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Abstract

We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant
blindly selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data
from the the Atacama Cosmology Telescope and the Planck satellite, we detect the stacked lensing effect from
677near-infrared-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS), which
have a mean redshift of á ñ =z 1.08. There are currently no representative optical weak lensing measurements of
clusters that match the distance and average mass of this sample. We detect the lensing signal with a significance of

s4.2 . We model the signal with a halo model framework to find the mean mass of the population from which these
clusters are drawn. Assuming that the clusters follow Navarro–Frenk–White (NFW) density profiles, we infer a mean
mass of ( ) á ñ =  ´M M1.7 0.4 10c500

14 . We consider systematic uncertainties from cluster redshift errors, centering
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errors, and the shape of the NFW profile. These are all smaller than 30% of our reported uncertainty. This work
highlights the potential of CMB lensing to enable cosmological constraints from the abundance of distant clusters
populating ever larger volumes of the observable universe, beyond the capabilities of optical weak lensing
measurements.

Unified Astronomy Thesaurus concepts: Cosmology (343); High-redshift galaxy clusters (2007); Cosmic
microwave background radiation (322); Gravitational lensing (670)

1. Introduction

Most of the mass in the universe is thought to consist of dark
matter that does not interact with electromagnetic radiation
other than through the gravitational force. Distortions in
background light sources due to the gravitational influence of
massive clusters of galaxies can be used to produce maps of the
total matter distribution. This technique has served not only as
evidence for the existence of dark matter (Trimble 1987;
Massey et al. 2010), but also as a method for inferring the total
mass of galaxy clusters themselves(e.g., Hoekstra et al. 2013).
Such mass measurements are critical for the program of using
the abundance of clusters to infer cosmological parameters like
the dark energy equation of state or the mass scale of
neutrinos(e.g., Allen et al. 2011; Madhavacheril et al. 2017).
One key aspect of this program is our ability to constrain the
abundance of clusters to high redshifts, directly probing the
growth of structure through cosmic time (Voit 2005).

Sensitive large-area optical/near-infrared surveys are now
allowing measurements of the mean mass of clusters up to
z∼1 (Murata et al. 2019; Chiu et al. 2020) through the lensing
effects induced on background galaxies. However, as the
distance of the clusters increases, the number of background
galaxies that are useful for weak lensing measurements
decreases rapidly. Measurements of this galaxy weak lensing
effect at large distances are therefore only possible at present
through deep targeted observations with the Hubble Space
Telescope (Jee et al. 2011; Schrabback et al. 2018), with which
observations currently exist for only some dozens of rich,
massive clusters at redshifts of z>0.8. A valuable comple-
mentary probe is emerging as cosmic microwave background
(CMB) measurements are becoming sensitive enough to allow
measurements of weak lensing by galaxy clusters in maps of
the temperature and polarization of the CMB (e.g., Baxter et al.
2015; Madhavacheril et al. 2015; Planck Collaboration &
Ade 2016; Geach & Peacock 2017; Raghunathan et al. 2019;
Zubeldia & Challinor 2019). The high source redshift of the
CMB allows weak lensing measurements to higher redshifts
than galaxy lensing. Consequently, measurements of CMB
lensing by clusters are anticipated to provide more stringent
constraints on the masses of high-redshift clusters than enabled
by future optical surveys(e.g., Madhavacheril et al. 2017).

We provide a mass estimate using gravitational lensing of
the CMB for a blindly selected sample of galaxy clusters whose
average mass has not been previously determined using galaxy
lensing, which is additionally the highest redshift, á ñ =z 1.08,
where a detection of gravitational lensing by galaxy clusters
has been reported for a blindly selected sample to date. As
opposed to targeted measurements of the most massive clusters,
our work allows for inference of the average mass of a
representative cluster sample. We make the code used in this
analysis available at https://github.com/ACTCollaboration/
madcows_lensing.

