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ABSTRACT

This study represents a preliminary investigation aimed to assess the possibility to recycle and
valorize olive pomace by solid state fermentation (SSF) using Streptomyces strains. The olive
pomace was collected from an olive pressing factory (super press system) during the olive fruit
pressing season. The study was carried out at IMBE, University Aix Marseille-France, between
April 2013 and June 2013, and at LMA, University of Bejaia-Algeria in September 2013. Three
Streptomyces strains designated S1M3I, S1M3II and S1M3III were cultured on solid state
fermentation based olive pomace at 30°C for 10 days, and subsequently, the lignocellulolytic
enzyme activities (xylanase, CMCase and laccase), the viability of the microorganisms and the pH
of the resulting substrates, were determined. The fermented substrate pH values remained
significantly stable (p ˂ 0.05) throughout the fermentation period for the three strains; they were
fluctuated between 6.54 and 6.99. The viability of all Streptomyces strains studied, decreased
significantly (p ˂ 0.05) during the first four days of incubation, to reach up 0 cfu/mL of viability and 0
U/g enzymatic activities (xylanase, CMCase and laccase activities) were recorded for the three
strains. Streptomyces strains, under the experimental conditions (30°C, pH 7 and 75% of
moisture), were unable to grow and produce lignocellulolytic enzymes in solid state fermentation
based olive pomace due to the mycelial morphology and Streptomyces developmental cycle, no
neglect, the environmental factors. These preliminary results suggest that SSF – Streptomyces
system is not suitable for conversion of solid waste from olive processing industry and to produce
lignocellulolytic enzymes.

Keywords: Solid state fermentation; Streptomyces; olive pomace; enzyme.

1. INTRODUCTION

Cultivation of olive is an important agricultural
activity in Algeria. According to the National
Agency of Development of Investment (NADI,
Algeria), 87 500 tons of olive pomace are
produced each year, released directly to the
environment. The problem for these industries is
the management of these residues because of
their pollution in some cases and the costs
associated with the treatment necessary for their
proper disposal [1]. Olive pomace is the solid
residue obtained after olive oil extraction. It is
one of the most abundant agro-industrial by-
products in the Mediterranean area [2]. The olive
pomace consists of lignocellulosic matrix with
phenolic compounds, uronic acids and oily
residues [1] and can represent an important
alternative source for enzymatic process [3]. The
recycling of this by-product, which is available in
appreciable quantities, for the nutrition of
ruminants, can be interesting [4]. The biological
method to improve the quality of low-grade
roughages is drawing much attention due to its
potential advantages over chemical/physical
treatments such as greater substrate and
reaction specificity, lower energy requirements,
lower pollution generation and higher yields of
desired products [2]. The use of olive pomace as
solid substrate in submerged fermentation and
solid state fermentation processes is an
attractive solution, since due to its lignocellulosic

nature can be an inductor of lignocellulolytic
enzymes. Solid-state fermentation (SSF) using
fungus has been reported to be a relatively low-
cost appropriate technology for upgrading -
lignocellulosic materials in animal feeding [5].
Additionally, SSF, which is characterized by
microbial growth on moist solids, has proven to
be an efficient way to produce lignocellulolytic
enzymes, since it provides the filamentous
microorganism with environmental conditions
similar to those of their natural habitat.

The Actinobacteria are a group of Gram-positive
bacteria. Some form branching filaments, which
somewhat resemble the mycelia of the unrelated
fungi, among which they were originally classified
as the Actinomycetes [6,7]. Actinobacteria play
an important ecological role in recycling
substances in the natural world using organic
matter [8]. Streptomyces is the most important
genus in this group, able to produce and excrete
a large variety of enzymes, including those
involved in the degradation of cellulose,
hemicellulose and lignin [3]. Their enzymes are
more attractive than enzymes from other sources
because of their high stability and unusual
substrate specificity [8].

In this work, we have extended our previous
investigations of Streptomyces development on
submerged culture based olive pomace to solid
conditions using the same substrate [9,10].
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Preliminary experiments were carried out to
assess the performance of SSF using three
Streptomyces strains designated S1M3I, S1M3II
and S1M3III, in terms of the viability of the strains
and lignocellulolytic enzyme (Xylanase, CMCase
and laccase) production. To our knowledge, this
is the first report on the evaluation of the
potentiality of Actinobacteria-treated olive
pomace in this sense.

2. MATERIALS AND METHODS

2.1 Lignocellulosic Substrate

The olive pomace (OP) was collected from an
olive pressing factory (super press system) of
Bejaia, Algeria during the olive fruit pressing
season, dried at room temperature for three
weeks, ground to a fine powder, than passed
through sieves (ᴓ ≤ 1mm). Sugar cane bagasse
used in this study was obtained previously
prepared (washed with water to remove all
residual sugar, dried and milled to 1–10 mm).

