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ABSTRACT 
 
The greater wax moth, Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae) is the most 
destructive pest of honey bee, Apis mellifera Linnaeus (Hymenoptera: Apidae), throughout the 
world. The present study was conducted to determine the quantitative and qualitative impairing 
effects of the arthropod venoms, viz., death stalker scorpion Leiurus quinquestriatus (Hemprich & 
Ehrenberg) venom (SV), oriental Hornet (wasp) Vespa orientalis Linnaeus venom (WV) and 
Apitoxin of A. mellifera (AP) on the larval haemogram. For this purpose, the 3

rd
 instar larvae were 

treated with LC50 of each of these venoms (3428.9, 2412.6, and 956.16 ppm, respectively). The 
haematological investigation was conducted in haemolymph of the 5

th
 and 7

th
 (last) instar larvae. 

The important results could be summarized as follows. Five basic types of the freely circulating 
haemocytes in the haemolymph of last instar (7th) larvae of G. mellonella had been identified: 
Prohemocytes (PRs), Plasmatocytes (PLs), Granulocytes (GRs), Spherulocytes (SPs) and 
Oenocytoids (OEs). All venoms unexceptionally prohibited the larvae to produce normal hemocyte 
population (count). No certain trend of disturbance in the differential hemocyte counts of circulating 
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hemocytes in larvae of G. mellonella after treatment with the arthropod venoms. Increasing or 
decreasing population of the circulating hemocytes seemed to depend on the potency of the 
venom, hemocyte type and the larval instar.  In PRs of last instar larvae, some cytopathological 
features had been observed after treatment with AP or WV, but SV failed to cause cytopathological 
features. With regard to PLs, some cytopathological features had been observed after treatment 
with AP while both SV and WV failed to cause cytopathological features in this hemocyte type. No 
venom exhibited cytopathological effects on GRs, SPs or OEs.  
 

 
Keywords: Apitoxin; granulocytes; hornet; larva; oenocytoids; plasmatocytes; prohemocytes; scorpion; 

spherulocytes. 
 

1. INTRODUCTION 
 
The greater wax moth Galleria mellonella 
(Linnaeus) (Lepidoptera: Pyralidae) is widely 
distributed throughout the world. Although the 
adults do not feed, because they have atrophied 
mouth parts, the voracious nature of larval 
feeding and tunneling lead to the destruction of 
the honeycomb, and subsequently to the death 
of weak colonies [1-4]. For the control of G. 
mellonella, various physical methods have been 
adopted; including freezing, heating, CO2, Ozone 
gas and sulphur fumigation against larvae and 
pupae [5-8]. Conventional insecticides of 
different categories had been used for controlling 
G. mellonella [9,10]. Several biological control 
agents, such as the natural enemies, predators 
and parasitoids, along with entomopathogenic 
nematodes, viruses and fungi, had been 
assessed for controlling this pest [11-15]. The 
sterile insect technique (or inherited sterility) has 
been assessed against this pest [16-18]. Also, 
insect hormone analogues, insect growth 
regulators had been assessed against it [19-22]. 
Natural compounds of the plant origin may be 
efficient alternatives to conventional fumigants 
against G. mellonella [23-27].  
 
In the last few decades, a great interest of 
investigation by agrochemical companies is the 
development of highly selective biopesticides 
derived from animals. Among many animal 
taxes, venomous arthropods are most successful 
in utilizing their venoms against predators and 
paralyzing their prey [28]. Natural products of the 
animal origin have been described as very good 
alternative agents to the conventional 
insecticides for controlling some insect pests. 
These animal-derived biopesticides include the 
venom-derived peptides from different sources 
including the venomous arthropods, such as 
spiders [29-31], scorpions [32,33], wasps [34], as 
well as cone snails [35] and some marine 
animals [36-38]. In addition, the arthropod 
hormones and neuropeptides may be effective 

control agents against various insect pests [39, 
40].  
 
Scorpion is a mysterious creature in the animal 
world. It has poisonous venom [41] which has 
increasingly attracted the scientists’ attention 
throughout the world [37,42,43]. The death 
stalker scorpion, or yellow scorpion, Leiurus 
quinquestriatus (Hemprich & Ehrenberg) 
(Buthidae: Arachnida) can be found in desert and 
scrubland habitats ranging from North Africa 
through to the Middle East. In Egypt, Saleh et al. 
[44] reported the occurrence of this scorpion 
species in six eco-geographical regions. Among 
different scorpion venoms, venom of L. 
quinquestriatus exhibited the most potent toxicity 
against the meal worm Tenebrio molitor 
Linnaeus [45]. As reported by some authors [46, 
47], the scorpion toxins contain active toxins 
against insects and are valuable as leads for the 
development and synthesis of eco-friendly 
insecticides, since they exhibited no effect on 
beneficial insects or mammals [48,49]. However, 
Joseph and George [50] reviewed the insecticidal 
activities of scorpion toxins on a broad range of 
insect pests and concluded that the scorpion 
toxins provide safe biopesticides. 
 
Workers and queen of the honey bee Apis 
mellifera Linnaeus (Apidae: Hymenoptera) 
produce the venom in a special long and thin 
branched acid gland at the end of their 
abdomens. This venom or toxin can be called 
Apitoxin; since the word was originated from the 
Latin apis (bee) and toxikon (venom) [51]. In a 
recent review, Azam et al. [52] compiled 
information on the history, chemical composition 
and scientific evidence concerning the Apitoxin 
pharmaceutic research and different medical 
uses. The honey bee venom had been studied 
for its action on mammals although little is known 
about its action on insects [53,54]. This venom 
exhibited toxic effects on some insects, such as 
the corn earworm Heliothis zea (Boddie)                
[55], the tobacco hornworm Manduca sexta 
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(Linnaeus) [54] and the lesser wax moth Achroia 
grisella (Fabricius) [56]. Recently, Ghoneim et al. 
[57] recorded a dose-dependent toxicity of 
Apitoxin on larvae and pupae of G. mellonella, as 
well as the reduction of larval weight gain and 
growth rate. In another recent study, Apitoxin 
blocked the adult emergence, prohibited the 
fecundity and fertility of G. mellonella [58].  
 
The oriental hornet Vespa orientalis Linnaeus 
(Hymenoptera: Vespidae), is a social wasp in the 
Middle East [59,60]. The world distribution of this 
wasp species comprises, also, North Africa, 
southeastern Europe, Southwest Asia across 
Turkey and Arabian Peninsula to India and Nepal 
[61,62]. In addition, it was accidentally introduced 
into Madagascar and China [61,62] and recorded 
in Mexico [63]. Many studies had been 
conducted for examining the toxicity of wasp 
venoms on insects [64-67]. In Egypt, many 
studies had been conducted on V. orientalis 
focusing on ecology, biology, control and its 
dangerous effect on apiculture [68-70].  
 
In insects, there is an open circulatory system 
containing various types of haemocytes. 
Haematological studies are very important in 
insect physiology because the haemocyte 
performs various physiological functions in the 
body [71-73]. The primary functions of 
haemocytes are: coagulation to prevent loss of 
blood, phagocytosis, encapsulation of foreign 
bodies in the insect body cavity, nodule 
formation, detoxification of metabolites and 
biological active materials and distribution of 
nutritive materials to various tissues and stored 
them also and may be hormones (for more detail, 
see: Ribeiro and Brehelin [74], Siddiqui and Al-
Khalifa [75], Chavan et al. [76]. The insect pests 
may be controlled by disturbing their 
physiological activities, viz. feeding, moulting, 
reproduction and immune system [77]. Insects 
lack an acquired immune system like of the 
higher animals but have a well-developed innate 
response. The cellular defense of insects refers 
to haemocyte-mediated immune responses [78, 
79].  
 