2. Data

We use a combination of CMB data from the ground-based
Atacama Cosmology Telescope (ACT) and the Planck satellite
at the location of galaxy clusters selected from the Massive and
Distant Clusters of WISE Survey (MaDCoWS, Gonzalez et al.
2019). The MaDCoWS clusters were identified as galaxy
overdensities in near-infrared imaging (at 3.4 and 4.6 μm) from
the WISE all-sky survey (Wright et al. 2010), and a large
number of them were followed up with the Spitzer Space
Telescope (at 3.6 and 4.5 μm). At declinations >−30°, the
addition of optical data (grizy bands) from the Panoramic
Survey Telescope and Rapid Response System (Pan-STARRS,
Chambers et al. 2016) allowed reliable photometric redshift
estimation and subsequent cluster richness measurements. As a
first attempt at a mass proxy, Gonzalez et al. (2019) define the
richness, l, to be the overdensity of red-sequence galaxies
(identified using both PanSTARRS and Spitzer data) brighter
than 15 μJy in the Spitzer 4.5μm band and within 1Mpc of the
brightest cluster galaxy. Photometric redshifts were estimated
from the Spitzer 3.6 and 4.5μm bands, aided with the
PanSTARRS i-band to remove low-redshift galaxies, with an
estimated scatter ( )s + =z1 0.04z and no significant bias
(but with an outlier fraction potentially of order 5%).40 We
discuss the impact of photometric redshift uncertainties below.
We use this subset of the MaDCoWS “WISE-PanSTARRS”
sample with available photometric redshifts, imposing an
additional l > 20 cut to reduce contamination by false
detections in the MaDCoWS catalog, for a total of 677clusters
after masking point sources and other artifacts in the ACT maps
(which is also limited to declinations �20°). We show the
richness and redshift distributions of these clusters in Figure 1.
The mean redshift of the sample is á ñ =z 1.08 with a 16th and
84th percentile range of 0.93–1.26.
To reconstruct the lensing signal, we use coadded maps of

ACT and Planck CMB temperature data prepared separately at
98 and 150 GHz and described in Naess et al. (2020). The
coadded maps include night-time data collected during the
years 2008–2018 using the MBAC (Swetz et al. 2011),
ACTPol (Thornton et al. 2016), and AdvACT (Henderson
et al. 2016) receivers. The Planck maps used in the coadded
maps are the PR2 (2015) CMB temperature maps at 100 and
143 GHz. We also use the Planck 2018 SMICA tSZ-
deprojected maps (Planck Collaboration et al. 2020) as an
additional input to the lensing reconstruction (see Appendix A).
This is done in order to remove the bias from the thermal
Sunyaev–Zeldovich (tSZ) effect due to inverse-Compton
scattering of CMB photons off ionized electrons in hot gas in
massive clusters (Madhavacheril & Hill 2018). Deprojection of
the tSZ is possible because the frequency dependence of the
spectral distortion due to the tSZ effect is well understood.

40 These statistics are based on a comparison of photometric and spectroscopic
redshifts for 38 clusters for which the latter is available.
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3. Lensing Reconstruction

We reconstruct the CMB lensing convergence κ in regions
centered on the locations of MaDCoWS clusters. The lensing
convergence is related to the line-of-sight integral f of the
underlying gravitational potential sourced by a cluster, and to
the lensing deflection angle a through · af k = = -22 .
The convergence is related to the surface mass density Σ
through κ=Σ/Σcr, where Σcr is a characteristic mass density
for the formation of multiple images that depends on distances
to the source and lens (see Appendix B). Since the convergence
map is directly proportional to the surface mass density, it can
be thought of as a mass map. Gravitational lensing of the CMB
by clusters leads to a remapping of the temperature anisotropies

( ) ( )a= +x xT Tunlensed . In the 2D Fourier space of the
temperature anisotropy image, this remapping corresponds to
coupling between previously independent Fourier modes (say
with wavenumbers ℓ and ¢ℓ ) that is proportional to the lensing
convergence: ( ) ( ) ( )ká ¢ ñ µ + ¢ℓ ℓ ℓ ℓT T . This allows us to
reconstruct the underlying convergence mode by mode by
using a “quadratic estimator,” i.e., a weighted sum over
products of pairs of image modes (Hu et al. 2007), which in
practice can be written as the divergence of the product of the
large-scale CMB gradient and the small-scale CMB fluctua-
tions (see Appendix A). The quadratic estimator reconstruction
provides an unbiased estimate of the Fourier modes of the
cluster mass map within a range of scales set by the band limit
of the CMB maps. Thus, the output reconstruction image ˆ ( )k x
is effectively filtered, and we forward model this filtering when
fitting to theoretical expectations. The signal-to-noise ratio for
any given cluster is well below unity, and so our final