2.2 Microorganism

The Streptomyces strains designated S1M3I,
S1M3II and S1M3III, used in this study, were
taken from our previous studies [9,10].

2.3 Preparation of Spore Suspension

The inocula were prepared by growing
Streptomyces strains in 100 mL flask of M3 agar
medium containing: 8 g/L raw pomace powder (ᴓ
= 75 µm) and a mineral solution containing: 2 g/L
soluble starch; 0.3 g/L casein; 1 g/L glucose; 2
g/L KNO3; 2 g/L K2HPO4; 2 g/L NaCl; 0.05 g/L
MgSO4.7H2O; 0.02 g/L CaCl2; 0.01 g/L
FeSO4.7H2O; 18 g/L agar, The pH was adjusted
to 7.2 with 0.1 N NaOH. The incubation was
carried out at 30°C for 7 days. In a next step, 30
mL of sterilized distilled water were added.
Finally, spores were counted with Malassez cell
and suspensions were adjusted to about 107

spores/mL [11].

2.4 Culture Conditions and Inoculation

At the first observation OP already formed a
paste with 50% (v/w) of moisture which limits the
aeration. For a large area of exchange between
air and substrate, the OP was mixed with the
sugar cane bagasse (Sugar removed). The SSF
has been carried out at 30°C in 250-mL flasks
containing 10 g of lignocellulosic substrate (5 g of

olive pomace and 5 g of sugar cane bagasse)
moistened to reach 50% with the mineral solution
(MS) containing: 3 g/L KH2PO4; 6 g/L K2HPO4;
3 g/L (NH4)2SO4; 1.2 g/L NaNO3; 0.2 g/L
MgSO4.7H2O; 0.05 g/L CaCl2; 0.01 g/L
MnSO4.7H2O; 0.001 g/L FeSO4.7H2O; 0.05 g/L
yeast extract. The pH was adjusted to 7.2 with
0.1 N NaOH. These flasks were sterilized by
autoclaving for 1 hour at 110°C. The inoculation
of the sterilized solid medium was carried out
with a suspension of 107 spores/mL, ultimately
achieving 75% of moisture. A control for each
strain was also run with the same conditions
above, taken at T0. The mineral salts will provide
the minerals necessary for the growth of the
microorganism but also have a buffering effect in
order to obtain a regulation of the culture medium
[12]. The calculation of the moisture was carried
out as follows, according to Bettache [13]:

50% humidification = (10 g x 100)/50 = 20 g
(wm)

For 50% of moisture, a quantity Y of mineral
solution is required, Y = 20 g (wm) – 10 g

Where 10 g, weight of the lignocellulosic
substrate used; wm, wet material humidified with
mineral solution for 50% of moisture and Y,
quantity of mineral solution required for 50% of
moisture (g).

75% humidification = (10 g x 100)/25 = 40g (wm’)

For 75% of moisture, a quantity Y’ of mineral
solution is required,

Y’ = 40 g (wm’) – 20 g (wm)

Y’ = 20 g ≃ 20 mL = 3 mL of spore suspension +
17 mL mineral solution.

Where 10 g, weight of the lignocellulosic
substrate used; wm’, wet material humidified with
mineral solution for 75% of moisture and Y’,
quantity of mineral solution required for 75% of
moisture (g).

2.5 Treatment of Samples Obtained in
SSF

Three Erlenmeyer flasks for each strain were
taken daily during 10 days of the incubation
period and their contents were treated as follows,
1 g of the fermented must was taken under
sterile conditions then suspended in 9 mL of
sterile physiological water, for viability analysis.
The enzymes are extracted into the solid medium
by adding 50 mL of distilled water to the whole of
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the fermented mixture. Grinding was carried out
using an ultra thorax until complete
homogenization. The pH values of the fermented
substrate were measured in a suspension (0.1 g
/ mL distilled water) using a HANNA pH meter.

2.6 Viability Assay

Viability assay was used as an indicator or
measure of the amount of living microbial
biomass in SSF. It was determined according to
the method described by Gassara et al. [14],
which consists of taking a sample of 1 g of
fermented substrate and diluted it in 9 mL sterile
physiological water. Adequate dilutions were
made for these samples. At least five different
dilutions per sample were used for the analysis.
Each dilution (20 µl) was aseptically pippetted on
an agar plate at six different spots. Three plates
per dilution were seeded. The plates were
incubated for 3 days, after which the growing
spots on the plates were calculated. While
calculating the results, the first dilution, where all
the pippetted spots did not grow, and the last
dilution, where at least one pippetted spot grew,
and all the samples between these, were taken
into account. The results in colony forming units
(cfu) were calculated according to the following
formula:

K =P/(Nn × Nk)0.5

Where K, number of live spores in a dry sample;
P, number of positives in all the accounted
series; Nn, amount of sample in the negative
parallels (g); Nk, amount of sample in all the
accounted series (g). In the screening studies,
the growth was detected only visually.