Due to economical and ethical problems with the 
use of vertebrates in biomedical studies, insects 
have been suggested as alternative biomodels 
for toxicological preclinical studies [80,81]. In 
addition, insects have been widely used in other 
fields of biomedical research, such as 
neuroscience [82,83]. In general, knowledge of 
the haemogram of an insect is necessary to 
physiologists, toxicologists and biochemists, as 

alterations in hemocyte structure, types and 
number reflects changes in different 
physiological and biochemical processes [84, 
85]. Therefore, the current study was conducted 
to investigate the disruptive effects of venoms of 
L. quinquestriatus, A. mellifera and V. orientalis 
on the most important parameters of larval 
haemogram of G. mellonella.  
 

2. MATERIALS AND METHODS 
 
2.1 Experimental Insect 
 
A culture of the greater wax moth Galleria 
mellonella (Linnaeus)(Lepidoptera: Pyralidae) 
was maintained in the laboratory of Entomology, 
Faculty of Science, Al-Azhar University, Cairo, 
Egypt, under controlled conditions (27±2oC, 
65±5% R.H., photoperiod 14 h L and 10 h D). 
This culture was originated by a sample of larvae 
kindly obtained from a culture of susceptible 
strain maintained for several generations in Plant 
Protection Unit, Desert Research Center, Cairo, 
Egypt. Larvae were transferred into glass 
containers, tightly covered with muslin cloth 
secured with rubber bands. After reviewing 
different techniques of the artificial diet described 
by some authors [86,87], G. mellonella larvae in 
the present culture had been provided with an 
artificial diet as described by Bhatnagar and 
Bareth [88]. It contained maize flour (400 g), 
wheat flour, wheat bran and milk powder, 200 g 
of each. Also, the diet was provided with glycerol 
(400g), bee honey (400g), yeast (100g). The full 
grown larvae metamorphosed into pupae. The 
resulting pupae were collected and transferred 
into clean jars provided with a layer of moistened 
saw dust on the bottom. Then, the emerged adult 
moths were kept in glass containers provided 
with white paper scraps, as oviposition sites. 
After mating, female moths were allowed to lay 
eggs. The egg patches were collected daily, and 
transferred into Petri dishes containing a layer of 
artificial diet for feeding of the hatching larvae. 
 

2.2 Collection and Preparation of 
Arthropod Venoms 

 
2.2.1 Scorpion collection and obtaining of 

venom 
  
Sixty five adult individuals of the Death stalker 
scorpion Leiurus quinquestriatus Hemprich & 
Ehrenberg (Buthidae: Scorpiones: Arachnida) 
were collected from Garf Hessin at 
23.289024N32.776828E, west of Nasser Lake, 
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Aswan, Egypt, during October 2014. Scorpions 
were collected at daytime by random searching 
their hiding places, mostly under rocks and other 
favorable shelters [89]. The collected specimens 
were kept individually in plastic containers at 25-
28

o
C. The specimens were examined with a 

stereoscopic binocular microscope and 
taxonomically identified to the species using the 
morphological description keys [90-92].   
 
Scorpion venom was obtained by electric 
stimulation (20 Volt) in the articulation of the 
telson according to Sarhan et al. [93]. Milking of 
scorpion had been carried out as venom drops 
collected into an Eppendorf tube. Then, the 
collected drops were centrifuged at 14000 r.p.m 
for 15 minutes at 4ºC. The supernatant was 
pooled, freeze dried and stored at 20ºC. The 
lyophilized samples were dissolved in distilled 
water and centrifuged at 15000 r.p.m for 15 
minutes at 4 ºC. 
 
2.2.2 Wasp collection and obtaining of venom  
 
Adults of the oriental hornet (wasp) Vespa 
orientalis Linnaeus (Vespidae: Hymenoptera: 
Insecta) were collected during summer seasons 
by the wasp traps which settled among the 
honeybee nests at the Department of honey bee 
researches, Institute of plant protection, Doqqi, 
Giza, Egypt. Wasp individuals were refrigerated 
at -20°C to keep them immobilized and thereby 
enhance ease of handling and dissection.  
 
The preparation of venom sac extract (VSE) was 
carried out according to Friedman and Ishay [94] 
with some improvements. After defreezing, the 
wasp specimens had been manipulated at room 
temperature. The sting apparatus, at the 
abdomen tip, was gently pulled out using fine 
forceps. Along with string, a small white colored 
venom sac was obtained in a tube containing the 
extraction solvent. Each 200 venom sacs were 
equal to one gram. Each venom sac yielded 
approximately 0.5 mg venom extract [95]. Each 
0.5g (100 venom sacs) was homogenized in 2ml 
solvent using the ultra homogenizer for 10 
minutes. Then, it was centrifuged at 10000 r.p.m 
for 15 minutes at -4°C using cooling centrifuge. 
The supernatant was left to evaporate at room 
temperature (about 27°C).  
 
2.2.3 Collection of Apitoxin from honey bee 

workers 
 
Using six bee hives, the electric shock technique 
was applied for the collection of venom from the 

honey bee Apis mellifera Linnaeus (Apidae: 
Hymenoptera: Insecta) workers. According to 
Dantas et al. [96], bee venom was extracted 
using a collector composed of plates and a pulse 
generator, which induces the bees to sting the 
electric collector plate resting on a glass plate. 
Volatile phase of the venom evaporates onto the 
glass plate, from where the Apitoxin is then 
collected by scraping. 
 

2.3 Haematology Investigation 
 
For the evaluation of disruptive effects of the 
present arthropod venoms on different 
haematological parameters, the 3rd instar larvae 
of G. mellonella were treated with LC50 values of 
Apitoxin of A. mellifera (956.16 ppm), V. 
orientalis venom (2412.6 ppm), and L. 
quinquestriatus venom (3428.91 ppm). The 
successfully moulted 5th and 7th (last) instar 
larvae were used to examine the influenced 
hematological parameters. 
 
2.3.1 Collection of haemolymph 
 
For conducting the hematological investigation, 
haemolymph was collected from the treated and 
control, 5th and 7th instar larvae. The 
haemolymph was obtained by amputation of one 
or two prothoracic legs, before coxa of the larva 
using fine scissors. Gentle pressure was done on 
the thorax for obtaining haemolymph drops by 
non-heparinized capillary tube. Seven replicates 
were used and the haemolymph from two 
individuals was never mixed. 
 
2.3.2 Hemocyte identification and influenced 

hematological parameters 
 
Depending on the cell morphology, cytoplasmic 
ratio, cytoplasmic inclusions, shape of nucleus 
and dye-staining properties, the freely circulating 
haemocytes in the haemolymph of 5

th
 and 7

th
 

(last) instar larvae of G. mellonella had been 
identified and distinguished basing on the 
technique described by some researchers [97-
99]. Also, the influenced hematological criteria, 
after treatment of 3

rd
 instar larvae with LC50 

values of in the arthropod venoms, had been 
examined in the previously mentioned later 
instars.   
 
