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Abstract

A long-standing problem is how to create a short-length presentation for finite groups of degree n. This paper
aimed at presenting a concrete method for generating presentations for the groups S,..,, S,,, and S, for all
m,neZ" with fewer relations than the existing literature from the presentations of S,, and S,. The aim is
achieved by considering finite groups acting on sets and Cartesian product of groups which lead to the
construction of multiple transformations as representatives of some finite groups.

Keywords: Cartesian product,; group action; representation; symmetric group,; permutation.
1 Introduction

The idea of Group arises in mathematics as “sets of symmetries (of an object), which are closed under
composition and inverses”. A concrete example is the Symmetric group S, whose elements consists of all
possible permutations of n - objects; the group of even permutations in S, called Alternating group 4,; the
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Dihedral group D, (also called geometric group) which is the group of symmetries of regular n-sided polygon;
the Orthogonal group O(3) also known as the group of distance-preserving transformations in the Euclidean
plane that fixes the origin. From geometric point of view, questions such as “Given a geometric object X, what
is its group of symmetries?” aroused while the same question is reversed in Representation theory such as
“Given a group G, what objects X does it act on?”. The attempt to answer such question leads to the
classification of X up to isomorphism.

In group theory, a presentation of a group G is described as a homomorphism from the group into another group,
say K. It is considered as a compact way of describing the structure of any group. A representation of a group is
also a presentation such that the target group is given by the group of automorphisms of a vector space. In this
case, every element of the group is mapped to an invertible linear transformation in the space. Group
representation theory also serves as a tool to study the structure of groups via their actions on vector spaces.
Such result can be achieved by considering groups acting on sets such as the Sylow theorems. Also, more detail
information about group can be obtained when the group act on vector space. This is the basic idea behind
representation theory. It also served as a powerful tool to obtain information about finite groups with
applications to many areas of sciences such as signal processing, cryptography, sound compression using Fast
Fourier Transform (FFT) for finite groups [1,2]. It also provide information about finite groups through the
methods of linear algebra.

This paper aimed at addressing a long-standing problem for creating short-length presentation for finite groups
of degree n. An attempt by Bray er al 2007, paved a way for such construction for which some short
presentations for finite groups were derived. But these presentations can be made shorter with fewer relations
which leads to the novelty of this paper.

1.1 Preliminaries

Let K be a field, V be a vector space over K and G be a group. Then a representation of G can be define as the
pair (p, V) where p is a homomorphism of G defined by p:G—GLk(V). Again, a K-algebra can be defined as a
ring for which underlying Abelian group is a K-vector space with multiplication map RxR—R. We shall now
define the following terms (see [3]).

Definition 1.1.1: (Equivalence): The representations ¢:G—GL(V) and y:G—>GL(W) are said to be equivalent if
there is an isomorphism T:V—>W between the two representations such that ¥, = T ¢)gT ! for all elements
geG,ie. ¥ T =T, geG. Hence, we write p~.

Definition 1.1.2: (Irreducible representation): Let ¢ : G — GL (V') be a representation. Then ¢ is irreducible
if the only G-invariant subspace of V are {0} and V.

Definition 1.1.3: (Completely reducible): A representation ¢ : G — GL(V') is completely reducible if and
onlyif V=V, ® V, ®...® V, such that the V; are non-zero G-invariant subspaces and each ¢ |V;is irreducible
for all i = 1, 2,...,n. Equivalently, if ¢ ~ 0’ @ 9p® @ ... ® ¢ ™ where ¢ @ are irreducible representations,
then ¢ is completely reducible.

Definition 1.1.4: (Decomposable): The space V is decomposable if and only if V=V, & V, where V; and V,
are non-zero G-invariant subspaces. Otherwise, V is indecomposable.

Definition 1.1.5: If (p;, Vi) and (p,, V;) are representations, then the linear map T:V,—V, from V; to V, is
called an intertwiner if it satisfies

T(p1(g)v) = p2()(T(v)) or Tepi(g) = p(g)-T for all geG [4].

Lemma 1.1.6: (Shur’s Lemma 1): Supposed K is algebra closed and V is finite dimensional simple
representation of G, then every self-intertwiner T:V—V is a scalar multiple of idy.
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Note: Two distinct spaces V; and V, are said to be isomorphic if there exists a bijective intertwiner T:V,—V,
between them denoted by V=V,.

Lemma 1.1.7: (Shur’s Lemma 2): Let V, and V, be simple. Then every non-zero intertwiner of V; and V, is an
isomorphism. Consequently, either V;=V, or Homg(V;, V;) =0.

