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ABSTRACT 
 

Solar radiation data in a particular location is an important factor for agricultural applications and 
others. To estimate solar radiation, empirical models have been developed using different 
meteorological parameters. Recently, prediction models based on artificial intelligence techniques 
such fuzzy logic are available. The aim of this work was to develop an adaptive neuro fuzzy 
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inference system (ANFIS) for estimating hourly total solar radiation on horizontal surface at 
Alexandria city, Egypt and to compare its efficiency with two empirical models namely clear sky 
hourly global solar radiation  and global solar flux on a horizontal surface. Local time, Julian day, air 
temperature, relative humidity and relative sunshine duration data for the period 2005-2007 were 
used as inputs to ANFIS model. Delta-T automatic weather station which was located on the roof-
top of Agricultural and Bio-Systems Engineering Department, Faculty of Agricultural, Alexandria, 
Egypt was employed to collect the required data. In testing phase, good results with all prediction 
methods were obtained, with root mean square error values of 165.42, 168.37 and 82.287 W/m2 for 
clear sky hourly global solar radiation model, global solar flux on a horizontal surface model and 
ANFIS model, respectively. Meanwhile, coefficients of determination (R

2
) were 0.6428, 0.6355 and 

0.8949, respectively for clear sky hourly global solar radiation model, global solar flux on a 
horizontal surface model and ANFIS model when utilized testing data set for the validation process. 
Even though all the investigated models can be used to predict the hourly total solar radiation on 
horizontal surface, ANFIS model produced better estimates. 
 

 

Keywords: Solar radiation; ANFIS; weather parameters; Egypt. 
 

1. INTRODUCTION 
 

Knowledge of available solar radiation data in a 
particular location is essential for different 
purposes such as assessment of solar        
drying systems [1], evaluating of solar cells 
performance [2,3] and  building of crop models 
[4]. Moreover, the estimation of solar radiation is 
essential for utilization the solar energy, design 
wherever appropriate observations missing 
[5]. However, solar radiation data are often 
obtained from measurements taken at a 
particular location using various solar radiation 
measuring instruments. But due to high cost of 
calibration and maintenance of such instruments, 
solar radiation data are limited in many 
meteorological stations around the world [4].  
Thus, prediction of solar radiation data is very 
useful in such case because it permits to 
generate solar data for locations where 
measurements are not available [6].   
 

The difficulties in the measurement of solar 
radiation have resulted in development of so 
many models and algorithms for its estimation 
from some routinely measured meteorological 

parameters such as; sunshine hour, maximum, 
minimum and average air temperatures, relative 
humidity, and cloud factor [7]. Consequently, 
numerous empirical models for estimating solar 
radiation on horizontal surface have been 
developed [8-13]. Recently, soft computing 
methodologies, as an alternative to the 
conventional statistical methods, have the ability 
to track complicated dependencies between 
different variables, where traditional methods 
have their limits [14]. One of such methodologies 
is Adaptive Neuro-Fuzzy Inferences System 
(ANFIS).  It is a hybrid intelligent system that 
merges technique of the learning power of the 

artificial neural networks with the knowledge 
representation of fuzzy logic. The main 
advantages of the ANFIS are computationally 
efficiency and adaptability [15]. The ANFIS can 
be served as a tool for estimating solar radiation 
data [16-21]. 
 
Mellit et al. [16] used ANFIS technique to model 
the global solar radiation based upon sunshine 
duration and air temperature. Moghaddamnia     
et al. [17] utilized ANFIS to estimate the daily 
global solar radiation using extraterrestrial 
radiation, precipitation, air temperature and wind 
speed. Sumithira and Kumar [18] employed 
ANFIS to predict the monthly global solar 
radiation using the real meteorological solar 
radiation data. The comparative test results 
proved the ANFIS based prediction is better than 
other models and proved its prediction capability 
for any geographical area with changing 
meteorological conditions. Khademi et al. [19] 
applied ANFIS to estimate monthly global solar 
radiation on a horizontal surface for Tehran city. 
Monthly mean of maximum air temperature, 
relative humidity, sunshine hours and wind speed 
values were acted as inputs to the ANFIS. The 
results proved that ANFIS could predict monthly 
global solar radiation on a horizontal surface in 
efficient way. Mohanty [20] employed ANFIS 
technique to predict monthly mean global solar 
radiation. Boata and Pop [14] developed ANFIS 
for estimation of daily global solar irradiation. Piri 
and Kisi [21] employed ANFIS technique to 
predict global solar radiation based on sunshine 
hour, air temperature and relative humidity as 
input parameters. 
 