2.3.3 Total haemocyte count 
 

The haemolymph was collected into thoma-white 
blood cell diluting pipette to the mark (0.5). 
Diluting solution  (Na Cl  4.65 gm, K Cl  0.15 gm, 
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CaCl2  0.11 gm, Crystal violet  0.05 gm and 
acetic acid  1.25 ml / liter distilled water) was 
taken up to the mark (11) on the pipette    
(dilution is 20 times). The first three drops were 
discharged to avoid errors. The mixture was 
dispended to the chamber of counting slide. After 
three minutes, the total numbers of cells 
recognized in 64 squares of the four corners 
were counted. If the cells clumped or uneven 
distributed, the preparation was discarded. The 
number of haemocytes per cubic millimeter was 
calculated according to the formula of Jones 
[100] as follows: 
 

Number of haemocyte counted per champer 
X dilution X depth factor / Number of 1 mm 
squares counted 

 
Where the depth factor is usually 10. 
 
2.3.4 Differential haemocyte counts 
 
Stained haemolymph preparations were carried 
out, according to Arnold and Hinks [101]. The 
haemolymph was smeared on clean glass slides, 
allowed to dry for 1 minute, and fixed for 2 
minutes with drops of absolute methyl alcohol. 
Fixed cells were stained with  Giemsa

‘
s solution 

(diluted 1 : 20 in distilled water) for 20 minutes, 
washed several times with tap water, and dipped 
in distilled water. The stained smears were air-
dried and mounted in DPX with slip cover. The 
haemocytes were viewed under light microscope 
at a magnification 10 X 40 = 400 and 100 cells 
per slide were examined. The cell shape, 
cytoplasmic ratio, cytoplasmic inclusions and 
shape of nucleus were used for classification of 
haemocytes using the classification scheme of 
Brehelin and Zachary [102]. The percentages              
of haemocyte types were calculated by the 
formula: 
 

Number of each 
haemocyte type 

X 100 Total number of 
haemocytes 
examined 

 
2.3.5 Characterization of cytopathological 

features 
 
For recording of the haemocyte deformities 
caused by the arthropod venoms, 
photomicrographs were obtained by using a light 
microscope provided with a camera at a 
magnification 10 X 40 = 400. 

2.4 Statistical Data Analysis 
 
Data obtained were analyzed by the Student's t-
distribution, and refined by Bessel correction 
[103] for the test significance of difference 
between means. 
 

3. RESULTS  
 
3.1 Identification and Description of 

Normal Circulating Haemocytes in 
Larvae of G. mellonella 

 
Depending on the cell shape, cytoplasmic ratio, 
cytoplasmic inclusions and shape of nucleus, the 
freely circulating haemocytes in the haemolymph 
of last instar (7th) larvae of G. mellonella, in the 
present study, had been identified and 
distinguished into five basic types, viz., 
Prohemocytes (PRs), Plasmatocytes (PLs), 
Granulocytes (GRs), Spherulocytes (SPs) and 
Oenocytoids (OEs). The most important 
diagnostic characteristics of each main type 
could be given as follows. 
 

3.1.1 PRs  
 
PRs could be described as variable in size (3-7 
µm wide and 6-8 µm long). They were observed 
as ovoid cells but nearly round or spherical in 
shape. It had a large centrally located nucleus 
and a prominent nucleolus. This nucleus 
occupied most of the cell volume. Abundant 
cytoplasm was deeply stained containing few 
organelles, such as sparse rough endoplasmic 
reticulum. Some vesiculation of the plasma 
membrane was evidently observed in few cases 
(see Fig. 1).  
 

3.1.2 PLs  
 

PLs were observed as spindle-shaped cells and 
measured about 16x 4 µm. A large nucleus 
(occupying 40-50% of the cell volume) was 
observed as elongate, round or spherical and 
centric or eccentric in position with a distinct 
nucleolus. Cytoplasm was basophilic (faintly 
stained) and rich in organelles, such as a 
moderate amount of rough endoplasmic 
reticulum, many pinocytotic vesicles, scattered 
chromatin masses and several tapering 
projections (see Fig. 3).  
 

3.1.3 GRs  
 

GRs appeared as spherical to ovoid cells of 10-
12 µm in diameter. Nucleus was centrally located 
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and might be centric or eccentric occupying 45-
55% of the cell volume. Nucleus had a number of 
scattered chromatin masses and nucleolus. 
Cytoplasm was basophilic (deeply stained) and 
contained few types of granules, endoplasmic 
reticulum and an occasional lipid droplet. A 
progressive accumulation of lipid droplets in this 
type of hemocytes might be give indication to 
misidentify it as ADs. Some GRs appeared with 
extrusion of granules (see Fig. 5).  
 

3.1.4 SPs  

 

SPs were distinguished as basophilic or 
acidophilic cells of variable size (8-20 µm wide 
and 7-24 µm long). They were observed in a 
round or ovoid shape and characterized by 
several cytoplasmic inclusions as well as 
intracytoplasmic spherules occupying almost all 
the cytoplasm. These spherules contained either 
granular, fine-textured filaments or flocculent 
material. Some cells liberated the entire content 
of their spherules, leaving on the enclosing 
membranes. Nucleus appeared small, centric or 
eccentric in position, mostly deformed by the 
spherules (see Fig. 6).  

 

3.1.5 OEs  

 

OEs were the largest hemocytes observed in the 
haemolymph of full grown larvae of G. 
mellonella. They were observed as spherical (22-
35.5 µm in diameter) or ovoid (18.7-25 µm long 
and 26.5-35.6 µm wide) cells. When stained with 
Geimsa stain, cytoplasm was seen homogenous 
basophilic showing clusters of fibrous structures 
interspersed with scarce groups of some 
organelles, including round adipophilic granules. 
Nucleus was small, slightly eccentric and darkly 
stained (see Fig. 7).  

 

3.2 Effects of Arthropod Venoms on the 
Total Hemocyte Count  

 
In a preliminary experiment on G. mellonella, 
LC50 values of the arthropod products, viz., death 
stalker scorpion, Leiurus quinquestriatus, oriental 
(Hornet) wasp, Vespa orientalis and Apitoxin of 
honey bee Apis mellifera were found 3428.9, 
2412.6 and 956.16 ppm, respectively. After 
treatment of the 3

rd
 instar larvae with LC50 of 

each of these venoms, the newly moulted 5th and 
7

th
 instar larvae were used to investigate their 

effects on some important hematological 
parameters.  

Data of the total hemocyte count (THC) in the 
haemolymph of 5

th
 and 7

th
 instar larvae were 

arranged in Table (1). Depending on these data, 
THC in normal larvae increased with the larval 
age (27400±38.6 and 28900±28.7 cells/mm3 in 
5

th
 instar and 7

th
 instar, respectively). Data of the 

same table revealed that all venoms 
unexceptionally prohibited the larvae to produce 
normal hemocyte population. According to the 
inhibitory potency, the tested arthropod venoms 
could be arranged as Apitoxin, V. orientalis 
venom and L. quinquestriatus venom (14.25, 
11.68 and 08.03% THC reductions, respectively), 
in the case of 5

th
 instar larvae. A similar trend 

could easily be seen in the previously mentioned 
table for 7

th
 instar larvae (14.19, 10.38 and 

05.54% THC reductions, by Apitoxin, V. orientalis 
venom and L. quinquestriatus venom, 
respectively).  
 