measurements are a weighted average of the mass maps and of
the radial profile (azimuthal average) of the lensing conv-
ergence, where the weights are inversely proportional to the
noise variance in the lensing convergence reconstruction. We
estimate a weighted covariance matrix for the radial profile
from the scatter among the profiles. With each cluster profile
weighted by wi, the weighted covariance of the weighted mean
of the N clusters in our sample is

( ) ( )
( )

( )å
=

- -

-
=C

p d p d

N

w

V V V

1
. 1i

N
i i

T
i1

1 2 1

where pi are the individual radial profiles of each cluster mass

map, = å =d pw .
V i

N
i i

1
1

1
is the weighted mean profile, =V1

å = wi
N

i1 and = å =V wi
N

i2 1
2.

Details of the reconstruction process and mitigation of
astrophysical foregrounds are provided in Appendix A. We
show the resulting stacked CMB lensing convergence recon-
struction in Figure 2.

4. Results

After averaging lensing convergence maps across all the
clusters in our sample, we detect an excess relative to null
within 8′ at 4.9σ confidence. We estimate the mean mass of the
sample by fitting the binned radial profile of the average mass
map assuming the Navarro–Frenk–White (NFW; Navarro et al.
1996) density profile model for the distribution of matter within
galaxy clusters with a fixed relation between the profile shape
(or concentration parameter) and the mass. We account for the
distribution of clusters of different masses across redshift and
their clustering (i.e., the two-halo term), and apply an
approximate correction for selection effects in order to
construct an ensemble average of the lensing signal. This halo
model approach, detailed in Appendix B, allows us to estimate
the mean mass of the underlying sample from which the
MaDCoWS sample is drawn.
We show the model predictions for the filtered lensing signal in

Figure 3, color-coded by the excess χ2 with respect to the
minimum χ2 obtained from our fit, corresponding to c = 1.4min

2 .

Figure 1. Distributions for cluster redshift (top), and for a measure of the
number of galaxies in a cluster, richness (bottom) for the MaDCoWS WISE-
PanSTARRS galaxy cluster sample used in this work. The blue histograms
correspond to the 677clusters that remain after applying the richness cut
(λ>20) and ACT mask, while the red histograms correspond to the full
sample of 1676clusters.

Figure 2. The stacked CMB lensing convergence mass map from the sample of
677MaDCoWS clusters with á ñ =z 1.08 used in this work. This reconstruction
includes a low-pass filter up to a scale of 2 arcminutes and has been
additionally smoothed with a Gaussian filter with FWHM of 3.5 arcminutes.
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Since our model has only one free parameter, the 1σ, 2σ, and 3σ
credible ranges are given by Δχ2=1, 4, and 9, respectively. We
calculate the probability-to-exceed cmin

2 (PTE) by drawing one
million random samples with mean zero and using the covariance
of our measurements; we find a PTE of 0.93, showing that the
model is an adequate description of the data. The best-fit mean
mass is ( ) á ñ =  ´M M1.7 0.4 10c500

14 , with a preference for
our best fit over zero mass at the 4.2σ level.

5. Discussion

The clusters in our sample have a mean redshift of
á ñ =z 1.08, the highest-redshift, blindly selected sample for
which a gravitational lensing measurement has been obtained
to date. Our results highlight the potential of both CMB lensing
in general and ACT in particular to constrain the scaling
relation between mass and other observables for high-redshift
galaxy clusters.