Solar radiation data are essential for most solar 
energy research and applications [22]. In their 
studies Iqdour and Zeroual [23], Tulcan-Paulescu 
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and  Paulescu [24], Rahoma et al. [25], Boata 
and Gravila [26], Saurabh et al.  [27], Boata and 
Paulescu [28], Guclu et al. [29] and Hooshangi 
and  Alesheikh  [30] applied fuzzy logic technique 
to predict solar radiation data as the main 
advantage of fuzzy models is their ability to 
describe the knowledge in a descriptive human 
like manner in the form of simple rules using 
linguistic variables only. In this study, an 
application of ANFIS was proposed to develop a 
soft computing-based model for estimation of 
hourly horizontal global solar radiation. The 
inputs were local time, Julian day, air 
temperature, relative humidity and relative 
sunshine duration. For this purpose, hourly 
horizontal total solar radiation data for city of 
Alexandria, Egypt have been used. The potential 
of the developed ANFIS model is further 
appraised and verified by providing statistical 
comparisons between its predictions with those 
of clear sky hourly global solar radiation and 
global solar flux on horizontal surface models. 
 
2. MATERIALS AND METHODS 
 
2.1 Site of Application and Data 

Collection  
 
Alexandria is located at latitude 31° 11' 53 N, 
longitude 29° 55' 9 E and is situated in the 
northern west part of Egyptian plateau. Being in 
the sun-belt, Alexandria province is an ideal 
location to benefit from the advantages of solar 
energy utilization and adoption of its related 
technologies. Therefore, solar energy devices 
can be operated with high performance [31]. In 
the present work, the measurements of 
meteorological parameters were taken by using 
Delta-T automatic weather station. It was located 
on the roof-top of Agricultural and Bio-Systems 
Engineering Department, Faculty of Agricultural, 
Alexandria, Egypt. All sensors are installed in a 
position relatively free from any external 
obstruction, and readily accessible for inspection 
and general cleaning. The measured parameters 
were: hourly total solar radiation (W/m2), air 
temperature (°C), relative humidity (%) and mean 
relative sunshine duration (h/h). The 
measurements were acquired using a sampling 
time of 10 min. The measurements were carried 
out from September 2005 to December 2007, on 
a horizontal surface and the recorded data only 
from 6 a.m till 17 p.m were used in the analysis 
after averaged the 10 minuets readings. Total 
solar radiation was measured on an hourly basis 
using integrated device (called the BF3) sensor, 

Delta-T devices through Sunshine Pyranometer 
type SPN1. The whole collected data were 
randomized. The data set was split into two sets. 
The training data set: the group of data by which 
the ANFIS adjusts parameters, in order to reach 
the best fitting of the nonlinear function 
representing the phenomenon and it consisted of 
3821 patterns. The testing data set: A set of new 
data used to evaluate the developed ANFIS 
model and it consisted of 72 patterns. The 
training and testing data sets were selected 
randomly from the covered period from 
September 2005 to December 2007.  
 