3.3 Effects of Arthropod Venoms on the 
Differential Hemocyte Counts 

 
3.3.1 Fluctuated PRs population 
 
As clearly seen in Table (2), the PRs population 
gradually decreased with the age of control 
larvae (38.0±2.8 and 37.7±3.3 cells/mm

3
 in 

haemolymph of 5th instar and 7th instar, 
respectively).  After treatment of 3

rd
 instar larvae 

with LC50 values of the tested arthropod venoms, 
data of differential hemocyte count (DHC) of PRs 
were assorted in the same table. Depending on 
these data, L. quinquestriatus venom was only 
the venom enhancing the 5

th
 instar larvae to 

produce high PRs population (1.39% increment) 
while other venoms suppressed the larvae to 
produce normal PRs population. The strongest 
suppressing action was exerted by Apitoxin 
(7.4% PRs reduction), followed with V. orientalis 
venom (5.3% PRs reduction).  
 

With regard to PRs population in 7th instar larvae, 
data of the same revealed that all tested venoms 
prevented them to produce normal PRs 
population. For comparative purpose, the 
reducing potencies of these venoms could be 
arranged as follows: Apitoxin, V. orientalis venom 
and L. quinquestriatus venom (14.3, 13.3 and 
1.06% PRs reductions, respectively).  
 

3.3.2 Fluctuated PLs population 
 
Data listed in Table (3) clearly revealed that the 
PLs population gradually decreased in 
haemolymph with the larval instar (9.6±0.5 and 
8.8±0.4 cells/mm

3
, in 5

th
 and 7

th
 instars, 
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respectively). After treatment of 3rd instar larvae 
with LC50 of each of the venoms, data of 
disturbance in PLs population had been assorted 
in the same table. In the light of these data, the 
tested venoms prohibited these larvae to 
produce normal population of PLs. The strongest 
hindering effect was exhibited by V. orientalis 
venom, followed with Apitoxin and L. 
quinquestriatus venom (14.6, 8.3 and 6.25% PLs 
reductions, respectively). With regard to the 7th 
instar larvae, data of the same table revealed a 
contradictory action on PLs population, since 
13.6 and 10.2% PLs increments were gained by 
the inducing effects of Apitoxin and V. orientalis 
venom, respectively. Only L. quinquestriatus 
venom exhibited reducing effect on PLs count in 
haemolymph of these last instar larvae (6.82% 
PLs reduction).  
 
3.3.3 Fluctuated GRs population 
 
In normal larvae of G. mellonella, data presented 
in Table (4) displayed a slight decrease of GRs 
population with the instar (14.4±0.8 and 14.3±2.5 
cells/mm3, in 5th instar and 7th instar, 
respectively). After treatment of 3

rd
 instar larvae 

with the arthropod venoms, data of the same 
table revealed that Apitoxin suppressed the 5

th
 

instar larvae to produce normal GRs population 
(7.6% GRs reduction). In contrast, the larvae 
were stimulated to produce more GRs population 
by V. orientalis venom and L. quinquestriatus 
venom (18.1 and 4.86% GRs increments, 
respectively).  In respect of GRs in haemolymph 
of 7th instar larvae, Apitoxin and L. 
quinquestriatus venom treatments resulted in 
reduced population of GRs (22.4 and 1.4% 
reductions, respectively) while V. orientalis 
venom enhanced the larvae to gain more GRs 
population.  
 
3.3.4 Fluctuated SPs population 
 
According to data of Table (5), SPs population 
gradually increased in normal larvae with age 
(18.9±0.8 and 20.2±0.3 cells/mm

3
, in 5

th
 instar 

and 7th instar larvae, respectively). For 
investigating the fluctuation of SPs in 
haemolymph after treatment of 3rd instar larvae 
with LC50 values of the tested venoms, the same 
table indicated diverse effects of these products, 
as follows. In the 5th instar larvae, SPs population 
significantly increased after treatment with 
Apitoxin (17.5 % increased SPs population) while 
L. quinquestriatus venom and V. orientalis 
venom treatments resulted in decreased SPs 
population (6.35 and 0.5% reduction, 

respectively). In connection with the 7th instar 
larvae, only Apitoxin stimulated these larvae to 
produce increasing population of SPs (23.8% 
increment) while other products prevented the 
larvae to attain the normal SPs population (12.9 
and 0.99% SPs reductions, by V. orientalis 
venom and L. quinquestriatus venom, 
respectively). 
 
3.3.5 Fluctuated OEs population 
 
Data assorted in Table (6) clearly revealed a 
slight increase of OEs population in normal 
larvae with the age (19.2±1.1 and 19.4±0.7 
cells/mm3, in 5th instar and 7th instar larvae, 
respectively). As exiguously shown in the same 
table, 5

th
 instar larvae had been enhanced to 

produce more OEs in haemolymph after 
treatment of 3

rd
 instar larvae with Apitoxin and L. 

quinquestriatus venom (12.0 and 6.77% OEs 
increasing population, respectively). On the 
contrary, V. orientalis venom exhibited an 
inhibitory effect on OEs population in larvae. With 
regard to 7

th
 instar larvae, V. orientalis venom 

and Apitoxin enhanced them to produce an 
increasing OEs population while L. 
quinquestriatus venom reduced it (for detail, see 
Table 6).   
 
In conclusion, data distributed in Tables 2-6 
revealed no certain trend of the disturbance in 
different hemocyte populations because 
increasing or decreasing population of these 
circulating hemocytes depended on the potency 
of the tested arthropod venoms, hemocyte type 
and the larval instar. In other words, the tested 
venoms exerted diverse actions on the 
differentiated hemocyte counts.   
 

3.4 Qualitative Effects of Arthropod 
Venoms on the Hemocyte Profile 

 
Depending on the available technique, the last 
(7th) instar larvae were used for this parameter of 
the present haematological investigation, 
because of enough haemolymph samples and 
cytopathological features were elaborately 
photographed. 
 

3.4.1 Impaired profile of PRs 
 
To shed some light on the cytopathological 
impacts of the tested arthropod venoms on PRs 
in haemolymph of last instar larvae of G. 
mellonella, photomicrographs in Fig. (2) clearly 
demonstrated some deformations after treatment 
of 3rd instar larvae with LC50 of Apitoxin, such as 
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darkly stained cells with degenerated nucleus, 
destroyed membrane and extruded cytoplasmic 
contents. V. orientalis venom caused different 
features of deranged PRs, such as degenerated 
nuclei, destroyed membranes and extruded 
cytoplasmic contents. L. quinquestriatus venom 
failed to cause cytopathological features in this 
hemocyte type.  
 
3.4.2 Impaired profile of PLs 
 
Fig. 4 contains photomicrographs of 
cytopathological features in PLs after treatment 

with the present venoms. Apitoxin caused darkly 
stained degenerated nuclei and vacuolated 
cytoplasm. No cytopathological features could be 
observed after treatment with V. orientalis venom 
or L. quinquestriatus venom. 
 
3.4.3 Impaired profiles of GRs, SPs and OEs 
 
After treatment of 3

rd
 instar larvae of G. 

mellonella with LC50 values of Apitoxin, wasp 
venom or scorpion venom, no venom could 
exhibit any cytopathological effect on GRs, SPs 
or OEs.  

 
Table 1. Total haemocyte counts (cell/mm3) in the G. mellonella larvae as affected by LC50 

values of selected arthropod venoms 
 

Venom                  Larval instar 
  5th  7th  

Apitoxin of A. mellifera Mean±SD 23500±65.5 d 24800±98.5 d 
Change (%) -14.23 -14.19 

Venom of wasp V. 
orientalis 

Mean±SD 24200±105.7 c 25900±108.4 d 
Change (%) -11.68 -10.38 

Venom of scorpion L. 
quinquestriatus 

Mean±SD 25200±101.1 c 27300±122.2 b 
Change (%) -8.03 -5.54 

Control Mean±SD 27400±38.6 28900±28.7 
Mean±SD followed with c: highly significantly different (P<0.01). d: very highly significantly different (P<0.001). 