We shall now write ¢, for ¢(g) and the action of ¢, on vEV by ¢,(v) or ¢,v.

Note: We shall now define a Coxeter group # as a group with the following presentations:
n
Xp5 Xy X, [ (4,X,)7 =€

where n; =e and n; 2 2 for i # j and the condition that n; = oo means there is no any relation of the

form (x,x;)". The pair (W,S) with set of generators S = {X,..., X, } is called a Coxeter system. Hence, we

have the following Coxeter relations:

i. The relation 72, = e means that (x,x,)' = (x,)’ = e forall j;
ii. If n; = 2, then the generators X; and X; commute since aa = bb = e with abab = e implies that

ab = a(abab)b = (aa)ba(bb) = ba . Alternatively, the generators are involutions so that x, = x; ' and
thus,

2 _ _ 11 _

(x,x;)" =xx,xx, =xx,x7x; =[x,,x,],
equal to the commutator.
iii. If redundancy among relations most be avoided, then it is necessary to assume that n;, = n ; by observing
that xx = e and (xy)" = e implies that

n n n

()" = ()" xx = x(xp) " x.

Alternatively, using conjugate elements, we have the relation
m _ -1 m -1 m
ye) y T =0m)" = (%)

2 Review of Relevant Work

27mm 27im
If $:Z, —C and @:Z, — C are representations on Z, defined by ¢, =e " and @, =€ "
respectively, then the sum ¢ @ @ can be define by

2 mmi
@@, =|¢" 2.
0 e

Now, since representations are considered as special homomorphism, suppose a set X generate the group G.
Then any representation ¢ of G is uniquely determined by its values on X; [5]. Again if ¢: G — GL(V') is any
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representation and W < V is G-invariant subspace, then the representation ¢ can be restricted so as to obtain a
new representation ¢l : G — GL(W) by setting (4| )o(w) = ¢o(w), w € W. Thus, since W is G-invariant, then the
element ¢ (w) € W and ¢|y is called a sub-representation of ¢. Also, any degree one representation ¢: G — Cis
irreducible where G = {1} and if ¢: G — GL(}") is a representation, then ¢= e and if ¢: G — GL(V) is another
representation of degree 2, then we say that ¢ is irreducible if and only if there is no common eigenvector v to
all ¢, with g€G [5].

Despite the fact that numerous properties of group representations are presented in various literature, no attempt
for generating and producing shorter length presentations for finite groups. In the quest to generate short
presentations for finite groups, [6] derived new families of presentations for finite groups which is based on
generators and relations from the presentations for the symmetric group S, and the group of even permutations
in S,. The literature also includes presentations with length linear in logn and 2-generator presentations with a
bounded number of relations independent of n. The authors were able to derived the presentations for finite
groups Sy, With M| + |N]| + 12 relations, S,,, with |M]| + 6 relations and S,,, with |M| + |N]| + 20 relations based
on the presentation of S, as follows:

Theorem 2.1: Let P={A|M} and Q ={B| N} be presentations for the finite groups S, and S, with

m,n>3 respectively and let the generating set A for S, contains » and v representing transposition (1 2) and the
m-cycle (1 2 ... m) respectively and the generating set B for S, contains elements s and w standing for the
transposition (1 2) and the n-cycle (1 2 ... n) respectively. Then

{4,B,t,y| M,N,tz,(rt)3,(ts)3 ,yilwtv,[r,s],[r, wl,[v,s],[v, w],[r'v,t],[vr\f1 ,t],[t, ws][t, wﬁlsw]}

is a presentation for S, on a generating set that includes the elements y standing for the (m + n)-cycle (1 2 ...
m + n) and t standing for a transposition fo the form (i, i+1). This presentation has |A| + |B| + 2 generators and
[R| + |S| + 12 relations, and presentation length of at most 1(P) + 1(Q) + 64 where 1(P) and 1(Q) are the lengths of
the presentations P and Q [6].

Theorem 2.2: Let P ={A4| M} be a presentation for the symmetric group S, of degree n > 3, such that the
generating set A contains x and w standing for the transposition (1 2) and the n-cycle (1 2 ... n) respectively.

Then

{A’y ’ M’yznﬂ(xy)zrkl >[xawyil]7[W2xwilgwy71]a[xayn]27[x>yn71]2}

is a presentation for S,, on a generating set that includes the elements y standing for the 2n-cycle (1 2 ... 2n) and
x standing for a transposition fo the form (i, i+1). This presentation has |A| + 1 generators and |R| + 6 relations

[6].