In Appendix B, we explore systematic uncertainties from
cluster redshift errors, centering errors, and the concentration
parameter of the NFW profile, which are all smaller than 30%
of our reported uncertainty. Since our measurement probes the
overall lensing amplitude, the reported mass is also robust to
assumptions about both the selection function and the scaling
relation between mass and richness, which conversely we are
not able to constrain.
Because we stack the lensing maps around all MaDCoWS

clusters within the ACT footprint with a richness larger than
20, our measurement is representative of the full MaDCoWS
sample above this cut. Targeted observations of the tSZ effect
(which scales steeply with cluster mass as~M

5
3) of MaDCoWS

subsamples by Gonzalez et al. (2019), Di Mascolo et al. (2020),
and Dicker et al. (2020) have naturally picked preferentially the
most luminous objects, and thus the mean richness of our
sample, lá ñ = 32, is lower than that probed in those works.
The mean mass we estimate is consistent with the scaling
relations reported in those works, which however have large
uncertainties and are susceptible to additional systematic
effects associated with an uncertain selection function.
While looking for galaxy overdensities is an efficient means

of finding galaxy clusters, characterizing the selection effects
that these techniques are subject to is a challenging endeavor. No
estimate of the selection function is available for MaDCoWS,
which precludes the use of this sample for cosmological
parameter inference. Future CMB lensing measurements of
well-defined cluster samples at high redshift will yield tight
constraints on the parameters that govern the growth of structure.
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Figure 3. Top:halo model fit to the profile of the stacked lensing convergence,
color-coded by c c cD = -2 2

min
2 . With only one free parameter in the model,

the 1σ, 2σ, and 3σ credible regions are limited by Δχ2=1, 4, and 9,
respectively. The solid line shows the best-fit model, while the dashed and
dotted–dashed lines show the contributions from the one-halo and two-halo
terms to it, respectively. Gray crosses show measurements of the curl (slightly
offset horizontally for clarity), which is expected to be zero (see Appendix A).
Error-bars correspond to the square root of the diagonal elements of the
covariance matrix. The probability-to-exceed (PTE) the χ2 of our best-fit model
is 0.93. The PTE of the curl compared to a null signal is 0.05. Bottom:the
correlation coefficient matrix for the radial bins of the lensing measurement.
The corresponding matrix for the curl measurement is similar. The large bin–
bin correlations show that all the curl points fluctuating below zero is not
unlikely.
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Appendix A
Method Details and Systematics Tests

The quadratic estimator for CMB lensing reconstruction can
be recast as the divergence of the product of the small-scale
CMB and the large-scale CMB gradient:

ˆ ( ) { ( ) { [ · [ ( ) ( )]]}} ( )q q qk = - - LA T TRe , A1TT
g h

1

where  and - 1 denote 2D Fourier and inverse-Fourier
transforms, respectively. Our analysis applies this estimator
locally to cutouts of CMB data centered on each cluster
location that are 128′ wide with pixels of width 0.5 arcminutes.
The large width relative to the typical arcminute size of clusters
allows us to estimate the large-scale gradient.

Following Hu et al. (2007), we use a low-pass (top-hat)
filtered temperature anisotropy gradient Tg with a maximum
CMB multipole of =ℓ 2000G to mitigate bias in massive
clusters as well as to reduce contamination from foregrounds.
Furthermore, following Madhavacheril & Hill (2018), for the
gradient map Tg, we use a CMB map from which tSZ has
been explicitly deprojected using multifrequency information
(the Planck PR3 SMICA tSZ-deprojected), so as to null a large
tSZ-induced bias. For the high-resolution map Th, we use an
internal linear combination (ILC) of the postage stamp cutouts
from the 98 and 150 GHz 2018 coadds of Planck and ACT
from Naess et al. (2020), where the high-resolution ACT data
dominates the information content. While the tSZ cleaning for
Tg nulls the tSZ bias, a large amount of variance can be
induced by the presence of large tSZ decrements in Th. To
reduce this, following Patil et al. (2020), prior to the ILC we
subtract best estimates of the tSZ decrements from each of the
∼4000 SZ clusters detected in the coadd (Hilton et al. 2020)
since some of these clusters either appear in our sample
or may appear in the postage stamps that we perform our
reconstruction on. This has the effect of reducing the
uncertainty in the first three bins of our measurement
by≈10%. The weights for the ILC are designed to minimize
the power spectrum of the combination and are determined
after fitting the total 1D power spectrum of each single-
frequency stamp to a simple two parameter model that
captures both an atmospheric component as well as white
noise. We impose a maximum multipole cut ofℓ=6000 on
the high-resolution map. Both maps are inverse-variance
filtered as in Hu et al. (2007). For both the gradient and
high-resolution map, we do not use scales belowℓ=200 due