 
Table 2. Differential Prohemocyte count (Mean±SD) in G. mellonella larvae as disturbed by 

selected arthropod venoms 
 

Larval instar Venom 
Apitoxin of A. 
mellifera 

Venom of wasp 
V. orientalis 

Venom of scorpion 
L. quinquestriatus 

5th  Treated 35.2±3.0 b 36.0±3.8 b 36.6±3.1 b 
Control 38.0±2.8 38.0±2.8 38.0±2.8 
Change (%) -7.4 -5.3 +1.39 

7
th

  Treated 32.3±1.4 d 32.7±1.9 b 37.3±2.5 c 
Control 37.7±3.3 37.7±3.3 37.7±3.3 
Change (%) -14.3 -13.3 -1.06 

Mean±SD followed with b: significantly different (P<0.05),    c, d: see footnote of Table 1. 
 

Table 3. Differential Plasmatocyte count (Mean±SD) in G. mellonella larvae as disturbed by 
selected arthropod venoms 

 
Larval instar Venom 

Apitoxin of A. 
mellifera 

Venom of wasp 
V. orientalis 

Venom of scorpion 
L. quinquestriatus 

5
th

  Treated 8.8±1.1 c 8.2±2.2 b 9.0±1.8 a 
Control 9.6±0.5 9.6±0.5 9.6±0.5 
Change (%) -8.3 -14.6 -6.25 

7
th

  Treated 10.0±0.5 b 7.9±1.5 c 8.2±1.0 b 
Control 8.8±0.4 8.8±0.4 8.8±0.4 
Change (%) +13.6 +10.2 -6.82 

Mean±SD followed with a: insignificantly different (P>0.05). b: see footnote of Table 2. (c): see footnote of  
Table 1 
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Table 4. Differential Granulocyte count (Mean±SD) in G. mellonella larvae as disturbed by 
selected arthropod venoms 

 
Larval instar Venom 

Apitoxin of A. 
mellifera 

Venom of wasp 
V. orientalis 

Venom of scorpion 
L. quinquestriatus 

5th  Treated 13.3±0.7 b 17.0±0.9 a 15.1±0.9 a 
Control 14.4±0.8 14.4±0.8 14.4±0.8 
Change (%) -7.6 +18.1 +4.86 

7th  Treated 11.1±1.1 c 16.6±3.1 b 14.1±1.3 a 
Control 14.3±2.5 14.3±2.5 14.3±2.5 
Change (%) -22.4 +16.1 -1.40 

a: see footnote of Table-3. b: see footnote of Table 2.  c: see footnote of Table 1. 
 

Table 5. Differential Spherulocyte count (Mean±SD) in G. mellonella larvae as disturbed by 
selected arthropod venoms 

 
Larval instar Venom 

Apitoxin of A. 
mellifera 

Venom of wasp 
V. orientalis 

Venom of scorpion 
L. quinquestriatus 

5
th

  Treated 22.2±1.2 c  18.8±2.1 a 17.7±3.2 a 
Control 18.9±0.8 18.9±0.8 18.9±0.8 
Change (%) +17.5 -0.5 -6.35 

7
th

  Treated 25.0±3.0 a 17.6±1.1 a  20±2.2 a 
Control 20.2±0.3 20.2±0.3 20.2±0.3 
Change (%) +23.8 -12.9 -0.99 

a: see footnote of Table 3. c: see footnote of Table 1. 

 
Table 6. Differential Oenocytoid count (Mean±SD) in G. mellonella larvae as disturbed by 

selected arthropod venoms 
 

Larval instar Venom 
Apitoxin of A. 
mellifera 

Venom of wasp 
V. orientalis 

Venom of scorpion 
L. quinquestriatus 

5
th

  Treated 21.5±2.0 a 19.0±1.9 a 20.5±2.2 a 
Control 19.2±1.1 19.2±1.1 19.2±1.1 
Change (%) +12.0 -1.0 +6.77 

7th  Treated 20.6±1.4 a 25.1±2.0 b 19.0±0.8 a 
Control 19.4±0.7 19.4±0.7 19.4±0.7 
Change (%) +6.2 +29.4 -2.06 

a: see footnote of Table 3. b: see footnote of Table 2. 
 

 
 

Fig. 1. Photomicrographs of Prohemocytes (PRs) in the haemolymph of last (7
th

) instar larvae 
of G. mellonella (Geimsa stain, 1000x). [A] & [B]: Typical normal cells. N: nucleus  
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Fig. 2. Photomicrographs of Prohemocytes (PRs) in the haemolymph of last (7th) instar larvae 
of G. mellonella (Geimsa stain, 1000x). [C] & [D]: PRs deformations by LC50 of Apitoxin: darkly 

stained cells with degenerated nucleus, destroyed membrane and extruded cytoplasmic 
contents. [E] & [F]: PRs deformations by LC50 of the wasp venom: degenerated nuclei, 
destroyed membranes and extruded cytoplasmic contents. Degenerated nucleus and 

vacuolated cytoplasm, V: vacuole [F]  
 

 
 

Fig. 3. Photomicrographs of Plasmatocytes (PLs) in the haemolymph of last (7
th

) instar larvae 
of G. mellonella (Geimsa stain, 1000x). [A], [B] & [C]: Typical normal cells. N: nucleus  

 

4. DISCUSSION  
 
Haematological studies are very important in 
insect physiology because the haemocyte 
performs various physiological functions in the 
body. The primary functions of haemocytes are: 
coagulation to prevent loss of blood, 
phagocytosis, encapsulation of foreign bodies in 
the insect body cavity, nodule formation, 
detoxification of metabolites and biological active 
materials and distribution of nutritive materials to 
various tissues and stored them also and may be 
hormones (for more detail, see: Garcia and 
Rosales [71], Zhou et al. [72], Ling and Yu [73], 

Ribeiro and Brehelin [74], Siddiqui and Al-Khalifa 
[75], Chavan et al. [76]).  
 
The insect haemogram serves as a good 
indicator of the insect physiology during growth 
and adulthood [104], as well as the 
environmental adaptability in each 
developmental stage of insects [105-107]. Also, 
the insect haemogram is suggested to be a 
useful tool for investigation of toxic effects of 
toxic materials on biocontrol agents because 
alterations in structure, types and number of cells 
reflect changes in physiological and biochemical 
processes [84,85,108]. 
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Fig. 4. Photomicrographs of Plasmatocytes (PLs) in the haemolymph of last (7th) instar larvae 
of G. mellonella (Geimsa stain, 1000x). [C] & [D]: PLs deformations by LC50 of Apitoxin: darkly 

stained degenerated nuclei and vacuolated cytoplasm. V: vacuole. 
 