Theorem 2.3: Let P ={A| M} and Q ={B| N} be presentations for the finite groups S, and S, with m,n>3

respectively and let the generating set A for S, contains » and v representing transposition (1 2) and the m-cycle
(12 ... m) respectively and the generating set B for S, contains elements s and w standing for the transposition
(1 2) and the n-cycle (1 2 ... n) respectively. Then

{A,B,t,y| M,N,t* ,s”' (v"'tow™ v 'w)" . w™y", y wv(wen)" ™ y vy (Vv ), (ew T rw)?,
[r,t],[VZVV*I ,t],[l", vyil ]’yZy*IVZW*Z ,yillwalrw,[r, Wﬁlrw]a[ra Wﬁlvw]a[va Wﬁlrw]a[va Wﬁlvw]a

[r3 WS]’[r, W_ISW]J[V’ WS],[V, W_ISW]}

gives a presentation for the group S, on a generating set which includes the elements y representing the mn-

cycle (1, 2, ..., mn) and ¢ representing a transposition of the form (i, i+1). This presentation has |A| + [B| + 2
generators and [R| + |S| + 20 relations [6]
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It is observed that the generated presentations in this literature can be obtained with fewer relations. This work
therefore, presents a concrete technique for generating shorter presentations for finite groups with few relations.

3 Methodology

In this section, the method of constructing presentations for the finite group S, of length linear in 7 is presented
as discussed by Bray et al. [6]. But we shall first present the Cartesian product of non-empty sets S, Sy, ..., Sy
called the set of all ordered n-tuples {x, x, ..., X, | x;€S;}. The Cartesian product of these sets is denoted by
either

S, ®S,®..85, orby [15,.
i=1

Now, let the binary operations on the groups Gy, G», ..., G, be multiplication. Regarding the G; as sets, we can
n

n
form the Cartesian product 1T Gl. of the groups G, Gy, ..., G,. It is also easy to make 1T Gl. into a group by

i=1 i=1
means of a binary operation of multiplication by components. Hence, new groups can be formed from Cartesian
product of known groups as presented by the following theorems:

Theorem 3.1: (see [7]): Let Gy, G, ..., G, be groups. For (xi, x,, ..., x,) and (y1, ¥y, ..., Vn) in I1 Gi, define (x;,
i=1

X2y eees X)(V1s Y2y +ves Vo) = (X1 V1, X2 V2, +-., Xn Va). Then 1T Gi is a group called the External Direct Product of the
i=1

groups G, Gy, ..., G, under this binary operation.

Remark 3.2: It can be deduced from the above theorem that for the groups G, Gy, ..., G, with orders r;, r», ...,
r, respectively, we have

G ® G, ® ... ® G| =|Gy| |Gy ... |G,| = r7;...7, where the product G; ® G, ® ... ® G, is a new group which
may or may not be isomorphic to the group G,;,5.. -

Theorem 3.3: (see [7]): The isomorphism Z,, ® Z, = Z,, is possible if and only if (m, n) = 1.

Now, let G = S, whose elements are bijections on the set S. Then to obtain a presentation for G, we introduced

an n-cycle £= (1,2, ..., n) as a new generator which is used from the fact that &/ a,.&7 = (j, j+1) = .,

to eliminate the generator ¢; for 1 < j < n. If we take an arbitrary generator « and then eliminate further
redundancy from the relations under conjugation by & then the presentation is given by

{a,&|a’ =&" =(aé) =e,(al'al) =e,(alal’) =e;j=2,..n/2}.

However, if we define &, =& 7 then (aé ™/ aé’)? = e is replaced by (Olgg_;la«fj)z = e. Hence, we have
the following:

Theorem 3.4: [6]: For all n>3, the finite group S, has the following presentation:

(@l |07 = & = (@)™ = o0& al)) = e,&,,EE)" = e(a) al)) = ¢}

with 1 + n/2 generators and n + 2 relations.

Again, let S, = <O'; |0<i<n- 1> where ois any bijection from 1 to » such that &, = &, = e, the identity

element of G. Then we shall have the following relations:
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If o, =(i,i +1), then
Relation 1: (O'l.)2 =g
Relation 2: forall i, (0,0,,,)’ =e; (0,0, =(i,i +2,i+1),(c.0,,) " =@,i+1,i+2));
Relation 3: for all i, j, |i —j| > 2, (O'I.O'j)2 =e;

So tht  if  P=(c[|0<i<n-1), 0=((0,0,),i<j|j-il>i)  and
R= <(Ui6i+1)3 |0<i<nm —1>, taking M as a finite group such that M = P\U QU R, then any finite

group G, = <X | M>, X ={o;, |1 <i < n} is isomorphic to S,.