2.2  Adaptive Neuro Fuzzy Inference 
System for Modeling Total Hourly 
Solar Radiation on Horizontal 
Surface  

 
The concept of “fuzzy set” was introduced by 
Zadeh [32] who pioneered the development of 
fuzzy logic. However, fuzzy logic technique is 
now applied in agricultural researches for 
prediction [33-34] and for grading fruits [35-36]. 
In literature there were different sources that 
provide basic information on the concepts and 
operations of fuzzy algorithms.  On the other 
hand, adaptive neuro fuzzy inference system 
(ANFIS) is a method based on the input–output 
data of the system under consideration [37].  It is 
a hybrid model composed of fuzzy and artificial 
neural networks models.  It enjoys the advantage 
of being able to receive fuzzy rules from the 
expert’s knowledge and build a rule base 
adaptively. It can be stated that ANFIS is 
considered as a powerful, appropriate, and 
flexible tool for modeling uncertainties and 
implicitness present in the real world and 
expressing linguistic terms adopted from human 
experience and knowledge in the form of 
mathematical relations [38]. 
 
For simplicity, a fuzzy inference system with two 
inputs x and y, and one output is assumed [39]. 
In this inference system the output of each rule is 
a linear combination of input variables added by 
a constant term. The final output is the weighted 
average of each rule’s output. For a first-order 
Sugeno fuzzy model, a common rule set with two 
fuzzy if –then rules is defines as follows:  
 

Rule 1: If x1 is A1 and x2 is B1, then 
f1=a1x1+b1x2+q1                                           (1) 
 
Rule 2: If x1 is A2 and x2 is B2, then 
f2=a2x1+b2x2+q2                                           (2) 



where, x1 and x2 are the crisp inputs to the node 
and A1, B1, A2, B2 are fuzzy sets, 
(i = 1, 2) are the coefficients of the first
polynomial linear functions. 
 

The typical structure of ANFIS is shown 
A two-input first-order Sugeno fuzzy model with 
two rules is shown in Fig. 1 and consists of five 
layers. These layers are the fuzzy layer, the 
product layer, the normalized layer, the 
defuzzification layer, and the output layer. Every 
node at the same layer has similar function [40]. 
The framework of ANFIS can be expressed as 
following [40]:  
 

The first layer is the fuzzy layer. The fuzzy layer 
contains of adaptive nodes that generate the 
membership grades of linguistic labels. Any 
appropriate parameterized membership function 
can be used such as the triangular
function. A1, A2, B1, B2 are the linguistic labels 
used in the fuzzy set for dividing the membership 
functions. The relationship between the output 
and input functions of this layer can be 
expressed as below: 
 

  2,111,  ixO Aii 

 21,  jxO Bjj 

 
Where, x

1 
and x

2 
are the inputs to node i (i = 1, 2

for x
1 
and j = 1, 2 for x

2
) and x

1 
(or x

to the ith
 

node and A
i 
(or B

j
) is a fuzzy label.

 

The second layer is the product l
product layer consists of rule nodes designated 
as Π which signifies the firing strength of each 
rule. The output of the product layer is the 
product of the input signal, which is defined as 
follows: 

Fig. 1. A  typical ANFIS architecture [41]
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2,1
         (4) 

are the inputs to node i (i = 1, 2 

x
2
) is the input 

is a fuzzy label. 

The second layer is the product layer. The 
product layer consists of rule nodes designated 
as Π which signifies the firing strength of each 
rule. The output of the product layer is the 
product of the input signal, which is defined as 

   21,2  xxWO BiAiii 

 

where iO ,2  is the output of the product layer, 

Ai is the membership function of the fuzzy set A 

and Bi is the membership function of the fuzzy 

set B. 

 
The third layer is the normalized layer. In this 
layer the fixed nodes are labeled as N. The 
output of the normalized layer is to normalize the 
weight function or the sum of all the rules firing 
strength as following: 

 

2,1
21

,3 


 i
ww

w
WO i
ii           

 
Where 

iO ,3
is the output of the norm

and iw  is the output of the product layer.

 
The fourth layer is the Defuzzification
nodes in the defuzzification layer are also 
adaptive nodes besides the nodes in the fuzzy 
layer. Those adaptive nodes calculate 
outputs based on consequent parameters. The 
adaptive nodes of this layer calculate the rule 
outputs based on consequent parameters by 
following equation 
 

 2111,4  qxbxaWfWO iiii

 

Where iW  is the output of layer 3 and 

are the coefficients of linear combination in 
Sugeno inference system. These parameters of 
this layer are referred to as consequent 
parameters. 