 
 

Fig. 5. Photomicrographs of Granulocytes (GRs) in the haemolymph of last (7
th

) instar larvae of 
G. mellonella (Geimsa stain, 1000x). [A], [B] & [C]: Typical normal cells. N: nucleus. All tested 

venoms failed to cause cytopathological effect on GRs 
 

 
 

Fig. 6. Photomicrographs of Spherulocytes (SPs) in the haemolymph of last (7
th

) instar larvae 
of G. mellonella (Geimsa stain, 1000x). [A] & [B]: Typical normal cells. N: nucleus. All tested 

venoms failed to cause cytopathological effect on SPs 
 

4.1 Identification of Normal Circulating 
Haemocytes in Larvae of G. 
mellonella 

 

Since hemocytes are involved in the key insect 
physiological functions, circulating hemocytes 

provide an excellent model system to study the 
cell development, differentiation and their role in 
the immune system [79,109,110]. In other words, 
the knowledge of normal haemocytes of an 
insect is necessary to physiologists, toxicologists 
and biochemists [84,111]. 
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Fig. 7. Photomicrographs of Oenocytoids (OEs) in the haemolymph of last (7
th

) instar larvae of 
G. mellonella (Geimsa stain, 1000x). [A] & [B]: Typical normal cells. N: nucleus. All tested 

venoms failed to cause cytopathological effect on OEs 
 

In insects, the most common types are 
prohaemocytes (PRs), plasmatocytes (PLs), 
granulocytes (GRs), spherulocytes (SPs), 
adiphohaemocytes (ADs), coagulocytes (CGs) 
and oenocytoids (OEs). It is important to 
emphasize that not all these hemocyte types 
exist in all insect species [112-115]. However, 
their characteristic features are slightly differing 
in various insect species [74,116,117]. Also, 
there is confusion between various haemocyte 
types, such as PRs and PLs as well as GRs and 
ADs [118]. For detail, see review of Ghoneim 
[119].  
 

In the present study, different diagnostic 
characteristics, such as the cell shape and size, 
cytoplasmic ratio, cytoplasmic inclusions and 
shape of nucleus, were used to identify five basic 
types of the freely circulating haemocytes in last 
instar (7th) larvae of the greater wax moth 
Galleria mellonella: PRs, PLs, GRs, SPs and 
OEs. The most important descriptive characters 
of each main type were given. This result was in 
agreement with the five hemocyte types 
distinguished by an earlier study of Ashhurst and 
Richards [120] in larvae of G. mellonella: PRs, 
PLs, ADs, OEs, and SPs. Also, some 
researchers [97-99] identified five hemocyte 
types in the same insect: PRs, PLs, GRs, OEs 
and SPs. In addition, Sezer and Ozalp [121] 
identified five hemocyte types in the pupal 
haemolymph of G. mellonella: PRs, PLs, GRs, 
SPs and OEs. On the other hand, the present 
result disagreed with many reported results being 
distinguished other number of circulating 
haemocytes in G. mellonella, such as 
Shrivastava and Richards [122] who reported at 
least three types of hemocytes; PRs, GRs and 
PLs. Identification of each type by light 
microscope had often been perplexing, 
especially for GRs which were difficult to be 

distinguished from PRs [123,124]. Also, three 
hemocyte types in haemolymph of larvae were 
observed under fluorescence microscope: PLs, 
GRs, and PRs [125]. On the other hand, Er et al. 
[27] distinguished four types of circulating 
hemocytes in the last instar larvae of the same 
insect: GRs, PLs, PRs and OEs.  
 
To understand the controversial number and 
types of the circulating hemocytes in 
haemolymph of G. mellonella larvae, it is 
important to point out that the used nomenclature 
or terminology for hemocytes has often 
complicated comparisons of hemocyte 
categories in different insect orders [126,127]. 
For example, the larval hemocytes of 
Lepidoptera are typically identified by field or 
phase microscopy whereas this conventional 
method of hemocyte classification has been the 
source of frequent controversy in other insect 
orders [123]; since the hemocyte terminology 
bases on morphological features which often 
differ from order to order. There are over 70 
different names used for just 6-9 hemocyte types 
[128]. Thus, there is a need to develop a more 
uniform terminology for naming hemocytes in 
different insect species (for review, see Ghoneim 
[119].  
 

On the other hand, the non-uniformity and 
considerable differences in haemocyte 
classification in insects may arise from several 
causes, such as differences in experimental 
treatments, observation of living haemocytes as 
opposed to fixed specimens, morphological 
changes of haemocytes after withdrawal, and the 
tendency of some researchers to simplify 
haemocyte classification [129]. Also, the number, 
type and morphology of haemocytes vary with 
the developmental stages of the test insects and 
their physiological conditions, i.e., there is an 
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inherent variability of haemocyte types within a 
species as well as among closely related species 
[130-132]. Also, the hemocyte classification is 
often influenced by some factors affecting the 
haemolymph physical properties or biochemical 
composition [133]. In addition, the differences in 
number and types of identified hemocytes in 
insects may be attributed to several technical 
difficulties and the characters adopted by other 
researchers [74,129]. Moreover, many erroneous 
descriptions of certain hemocytes may be 
attributed to the rapid transformation of certain 
hemocytes during or soon after haemolymph 
collection [102]. Various techniques often yield 
profound different information about types, 
number, distribution and functions of haemocytes 
(for more detail, see Qamar and Jamal [84], Ling 
et al. [124], Pandey and Tiwari [134], Pandey 
and Tiwari [110]). In the light of the reported 
diverse or contradictory results, none of the 
individual methods for studying the various 
morphological types of haemocytes was entirely 
satisfactory for all types of cells within a given 
insect [135]. Therefore, the hemocyte 
classification has been recommended to be 
revised several times in the same insect species 
[75,119,136-138]. 
 

4.2 Total Hemocyte Count (THC) in G. 
mellonella  

 

Haemogram is a statement of the haemocyte 
population picture in an insect at a given time. It 
is a quantitative (Total haemocyte count, THC) 
and qualitative (Differential haemocyte count, 
DHC) expression of the haemolymph and its 
constituent inclusions [139]. Haemogram 
parameters include, also, haemolymph (blood) 
volume, mitotic index and cytological features of 
hemocytes. The THC, or total hemocyte 
population, has been found to be quite variable 
depending upon the insect species, 
developmental stage, physiological state and the 
technique followed [140].  
 
4.2.1 THC in Normal Larvae of G. mellonella 
 

In insects, the THC, or total hemocyte 
population, has been found to be quite variable 
depending upon the insect species, 
developmental stage, physiological state and the 
used technique [140]. In the present study, THC 
in normal 5th and 7th instar larvae of G. mellonella 
slightly increased with the larval age 
(27400±38.6 and 28900±28.7 cells/mm

3
 in the 5

th
 

instar larvae and 7th instar larvae, respectively). 
This result disagreed with other estimates 
reported for different insect species, since 

Hassan [141] determined THC in haemolymph of 
normal larvae of Tryporyza sp. as average 
22475cells/mm3. The same author recorded THC 
in haemolymph of Meladera sp. as average 
22300cells/mm3 in males and 29100cells/mm3 in 
females. On the other hand, Mall and Gupta 
[142] estimated THC of red pumpkin beetle 
Aulacophora foveicollis (Lucas) as average 
5500cells/mm

3
. Sabri and Tariq [143] determined 

THC of the same beetle as 4372 cells/mm3. 
Chavan et al. [76] estimated the THC in 
haemolymph of normal larvae of the beetle 
Platynotus belli Fairmere in an average of 
26233.33±251.66 cells/mm

3
. On the other hand, 

our result in G. mellonella was found in 
agreement with that increasing THC in the pink 
bollworm Pectinophora gossypiella (Saunders) 
larvae, since the averages of 7213±716.91 
cells/mm

3
 and 10138±918.67 cells/mm

3
 had 

been recorded in 6 hr and 48 hr full grown larvae, 
respectively [144]. Thus, the total hemocyte 
population in normal larvae of G. mellonella, in 
the present study, increased toward the 
prepupae as a physiological event for 
preparation to moult into the pupal stage. 
 