From the methods presented above, the presentations for Sy, S, and S;,, with less relations are obtained in the
next Section.

4 Results and Discussion

Following the methodology above, we present in this section the key idea for obtaining short presentations for
finite groups S+, and S,,, for all m,neZ" from the presentations of S,, and S,. When m = n, we avoid repetition
and this enable us to efficiently construct a shorter presentation for the group S,,, from the presentation of S,.
Hence, an inductive process for obtaining a presentation for finite groups is achieved.

Theorem 4.1: Let S, = {X| |M yand S, ={Y |N } be presentations for S,, and S, with generating sets X and

Y respectively, where M and N denote the set of relations for S,, and S,. Let 7, d be transpositions and ¢, @ be
2z

rotations through 7 rad such that 7, € X and J,¢ € Y . Then the presentation for S, where r = m+n, is

given by
{X3 Y’ V’ a)‘M3 N’ V2 > (Tv)3 > (51/)3 > [T3 ¢]’ [T’ 5]5 [¢3 5]5 [¢’ ¢]’ [¢T¢_l > V]’ [V’ ¢_1§¢]’ a)_1¢1/¢}

where @ represent the m+n — cycle (1, 2, ..., mtn) and v represent a transposition (i, +1). The given
presentation has |X] + |Y]| + 2 generators and |M] + |N] + 10 relations.

Proof: Suppose G is the group described by the given presentation. Define 7,0,4,peG by
r=ove’, p=(ov) o, S=0vo, p=0" (vo)’

foralli=1,2,...,m-1andj=1,2, ..., n-1. Then the presentation is transformed into a 2-generator presentation
in terms of V and @ subject to at most |M| + [N] + 10 relations. Now, defined a homomorphism & : G — S P
from G to S, where » = m + n and

&(r) = (i,i + 1) forall transpositions 7 € G; £(@) = (1,2,..., m);
E(@)=(m+1,m+2,...m+n);, &(w)=(1,2,.,mm+1,.,m+n).
Then the permutations satisfy the above relations in G. Again, if we let v, =7, v, .. = ¢[T¢_[ ,

V=0,V =@ '8¢’ forall 1<i<m and 1< j<m, then these relations satisfy the Coxeter

m+j+1
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relations on the group S, and generate G. Again from the relations 1 to 3 (Section 3), if 0,07, =7, then
1

0,0, = 7 . Thus,
[prg ' V1= (grp ) v 'grg v = gr ¢ v \prp 'y = prg vgrp v
(z™) " ¢ ve(zg v
a”'vay where a = T¢7l and
[epv]=(z) v ey = ¢7'v v ey = ¢ gy
= (79) ' v(zg)v
= B'vf where f=1¢.

But if H and K are subgroups of G such that H = <T¢_1> and K = <T¢>, then obviously, H = K.

Similarly, [v,@ '0p]=nvn~'v where n=¢ 'S and [v,05]=&EE 'V where £ =@ so that if
M=<¢715> and N=<(p5>,then M =N.

Furthermore, by hypothesis, the subgroup K = (vl.> =~ §,, and satisfies the Coxeter relation and similarly the

subgroup L ={v ) is isomorphic to S, and satisfy the Coxeter relation. Thus, the element v, for

m+i

1<i<m+n satisfies Coxeter relations and since (7v)’ =(Jv)’ =e, we have (v,v,,,)’ =e for all
1<i<m+n~—1. The relation [v,,v;] = (Vi,Vj)2 = e holds for i<j<m from the presentation of S,, and
holds for m<i<j from the presentation of §, and if i<m<j, then it follows from the relations
[7,0]=[r,@]=[¢,0]=e . Similarly, since z¢ and ¢T¢7l generate a subgroup K of index m in

(1,¢) = S, which contain the involutions V;,V,,...,V, and @5 and (p_15(0 generate a subgroup L of

m

index n in (0, (0) ESn which contain the involutions V v v , the relation

m+1° " m+22°° Vm+n
[zo,v]= [¢T¢7l V]=[v,po]= [V,¢)715§0] = e implies that the element v centralizes (V,,V,,...,V, ) and
Vst Vinsaoees Vs ) SO that [V, v, ]=€ and [v,,v;]=e forall 1<i<m and m< j <m+n.