to the size of our cutouts. The reconstruction is normalized with
an analytic expression ( )LATT (Hu et al. 2007) that depends on
the filters we apply. The final reconstruction is filtered to ensure
it only contains modes 200<L<5000, and this filter is
subsequently propagated in our theoretical model when fitting
the profile.
Prior to reconstruction, the gradient and high-resolution

maps are multiplied by a tapering cosine window (of
approximate width 18′) to enforce periodicity required by
Fourier transforms. The presence of such a window (as well as
other sources of anisotropy such as inhomogeneity of
instrument noise) induces a spurious lensing signal referred
to as the mean-field. We estimate the mean-field by repeating
the above stacking procedure on a large number of random
locations (∼300 times the number of clusters in our sample)
and subtract this from our main cluster stack. The mean-field
profile is roughly constant as a function of distance from the
center of the stack and is 20% of the measurement in the first
bin, 50% in the second bin, and larger than the measurement in
subsequent bins.
We perform a number of systematics tests to ensure the

robustness of our detection. This includes a curl null test,
where the divergence in Equation (A1) is replaced by the curl
(and normalized appropriately), shown in Figure 3. With this
test, we obtain a measurement that is consistent with null
(PTE of 0.05, corresponding to consistency with null at the

s1.9 level). As shown in Madhavacheril & Hill (2018),
one needs correlated contaminants in the gradient and
high-resolution maps of the quadratic estimator in order to
be biased by these contaminants. Therefore, to test the
possibility that dust emission might be biasing our measure-
ment, we stack the Planck PR3 SMICA tSZ-deprojected map
(used for the gradient) at the location of all 1676MaDCoWS
clusters with photometric redshifts (not just the 677that fall
in the ACT footprint used in this analysis). We detect no
residual in this stack and thus conclude that dust contamina-
tion in the lensing reconstruction itself is unlikely. The
presence of contaminants in the high-resolution map will
contribute noise, which is captured in our empirically
determined covariance matrix.

Appendix B
Mass Modeling

In order to infer the mean mass of the sample, we model the
CMB lensing signal by assuming that all mass is contained
within spherical halos, and that these halos cluster together (i.e.,
using the halo model; Peacock & Smith 2000; Seljak 2000). We
adopt the best-fit flat ΛCDM cosmology from Planck Collabora-
tion et al. (2016), with present-day matter density parameter
W = 0.307m and a Hubble constant = - -H 67.7 km s Mpc0

1 1,
also adopted by Gonzalez et al. (2019).
Within the halo model formalism, the lensing signal can be

decomposed as

( ) ( ) ( ) ( )k q k q k q= + , B11h 2h

where the subscripts 1h and 2h represent the one-halo (due to
each halo) and two-halo (due to halo clustering) contributions.
We model each component as follows.
For the one-halo term, we use an NFW density profile

(Navarro et al. 1996). We use a mass definition, M500c,
corresponding to the mass within an overdensity of 500 times
the critical density, ( ) ( )r p=z H z G3 8c

2 . We model the
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concentration, ºc r rc c500 500 s (where rs is the scale radius and
r500c is the radius containing M500c), using the relation between
concentration and mass from Diemer & Joyce (2019).41 For a
lens of mass m and redshift z, the convergence is related to the
mass surface density, Σ(m, z), through

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( ) ( ) ( )
( ) ( )k

p
=

S
S

º S
-

m z
m z

z

c

G

D

D z D z
m z,

,

4
, , B2

cr

2
s

l ls

1

where Ds, Dl, and Dls are the angular diameter distances to the
last scattering surface, to the cluster, and between the cluster
and the last scattering surface, respectively. The expression for
the NFW surface density profile is given in Wright &
Brainerd (2000).