It is important to shed some light on the varying 
hemocyte populations in the haemolymph of 
some insects, as reported in the available 
literature. The largest hemocyte count in 
haemolymph of last instar larvae of Spodoptera 
mauritia was estimated for PLs, followed by other 
hemocyte types [145]. In normal larvae of the 
beetle P. belli, Chavan et al. [76] estimated GRs 
count as the highest population, followed by PRs, 
ADs, OEs, PLs, Coagulocyte and SPs, 
respectively. As recorded by Ghoneim et al. [144] 
for P. gossypiella, the circulating ADs had been 
observed with the largest count, followed by 
other hemocyte types, regardless the age of 
larvae while the least hemocyte population was 
estimated for OEs, regardless the age. In the 
present study, the largest hemocyte population in 
haemolymph of the normal 5th instar larvae of G. 
mellonella was estimated for PRs, followed with 
OEs, SPs, GRs and PLs, respectively. In 
addition, the largest hemocyte population in 
haemolymph of the normal 7

th
 instar larvae was 

estimated for PRs, followed with SPs, OEs, GRs 
and PLs, respectively. 
 

4.2.2 Inhibited THC in larvae of G. mellonella 
by arthropod venoms 

 

It may be important to mention that the brain 
endocrine complex is involved in haemocyte 
accumulation following some initial stimulus 
[146]. Jones [147] suggested that ecdysteroids 
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can regulate the number of haemocytes. 
Hormones, synthetic pesticides, insect growth 
regulators, and toxins intervene in the 
intermediary metabolism and immune capability 
of insects as observed in changes in hemocyte 
number, differentiation and phagocytosis [84]. 
Responses of the total hemocyte count to 
chemicals, phagocytosis, encapsulation and 
metamorphosis in insects had been reviewed by 
Siddiqui and Al-Khalifa [148].  
 

For investigating the effects of tested arthropod 
venoms on THC in haemolymph of 5

th
 and 7

th
 

instar larvae of G. mellonella, in the present 
study, the 3rd instar larvae were treated with LC50 
of death stalker scorpion, Leiurus 
quinquestriatus, oriental (Hornet) wasp, Vespa 
orientalis or Apitoxin of honey bee Apis mellifera. 
All venoms unexceptionally prohibited the larvae 
to produce normal hemocyte population (count). 
According to the inhibitory potency, the tested 
arthropod venoms could be arranged as Apitoxin, 
V. orientalis venom and L. quinquestriatus 
venom, respectively, in both larval instars. These 
results corroborated with those reported results 
of decreased THC in larvae of different insects, 
as response to various insecticides or insect 
growth regulators (IGRs), such as Rhynocoris 
kumarii Ambrose and Livingstone by endosulfan 
[129]; Schistocerca gregaria Forsskål by 
spinosad and Proclaim

®
 insecticide [149]; Papilio 

demoleus Linnaeus by Methoprene [150]; 
Dysderus koenigii (Fabricius) by Penfluron [151]; 
Agrotis ipsilon (Hufnagel) by Diflubenzuron [152], 
Eurygaster integriceps Puton by Pyriproxyfen 
[153]; Ephestia kuehniella Zeller by Pyriproxyfen 
[154], Spodoptera littoralis (Boisduval) by 
Cyromazine [136]; etc.  
 

The predominant inhibitory effect of arthropod 
venoms on THC in G. mellonella, in the present 
investigation, might be correlated with the 
decrease of some hemocyte types involved in 
phagocytosis and nodule formation. Reduction of 
THC might be due to the toxicities of the tested 
venoms and their inhibitory effects on the insect 
endocrine organs and secretion, nodule 
formation, larval hematopoietic function or the 
cell proliferation [155,143,156,157,153]. In 
addition, THC declination may be attributed to 
the death of pathological cells by degeneration 
[150]. 
 

4.3 Influenced Differential Hemocyte 
Counts by Arthropod Venoms 

 

It is important to point out that the increasing 
DHC of certain haemocyte types and decreasing 

DHC of others may be due to the transformation 
of some types into other ones for achieving the 
phagocytic function or other tasks for defense 
against the foreign biotic targets, like bacteria, 
yeast and apoptic bodies as well as the abiotic 
materials, such as particles of Indian ink or toxic 
plant products [158,159]. The particular 
hemocytes reported to be phagocytic varies 
among insect taxa, and in some cases 
discrepancies even exist in the literature among 
studies on the same species [160]. For more 
detail, see review of Ghoneim [119].  
 
4.3.1 Fluctuated PRs population in 

haemolymph of larvae 
 

In the present study, the differential hemocyte 
count (DHC) of PRs gradually decreased with the 
age of normal larvae of G. mellonella.  After 
treatment of 3rd instar larvae with LC50 values of 
the tested arthropod venoms, L. quinquestriatus 
venom was only the venom enhancing the 5th 
instar larvae to produce high PRs population 
while other venoms suppressed the larvae to 
produce normal PRs population. With regard to 
the PRs population in 7

th
 instar larvae, all 

venoms prohibited them to produce normal PRs 
population. These results were found in 
agreement with many reported results of 
inhibitory actions of different insecticides and 
IGRs on PRs population in haemolymph of some 
insects, such as S. littoralis by Cyromazine [136], 
A. ipsilon by Diflubenzuron [152], Philosamia 
ricini Watson by Dimethoate [161], Spodoptera 
mauritia (Boisduval) by Flufenoxuron [145], P. 
gossypiella by Novaluron [144], etc. However, 
the general reduction of PRs population in larvae 
of G. mellonella, in the present study, may be 
attributed either to the cytotoxic effects of the 
tested arthropod venoms on mitotic division of 
PRs, conversion of PRs to other hemocyte types 
or to the inhibitory effects on the activity of 
haematopoietic organs responsible for PRs 
production [153].  
 

4.3.2 Fluctuated PLs population in 
haemolymph of larvae 

 

The role of PLs in phagocytosis is disputed 
because some authors believed that they are 
phagocytes [73,160] but other authors reported 
no phagocytic function [118,162]. In the present 
study, PLs population gradually decreased in 
haemolymph of G. mellonella with the larval 
instar. In the present study, also, treatment of 3

rd
 

instar larvae with LC50 of each of the arthropod 
venoms resulted in the reduction of PLs 
population in 5th instar larvae. With regard to the 
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7th instar larvae, only L. quinquestriatus venom 
exhibited reducing effect on PLs count but 
Apitoxin and V. orientalis venom enhanced the 
PLs population. 
 
The decreasing PLs population in larval 
haemolymph of G. mellonella, as response of 
certain arthropod venoms in the present study, 
was in accordance with those reported 
decreasing PLs count in haemolymph of some 
insects by various IGRs or insecticides, such as 
S. littoralis by Flufenoxuron [163] or Novaluron 
[136] as well as S. gregaria by Spinosad and 
proclaim [149] and S. mauritia by Flufenoxuron 
[145]. On the other hand, the enhanced PLs 
population in larval haemolymph of G. mellonella 
by certain arthropod venoms, in the present 
study, agreed with some results of increasing 
PLs in some insects by certain toxins and IGRs, 
such as S. littoralis by Cyromazine [136]; S. 
gregaria nymphs by Deltamethrin [164], R. 
kumarii by endosulfan [129]; A. ipsilon by 
Diflubenzuron [152]; S. litura by hexaflumuron 
[157]; etc.  The decreasing PLs population in the 
current work on G. mellonella can be explained 
by their transformation into other types of 
hemocytes [135], since they are highly 
polymorphic cells [164]. Also, certain arthropod 
venoms may impaired the haematopoietic organs 
which responsible for the production of PLs 
[165]. However, we cannot provide an 
appreciable interpretation to the enhanced PLs 
population, by some of tested venoms, at the 
present time!!   
 