Hence, the involution v, V,,...,V,,,V V.., generates a subgroup that satisfies the Coxeter relations for

mal>ee
S,. But the relations in S, (and S,) implies that each of its elements can be expressed as a word in

. -1 . o
VisVysees Vs Vst seeos Vs and the relation @ Q)V¢ = e imposed the same condition for @. Thus the same

involution generates G. Hence, G = S, and the result follows.
Next, we consider the case m = n such that S, = S,,.., = S»,,..

Corollary 4.2: Let S,, = {X]M} be a presentation for S,,, m>3 and let 7,a¢eX such that 7= (i, i+1) and = (1, 2,
..., m). Then

(X, 0|M,0 (t0)"[r,00],[a'ta” ,0al,[r,0"]"}

is the representation for S, where » = 2m, 1 <i < m and a generating set that includes w = (1,2,...,7), |X] + 1
generators and |M| + 5 relations.
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Proof: This follows directly from Theorem 4.2.1 above with m = n and the fact that if A=mw " and 7 = ™m,
then

[c,wl=t"'wW'ow=ow"'w=Ax , [r,w]’ ='W o) 'w'w)=ow ' wow ' ow = (A7)’ and

so on, for all w.

The next result is derived from Cartesian product of two groups such that given two groups H and K, then the
product HK is given by the set

HK ={x=hk:he H,k e K}.

Theorem 4.3: Let S, ={X |M yand S, ={Y |N } be presentations for the groups S,, and S,, m,n>3 with

generating sets X and Y respectively, where M and N denote the set of relations for S,, and S,. Let 7, J be
2
transpositions and ¢, ¢ be rotations through 7 rad such that 7,¢ € X and J,p €Y . Then the

presentation for S,,, is given by

XY M NV 57 (7' 0) 0 porg V. (P ep ) (v ) [e 4 ),
(7,07 l,ave™ §’1¢7 0" vop 1,10 10].[7,0” ¢pl.[4,0" 10l [4, 0" dpllz,95],
(7,0 00L.[4, 5114, 0 Sp]}

where @ represent the mn — cycle (1, 2, ..., mn) and v represents a transposition (7,7 +1). The given
presentation has |X] + |Y] + 2 generators and |M| + |N| + 18 relations.

Proof: Supposed G is the finite group defined by the given presentation, define a function f G S o fTOM
G to S, such that T (i,i +1), o (1,2,...,m), O (j,j+1),
o (L1+m,.. 1+ (n-1)m)2,2+m,..,2+(n—-)m)..(m2m,.., nm), v (k,k+1), and
o 1,2,...mm+1,m+2,..2m2m+1,., mn).

Then & is a homomorphism and for some m, n, w" =@ and W' =@ . In particular, &(r) and &(9)
generate a subgroup H of S,, such that /4 = .S, and the conjugate of H defined by the multiples of ¢ generate
the direct product of n-copies of S,.. Now, let v, =7, v,,, =¢ ', A, = ® '@ and Vimsj = (pfivjq)"
for 1<i<m and 1 £ j < in G. Then we shall show that the (mn — 1) elements Vi VsV, qg=mn — 1

satisfies the Coxeter relations on S,, and also generate the group G. To see this, note that
¢V¢771¢71¢ = ¢V(¢¢))7l(p = ¢V071¢7 = @@ where 0 = @@ is an mn —cycle and £ = vo ' isan (mn—1)
— cycle, (v '¢7'0) = (¢Ep)’ = pEUEQ where 11 =@ is an mn — cycle. Thus, both the product
W od(gvp)’ =w'povovg =w ' p(E" NV d=worg, 7=(E") is an (mn — 1) — cycle, and
wlvwe lrp = w711i¢71/1]. are mn — cycles.

Vime2 oo Vimsg respectively generate the

Now, by the hypothesis on S, the elements V,,V,,...,V, and v

im+1°

subgroups H and K of S,, such that /1 =S and K =S, for 1 <i < n. Again, the commutator relations

(7,0 10l =[7,0" ppl = [, 0 ' 10l =[p,0 ' dp] =
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describe the subgroup H as H ={(v,v,,...,v, ) =(7,¢§) which commute with its conjugate

Hl = <vm+1 7vm+27"'3v2m> under ¢. The relations

[r,95] =[7,¢ ' 6p] =[¢, 05 =40 ' Sp] =e

implies that the subgroup H is centralized by the set N| = (@0, g0715¢)> such that

[(S,0) (@S, ' 6p)] =n and N, =(5,p) =S, .