The two-halo term arises due to the large-scale galaxy-matter
power spectrum,

( ∣ ) ( ) ( ∣ ) ( )=P k m z b m z P k z, , , B3gm
2h

m

where ( ∣ )P k zm is the linear matter power spectrum and b(m, z) is
the halo bias as calculated by Tinker et al. (2010). Note that all
calculations of the two-halo term are performed in comoving
coordinates. The power spectrum is the Fourier transform of the
correlation function,

( ∣ ) ( )òx
p

=
¥

r m z
kr

kr
k dk P,

1

2

sin
B4gm 2 0

2
gm
2h

from which the surface density can be calculated as

( ∣ ) ¯ ( ∣ ) ( )òr xS =
-

R m z R
dx

x x
R x m z, 2

1
, , B52h m

0

1

2 2 gm

where r̄m is the (time-independent) comoving mean matter
density. The two-halo term in Equation (B1) is then

( ∣ ) ( ) ( ∣ ) ( )k q
q

= +
S

S
m z z

m z
, 1

,
, B62h

2 2h

c

where the additional ( )+ z1 2 compared to Equation (B2) is
due to our use of comoving coordinates in the two-halo term
calculation (see, e.g., Dvornik et al. 2018). We then filter both
the 1h and 2h components with the Fourier-space filter
described in Appendix A to produce a prediction for ˆ ( ∣ )k q m z, .

In reality, our measurement is the mean over clusters
covering a range in masses and redshifts. The halo mass
function provides a prediction for the distribution of clusters in
mass and redshift, which can be linked to the observable used
to construct the sample (namely, richness, l) through a mass-
observable relation. However, like for any other cluster sample,
due to the selection algorithm (in this case, red-sequence
overdensities), MaDCoWS is a biased subsample of the
underlying cluster population. We therefore follow previous
galaxy–galaxy- and cluster-lensing studies (e.g., van den Bosch
et al. 2013; Viola et al. 2015; Dvornik et al. 2018; Miyatake
et al. 2019) and model the measured lensing signal as

( )

( ∣ ) ( ) ( ∣ ) ( )

ò ò

ò

k q

l l l k q

=

´  

N
dz

dV

dz
dm

dn

dm

d m z z m z

1

ln ln , , , . B7

eff h^

^

Here = AdV

dz

dN

dz
eff cl is the effective volume probed per unit

redshift, which accounts for the unknown redshift component
in the selection function (and A is a constant that absorbs the
unit conversion, but cancels between the numerator and
denominator); dn

dm
h is the halo mass function from Tinker et al.

(2010);42 ( ∣ )l m zln ln , is the conditional probability of
richness given cluster mass (defined below), and N̄ is the
expected number of clusters, which differs from the halo mass
function due to the mass-observable relation (see below) and
selection function, ( )l z, , which is given by

( ∣ ) ( )

( )
ò ò ò l l l= ´  N dz

dV

dz
dm

dn

dm
d m z zln ln , , .

B8

eff h

Consequently, in this framework mean values refer to the mean
of the underlying cluster population and are calculated in
analogy to Equation (B7) as

⟨ ⟩

( ∣ ) ( ) ( )

ò ò
ò l l l

=

´  

X
N

dz
dV

dz
dm

dn

dm

d m z z X

1

ln ln , , . B9

eff h

For simplicity, we assume that the MaDCoWS sample includes
all clusters with richness larger than 20 (and we have discarded
all clusters with lower richness), such that

( ) ( ) ( ) ( )l l l= = Q - z, 20 , B10

where Θ is the Heaviside step function. In addition, we limit
the redshift integral to the range [ ]Îz 0.7, 1.8 . (Note that by
using the observed redshift distribution, dN

dz
cl , instead of the

comoving volume element dV/dz in Equation (B7), we are
effectively introducing an additional redshift component to the
selection function; this choice has no impact on our results.)
Additionally, we assume a linear relation between cluster

richness, l, and cluster mass, ºM mc500 :

( ) ( )l b b m= + º +m Mln ln 10 ln B1114

and assume a log-normal conditional probability of l given
cluster mass,

⎡
⎣⎢

⎤
⎦⎥( ∣ ) ( )

( )

l
ps

l m b
s

= -
- -

 m zln ln ,
1

2
exp

ln ln

2
.