4.3.3 Fluctuated GRs population in 

haemolymph of larvae 
 
One of the main functions of GRs is 
phagocytosis as reported by several authors in 
different insects, such as Tojo et al. [160] in G. 
mellonella, Pendland and Boucias [166] in 
Spodoptera exigua (Hübner), Butt and Shields 
[167] in Lymantria dispar (Linnaeus), Nardi et al. 
[168] in M. sexta, and Costa et al. [169] in S. 
littoralis. In the present study, a slight decrease 
of GRs population was recorded from 5th to 7th 
instar of normal larvae of G. mellonella. As 
shown in the present study, Apitoxin suppressed 
the 5

th
 instar larvae to produce normal GRs 

population while V. orientalis venom and L. 
quinquestriatus venom enhanced the larvae to 
produce more GRs population. In respect of 7

th
 

instar larvae, Apitoxin and L. quinquestriatus 
venom reduced the GRs population while V. 
orientalis venom enhanced the larvae to gain 
more GRs population. However, the reduction of 

GRs population in G. mellonella larvae by certain 
arthropod venoms, in the present study, may be 
interpreted by the death of a lot of them due to 
their detoxification activity against the toxic 
molecules [129,168-170]. Also, it might be         
due to their differentiation into other types of 
hemocytes since GRs can differentiate into SPs 
in another lepidopteran Bombyx mori (Linnaeus) 
[111]. However, we have no exact interpretation 
to the increasing GRs population in G. mellonella 
larvae after treatment with some of the tested 
arthropod venoms, right now!! 
 
4.3.4 Fluctuated SPs population in 

haemolymph of larvae 
 
In Lepidoptera, SPs are quite different from GRs 
overloaded with phagocytosed material. The 
functions of SPs are unknown until now [74] but 
Sass et al. [171] suggested their responsibility for 
transporting cuticular components. In the present 
study, SPs population gradually increased in 
normal larvae of G. mellonella with age. After 
treatment of 3

rd
 instar larvae with LC50 values of 

the tested venoms, diverse effects had been 
recorded. In the 5

th
 instar larvae, SPs population 

significantly increased by Apitoxin while L. 
quinquestriatus venom and V. orientalis venom 
suppressed the SPs population. In connection 
with the 7th instar larvae, only Apitoxin stimulated 
these larvae to produce increasing population of 
SPs while other venoms prevented the larvae to 
attain the normal SPs population. However, the 
enhanced SPs population in haemolymph of G. 
mellonella larvae after treatment with certain 
arthropod venoms might be due to their 
enhancing effects on the differentiation of SPs or 
transformation of other hemocytes into SPs in 
the treated larvae of G. mellonella. Unfortunately 
the interpretation of declined SPs population is 
still obscure!! 
 
4.3.5 Fluctuated OEs population in 

haemolymph of larvae 
 
In the present study, a slight increase of OEs 
population was estimated in the normal larvae 
with the age. The 5

th
 instar larvae had been 

enhanced to produce increasing OEs in 
haemolymph after treatment of 3

rd
 instar larvae 

with Apitoxin and L. quinquestriatus venom. On 
the contrary, V. orientalis venom exhibited an 
inhibitory effect on OEs population in larvae. With 
regard to 7th instar larvae, V. orientalis venom 
and Apitoxin enhanced them to produce an 
increasing OEs population while L. 
quinquestriatus venom reduced it. The 
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decreasing OEs population in the haemolymph of 
G. mellonella larvae after treatment with certain 
venoms, in the present study, might be due to 
degeneration of some OEs for releasing 
precursors of prophenoloxidase that likely play a 
role in melanization of haemolymph and an 
important immunity protein in insects [172]. On 
the other hand, increasing of OEs population in 
the larval haemolymph of larvae, after treatment 
with other arthropod venoms, might be due to 
their role in the detoxification of toxic materials 
and activating action of some tested products on 
the hematopoietic organs or cell mitotic division. 
In conclusion, no certain trend of the disturbance 
in different hemocyte populations (counts) had 
been caused by the tested arthropod venoms. 
The increasing or decreasing population of the 
circulating hemocytes seemed to depend on the 
potency of the venoms, hemocyte type and the 
larval instar. In other words, the tested venoms 
exerted diverse actions on the differentiated 
hemocyte counts. 
  
4.4 Qualitatively Impaired Hemocyte 

Profile by Arthropod Venoms 
 
As reported by El-Kattan [173] for Plodia 
interpunctella (Hübner), Qamar and Jamal [84] 
for Dysdercus cingulatus (Fabricius), Teleb [174] 
for S. gregaria, Ghoneim et al. [136] for S. 
littoralis and Manogem et al. [145] for S. mauritia, 
various insecticides or IGRs caused some 
disruptive alterations in haemocytes basing on 
the changes in plasma membrane (erosion and 
extrusion of their cytoplasmic contents), 
vacuolization and lysis of the cytoplasm and 
nuclear disorders. To shed some light on the 
cytopathological impacts of the tested arthropod 
venoms on the hemocyte profile in haemolymph 
of G. mellonella, the last (7

th
) instar larvae were 

used.  In PRs, some deformations had been 
observed after treatment with Apitoxin, such as 
darkly stained cells with degenerated nucleus, 
destroyed membrane and extruded cytoplasmic 
contents. The V. orientalis venom caused 
different features of deranged PRs, such as 
degenerated nuclei, destroyed membranes and 
extruded cytoplasmic contents. In contrast, L. 
quinquestriatus venom failed to cause 
cytopathological features in this hemocyte type. 
With regard to the cytopathological features in 
PLs after treatment with the tested venoms, 
Apitoxin caused darkly stained degenerated 
nuclei and vacuolated cytoplasm. In contrast, 
both L. quinquestriatus venom and V. orientalis 
venom failed to cause cytopathological features 

in this hemocyte type. No venom exhibited 
cytopathological effect on GRs, SPs or OEs.  
 
The cytopathological features in G. mellonella 
haemocytes, in the present study, may be 
attributed to the action of certain arthropod toxins 
on the 'actin' which localized in the lamellar 
extensions of the cells [175]. The exact 
interpretation of the intracellular disturbances in 
hemocytes has not been available now!! Also, 
the question whether the hemocytes were 
affected directly or via some physiological or 
endocrinological pathway is yet to be answered.  
 

5. CONCLUSION  
 
As shown in the present study, the arthropod 
venoms, viz., death stalker scorpion Leiurus 
quinquestriatus venom, oriental Hornet (wasp) 
Vespa orientalis venom and Apitoxin of honey 
bee Apis mellifera exhibited quantitative and 
qualitative impairing effects on the larval 
haemogram of the greater wax moth, Galleria 
mellonella. Since the primary functions of 
haemocytes are coagulation, phagocytosis, 
encapsulation, nodule formation, detoxification of 
metabolites and biological active materials and 
distribution of nutritive materials to various 
tissues, the disturbance or impairment of these 
hemocytes, by the arthropod venoms, can be 
considered as an effective approach for 
controlling G. mellonella. At least, these venoms 
may be used as tools in the Integrated Pest 
Management for the present pest of the honey 
bee Apis mellifera.  
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