Hence, if N; = {HCS,: H is a subgroup}, then N, permutes all the subgroups N; by conjugation which follows
from the natural action of the group S, on the index set {1,2,...,n}.

Next, the transposition v satisfy the relation (Vi)2 =e¢ for all i and the relations
(@19 7v)’ = (vore'v)’ = e implies that (v,v,,,)’ = e for all 1<i<m—1 and then conjugation by
multiples of ¢ gives all the remaining relations. Again, to see that [v,,V j] = j)z =e for
1<i< j<mn, we first consider the presentation for S,,. If i < j < m, then the result follows directly from
the presentation for S, and also conjugation by Q)i gives the same result for km < i < j < (k+1)m for some
keZ". Also, [v;,v;]1=e is true if both v, and v; lie in different conjugate sets of the subgroup H since
the conjugates commutes with each other. And the relations [7,V] = [¢7¢~',v] = e ensure that Vv, commute
with all the elements in (7,¢7¢ ') =(Vv,,V,,..,v, ). The rest of the relations will follow if
7,607 1= 0 'potd™v=avo '@’ 197 =0 'vop 'tp=e gives the conjugation of @ on each

L . . -1 .
successive pair of the elements in {V|,V,,...,V,,. }. Thus, since #@ " centralizes 7, we have
-1 = -1
o~ =0Tt =¢td =V,
and we find by induction on 7, for 1 <7 < m — 2, that

o = opd o = (o) (@0 Y opo™)

-1 -1 -1 1
=t Vv, (vPT) =719 v, pT =, T =V,

a)Vi+1

since v commute with each v;, 7 =V, commute with v Also,

i+2°

1 -1 -1 -1
=ove ' =grpT =gvip” =V,

v, 0 =op ¢’ =v, and wv, @
and since @ centralizes @ = @", we find that
S I IR S I 1 i - _
Vi j@ =OPV,Q O =QOV0 @ =PV P =V,

im+j

for1<i<nand 1< j<m.
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Again, conjugation by powers of @ satisfy all the relations of the form [v.,vj] =e for 1<i< j<mn.
Thus, the mn — 1 involutions {V,,V,,...,V, } generate subgroups that satisfy the usual Coxeter relations for

Smn .

Finally, it can be shown that each generator of G can be expressed as a word in v; by first considering the

relations in S,,. Obviously, the set M satisfy this condition for each element in the set X. In particular, 7 =V,
and

¢=(" 2 " NP" )P )T =, Y,

which follows that
i
¢ ¢¢ - Vim+m—lvim+m—2“‘vim+2vim+1

for 1 <i<n and similarly, v=v, and (/)iv(/fi =V for 1<i<n—2. Hence, we deduced from

n—1 i —i
= ¢)¢(¢V¢) and ¢l¢¢ = Vim+m—lvim+m—2“‘vim+2vim+1 that
0= (vmnf] "'vm(nf])ﬂ )vm(n—]) "'(VZm—] V2Vl )vm (vm—l =WV ) = Vin-1Ymn-2+---V2V

and from the relations @ = ®" and & = (g0¢71g04v¢71)m, it shows that both elements & and ¢ can be

expressed as words in the set v;. Hence, the involutions {V,V,,...,V, } generate G so that G =S, and the
result follows.

5 Conclusion

This work presented some new families of group presentations by generators and relations. The result gives
shorter presentations for the finite groups Sy, Sy and S, with [M| + [N| + 10 relations, M| + 5 relations and
M| + |N]| + 18 relations respectively (Theorem 4.1, Corollary 4.2 and Theorem 4.3). For demonstration purpose,
withn>3, X ={o,7}, Y ={0o,7,0} and Z ={o,7,w, A}, we have:

S,=(X:0" =7’ =(o1)” =e);

S,=(X:0" =1 =(o1)’ =e);

S, =2(Y:0' =7’ = =e,(ow)’ =1 'or’0w = e);

S;=(Z:0’ =0 =e,t0’ ' =t 't w0l =clt'w ' A = e);

S,=(Z:0"=e,t" 0l =t 0l 'l = ot 0 Aot =(or7'27")? =e); and

S, =(Z:0> =0 =(ow)’ =e, 't "'othc = 1 'wor Ao =110l = e);
As group representation theory shows that new representations can be constructed from direct product or tensor
product of two or more representations, this work clearly presents a shorter and simpler method for building

representations for the finite groups S,,+,, Sy, and S,,, from the representations of S, and S, with less number of
relations than the existing literature.
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