2.7 Measurement of CMCase, Xylanase
and Laccase Activities

Xylanase and CMCase activities were
determined by measuring the release of reducing
sugar according to Tuncer et al. [15]. Laccase
activity was assayed according to Criquet et al.
[16]. The results were expressed in units (U),
where U is defined as the amount of enzyme
required to liberate 1 µmol of xylose, glucose and
quinone per min.

2.8 Statistical Analysis

One-way analysis of variance (ANOVA) was
used to analyze data and multiple pair-wise
comparisons were performed by the Tukey test
using Xlstat® software to analyze the differences

between the treated and the control. The results
considered statistically significant at (p < 0.05).
All analysis were conducted in triplicates and
expressed as mean ± standard deviation (SD).

3. RESULTS AND DISCUSSION

3.1 Viability of Microorganism and
Enzyme Activities

In this study, the living mycelium as a relative
measure of active biomass was used. The
viability of the all Streptomyces strains,
decreased significantly (p ˂ 0.05) during the first
four days of incubation, to reach up 0 cfu/mL of
viability (Fig. 1). Additionally, all the strains
studied appear to no grow on OP under SSF. An
absence of mycelial growth was observed
throughout the 10 days of incubation at 30°.

Extracts from cultures were assayed to
determine the CMCase, xylanase and laccase
activities. The results were shown that, all
Streptomyces strains studied did not exhibit any
enzymatic activities (0 U/g for xylanase, CMCase
and laccase activities). The negative results of
the viability indicate cell death, inducing absence
of secondary metabolites (enzymes), which
occurred from the first days of fermentation.
These results indicate that the production of
enzymes involved in lignocellulose degradation
was wholly growth associated in cultures of
Streptomyces strains on OP. This is in
accordance with previous studies of Tuncer et al.
[15] and Adhi et al. [17], who showed that the
production of lignocellulolytic enzyme was growth
associated in Actinobacteria cultures.

We demonstrated in our previous studies that
these Streptomyces strains tested were able to
grow in submerged fermentation based OP and
exhibit enzyme activities, comprised between
1.44-0.57 U/mL for CMCase, 6.65-2.97 U/mL for
xylanase and 5.63x10-3-2.15x10-3 U/Ml for
laccase [9]. At the present time, as far as we are
concerned, there is no citation in the literature
describing the use of OP for the production of
lignocellulolytic enzymes by the Actinobacteria,
especially the Streptomyces. However, several
studies focusing on the production of
lignocellulolytic enzymes by SSF of fungi using
OP as substrate have been reported earlier [2,4,
18,19].

The decrease in viability and cell death observed
with SSF was, probably, due to the mycelial
morphology and Streptomyces developmental
cycle. Indeed, it has been unanimously accepted
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Fig. 1. Viability of Streptomyces strains: S1M3I, S1M3II and S1M3III, during the incubation
period in SSF based OP at 30°C

Results are means ± SD of triplicate measurements. ‘‘*’’ indicates a significant difference in viability between
control (T0) and SSF treatment (Tn) for the three strains studied (ANOVA, p < 0.05). Key: S = Streptomyces

that mycelial morphology in liquid fermentation
was correlated with the growth and the
production of secondary metabolites [20]. On the
other hand, there are important differences
between solid and submerged development of
Streptomyces [21], which reside in the absence
of a second death round and sporulation in the
case of liquid cultures. However, as in solid
cultures, there is a first, compartmentalized,
mycelium (first mycelium) which begins to group
into pellets at early time points and which starts
to die from the center outward. There is also a
transient growth arrest which precedes the
emergence of a multinucleated mycelium
(second mycelium) that grows from the
remaining viable segments of the first,
compartmentalized, mycelium [20,22,23].

It is important to know that, Streptomyces is
considered as a “multicellular” prokaryotic model
that includes programmed cell death and
sporulation in solid cultures [20]. Several studies
reported that, the growth arrest prior to the
appearance of the second mycelium has been
detected in solid cultures [23–25], conditions
under which nutritional stresses have been
postulated to activate the formation of aerial
mycelium, secondary metabolism, and even lysis
of the mycelium [21,26,27]. It is possible that it
was the case of the Streptomyces strains, in the
present study.

On the other hand, environmental factors
(Temperature and heat transfer, water content
and water activity, aeration, pH and substrate)
may be the cause of cell death and,

consequently, the absence of enzymatic
production [28–30].

