.8 67.8 

 EXPONENTIAL 1018.364 1.4 92.3 140.8 140.8 

15% GAMMA 267.119 66.6 36.6 20.1 20.1 

 NORMAL 47.538 86.6 74.5 67.8 67.8 

 EXPONENTIAL 1018.813 1.5 93.1 141.7 141.7 

20% GAMMA 267.400 66.6 36.3 19.9 19.9 

 NORMAL 47.709 86.6 74.4 67.8 67.8 

 EXPONENTIAL 1016.788 1.5 93.2 141.9 141.9 

25% GAMMA 269.618 66.6 36.4 19.8 19.8 

 NORMAL 47.628 86.5 74.4 67.7 67.7 

 EXPONENTIAL 1016.097 1.4 93.2 141.7 141.7 

 

Table 5.Average coefficient of variation for gamma, normal and exponential distribution 
 

Sample size Distributions      

10% GAMMA 266.893 66.648 36.756 20.229 20.229 

 NORMAL 47.623 86.582 74.547 67.899 67.889 

 EXPONENTIAL 1018.364 1.445 92.312 140.819 140.819 

15% GAMMA 267.119 66.656 36.565 20.068 20.068 

 NORMAL 47.538 86.581 54.493 67.855 67.855 

 EXPONENTIAL 1018.813 1.548 93.086 141.683 141.683 

20% GAMMA 267.400 66.636 36.654 19.913 19.913 

 NORMAL 47.709 86.580 74.445 67.820 67.820 

 EXPONENTIAL 1016.788 1.541 93.201 141.917 141.917 

25% GAMMA 269.618 66.609 36.363 19.831 19.831 

 NORMAL 47.628 86.575 74.428 67.783 67.783 

 EXPONENTIAL 1016.097 1.384 93.183 141.694 141.694 

 

5 Conclusion 

 
In this paper, we proposed calibration product type estimators of population mean in stratified sampling to be 

used in survey when the variate are negatively correlated. The performance of the proposed estimators was 

compared using real – life and simulated data set. It was shown that the calibration product type estimators 

obtained by minimizing the chi-square distance measure gave a better estimator with minimum variance than the 
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other estimators obtained from the minimum entropy and modified chi-square distance measures. Also when the 

underlying distribution is exponential in nature, the proposed estimators outperform the conventional product 

type estimator. 
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