B12

2

2

We assume a scatter on the mass-observable relation s º
∣s =l 0.5mln ln , typical of the scatter of different richness

definitions (Rozo et al. 2014; Murata et al. 2019). The normal-
ization β is the only free parameter in this model. While its
posterior value depends on our assumptions about the selection
function and the scatter above, the mean mass of the sample
(calculated following Equation (B9)) is robust to these changes as
it directly quantifies the amplitude of the lensing signal.
We estimate the best-fit parameters by varying the normal-

ization β and minimizing

( ) · · ( ) ( )c = - --d m C d m , B13T2 1

41 Calculated using colossus (Diemer 2018), https://bdiemer.bitbucket.io/
colossus/.

42 We use the Core Cosmology Library (Chisari et al. 2019, https://ccl.
readthedocs.io/en/latest/) to calculate the halo mass function, the halo bias,
and the matter power spectrum.
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where d andm are the vectors of measured radial profile bins
and the model expectations for them, respectively, and C is the
covariance matrix of the measurement (see Equation (1)). We
use five bins in our fit that encompass a region within 8′ of the
center of the stamp.

In order to demonstrate the contribution from each term in the
model described above, we first fit our measurements with a
single NFW profile at z=1.1, including only the one-halo
contribution, with the mass as the sole free parameter. This
results in a best-fit mass ( ) á ñ =  ´M M2.1 0.5 10c500

14 . We
then add the two-halo term, assuming all clusters have the same
mass and are located at the same mean redshift, and find

( ) á ñ =  ´M M1.7 0.4 10c500
14 . Finally, we implement the

full model as described above. We find β=2.4±0.3, which
translates to a population-weighted mean cluster mass

( ) á ñ =  ´M M1.7 0.4 10c500
14 , where uncertainties corre-

spond to Δχ2=1 (i.e., 68.3% credible range). This is the main
result of this paper.

For reference, we calculate the mass M200c within an
overdensity of 200 times the critical density for each point
in the ( )M z,c500 grid and perform the integral given by
Equation (B9) over the appropriate halo mass function, and
find ( ) á ñ =  ´M M2.5 0.6 10c200

14 .
As discussed above, the best-fit β depends strongly on our

modeling assumptions and should not be over-interpreted, but the
mean mass changes at most by 5% regardless of our assumptions
about the selection function and scaling relation. Specifically, we
have varied the scaling relation normalization, β, and intrinsic
scatter, σ, by factors of two from the adopted values, as well as
selection functions given both by step functions and error functions
with midpoints in the range λ=[10, 30], and in all cases find
mean masses within 5% of the reported value. The largest shift in
mass is introduced by modifying the mass-concentration relation
(for reference, the population-weighted mean concentration is

=c 2.5c500 ): increasing (decreasing) the concentration by 20%—

which brackets most mass-concentration relations in the literature
—increases (decreases) the mean mass by 10%, well within the
uncertainties. Redshift uncertainties also do not change our results
significantly: applying a systematic shift Δz=±0.1 (slightly
larger than the 1σ scatter of photometric redshifts compared to
spectroscopic redshifts, Gonzalez et al. 2019) only changes the
mean mass by less than 3%. Assuming that 5% of the clusters have
photometric redshifts that are wrong by Δz=+0.2 (3σ outliers,
all in the same direction) has a similar impact.

Our final assessment of modeling systematics regards
miscentering. The MaDCoWS algorithm defines the cluster
center as the location of the peak amplitude in a smoothed
galaxy density map, which can potentially be significantly offset
from the center of mass (George et al. 2012; Viola et al. 2015)
and results in a reduced central lensing amplitude. However, the
physical resolution of our measurements is roughly 1Mpc,
which greatly reduces the impact from miscentering, and we
choose not to account for it in our analysis. To test the impact of
miscentering, we implement the distribution found by Johnston
et al. (2007) for optically selected clusters, exploring typical
offsets between the assumed and true centers of up to 0.4Mpc
(roughly r2 s); the change in mass is at most 5%.
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