The temperature of the substrate is very critical
in SSF as it ultimately affects the growth of the
microorganism, spore formation and germination,
and product formation [28,29,31–33]. The typical
effect of temperature during SSF is heat
accumulation [34]. The temperature at the center
of the fermenting solid medium could be higher
up to 20°C than the incubation temperature [31].
An increase in temperature promotes the higher
evaporation of water from the fermentation,
which causes cell death or an absence of spore
germination [35]. Compared to liquid state
fermentation, the problem of heat transfer makes
it difficult to reach the optimum temperature, as
the metabolic heat production for the unit volume
of solid medium is much higher than that of liquid
medium [35,36].

Water content is one of the key factors in a
successful SSF [37]. Therefore, changes of
water content in the medium will affect growth
and the metabolic capability of cells during SSF
[36]. The water content will also affect a
substance’s physical characteristics, the diffusion
and utilization of nutrients, the exchange of
oxygen and carbon dioxide, and the process of
heat and mass transfer [36,38]. High moistures
results in decreased substrate porosity, which in
turn prevents oxygen penetration [39]. This may
help bacterial contamination [40]. On the other
hand, low moisture content may lead to poor
accessibility of nutrients and oxygen resulting in
poor microbial growth [31]. Knowing that, oxygen
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Fig. 2. Evolution of pH of the fermented substrate of Streptomyces strains: S1M3I, S1M3II and
S1M3III, during the incubation period in SSF based OP at 30°C

Results are means ± SD of triplicate measurements. Same label (a, a’ or a’’) above the graph for the same strain
indicates that no significant difference exists between control (T0) and SSF treatment (Tn) throughout the

fermentation period, for the three strains studied (ANOVA, p < 0.05). Key: S = Streptomyces”

transfer is undoubtedly the most important
phenomenon to sustain microbial activity [41].
The rate of oxygen transfer to the cells is often
the limiting factor that determines the rate of
biological conversion. An insufficient oxygen
transfer leads to a decrease in the microbial
growth and product formation [42].

Olive pomace, used as solid substrate, is rich in
phenolic compounds, uronic acids and oily
residues [1]. The presence of free fatty acids in
the fermentation medium can cause an inhibitory
effect and an antimicrobial action [43]. According
to Sado Amdem et al. [44], this antimicrobial
action is due to the penetration of acid in the lipid
membrane of the bacterial cell. The
corresponding cellular acidic pH leads cell death
by suppressing cytoplasmic enzymes and
nutritional transport systems as well as
uncoupling ATP driven pumps [45]. Similarly,
Polti et al. [46] indicated that high amount of fatty
acid content plays important role in broadening
the antimicrobial spectrum modified oils. We
noted in our previous study [10] that the
saturation of the culture medium by polyphenols
released during the incubation period is at the
origin of cell death and absence of viability.
Additionally, several studies demonstrate that
polyphenols are responsible for the antimicrobial
activity [47–49].

3.2 Evolution of pH

The fermented substrate pH values remained
significantly stable (p ˂ 0.05) throughout the
fermentation period, they were fluctuated
between 6.54 and 6.99 (Fig. 2). These pH values

are in the optimum range reported in the
literature for growth and enzyme production of
Streptomyces species [3,15]. In this study the
fermentation medium was supplemented with 3
g/L KH2PO4 and 6 g/L K2HPO4 for the
maintenance of a fermentation pH around 7.0.

During a fermentation, that takes place normally,
the metabolic activity of the microorganisms
causes a drop in the pH of the culture medium
[50], due to acid formation [51], affecting the
growth and enzyme production of the
microorganism [51]. The use of buffers could be
solving this problem [51,52]. At the same time
solid cellulosic substrate is a good buffer for pH
change during SSF [28]. It was reported by
Banks et al. [53] that lignocellulosic substrate
offered little natural pH buffering capacity for the
medium during fermentation. But in our case
there is no production of enzymes, that can
destabilize the pH of the culture medium and this
may be explain the stability of pH throughout the
fermentation period, in addition to buffering
capacity of the medium.

4. CONCLUSION

The results of this experiment show that
Streptomyces strains, under the experimental
conditions (30°C, pH 7 and 75% of moisture),
were unable to grow and produce lignocellulolytic
enzymes in solid state fermentation based OP
due to the mycelial morphology and
Streptomyces developmental cycle, no neglect,
the environmental factors. These preliminary
results suggest that SSF – Streptomyces system
is not suitable for conversion of solid waste from
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olive processing industry and to produce
lignocellulolytic enzymes. However, SSF allows
the recovery of large quantities of OP compared
to the submerged fermentation that is why,
further research work in these areas is necessary
to verify our conclusion and find solutions.
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