 
1. A  typical ANFIS architecture [41] 

 
 
 
 

, 2016; Article no.AIR.27194 
 
 

2,1i
  (5) 

is the output of the product layer, 

is the membership function of the fuzzy set A 

is the membership function of the fuzzy     

The third layer is the normalized layer. In this 
d nodes are labeled as N. The 

output of the normalized layer is to normalize the 
weight function or the sum of all the rules firing 

                    (6) 

is the output of the normalized layer 
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2,1i
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The fifth layer is the output layer. This layer is the 
final layer. The output layer gives the output by 
the summation of all incoming signals. The fixed 
node in this layer is labeled as Σ calculates the 
overall output from the sum of the node input 
signals. The output of the output layer can be 
expressed as below 
 




 

2

1

2

1
2

1
,5

i

ii

iii

W

fW

fWYO                               (8) 

 

Where iO ,5  is the output of the fifth layer which is 

the academic marks and W  is the output of the 
defuzzification layer. 
 

ANFIS requires a training data set of desired 
input/output pair (x

1
, x

2
…x

m 
,Y) depicting the 

target system to be modeled. ANFIS adaptively 
maps the inputs (x

1
, x

2
…x

m
) to the outputs (Y) 

through Membership Functions (MFs), the rule 
base and the related parameters emulating the 
given training data set.   In this study, local time, 
Julian day, air temperature, relative humidity and 
relative sunshine duration were employed as 
input parameters to ANFIS as shown in Fig. 2.  
 

There are no fixed rules for developing an ANFIS 
model. In this study, a three linguistic terms       

{L: low, M: Medium and H: High} were utilized. 
The ANFIS model was implemented in Matlab 
software system. Purpose of the training process 
in ANFIS model is to minimize the error between 
actual target and ANFIS output.  The training 
error is the difference between the training data 
output value, and the output of the fuzzy 
inference system corresponding to the same 
training data input value. In the performance 
phase, a new data set (test data) that is not 
present in the training set is introduced to the 
learned system for evaluation. If the test error is 
adequately small, it indicates that the system has 
a good generalized capability.  
 
To generate fuzzy IF-THEN rules, the first order 
was employed with five inputs. The hybrid 
learning algorithm is employed to determine the 
parameters of Sugeno-type fuzzy inference 
systems.  Fuzzy membership functions can take 
many forms but linear functions are often 
preferred, as this makes the subsequent 
calculations easier [42]. Triangular-shaped 
membership function is the simplest possible and 
have been selected [28].  The training error was 
64.2042 as shown in Fig. 3. The triangular-
shaped membership function plots after training 
ANFIS model are presented in Figs. 4 through 8, 
respectively for local time, Julian day, air 
temperature, relative humidity and relative 
sunshine duration. 

 

 
 

Fig. 2. Takagi-Sugeno ANFIS with five inputs for prediction of  
hourly total solar radiation on horizontal surface 
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Fig. 3. The training error 
 

  
  

Fig. 4. Triangular –shape membership plots for local time 
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Fig. 5. Triangular –shape membership function plots for Julian day  
 

 
 

Fig. 6. Triangular –shape membership plots for air temperature 
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Fig. 7. Triangular –shape membership plots for relative humidity 
 

 
 

Fig. 8. Triangular –shape membership plots for relative sunshine duration 



 
 
 
 

Kassem et al.; AIR, 7(5): 1-17, 2016; Article no.AIR.27194 
 
 

 
9 
 

2.3 Clear Sky Hourly Global Solar 
Radiation Model 

 
The clear sky hourly global solar radiation model 
was investigated by Al-Jumaily et al. [43]. They 
included the details of such model and they 
assumed the model neglecting the reflection 
component so the hourly global solar radiation 

intensity on a horizontal surface, hR  in clear sky 

model is given by Meinel and Mainel [44] as, 

 
678.0

7.0 m
ah RR                                     (9) 

 

Where aR   is the extraterrestrial irradiance on a 

horizontal surface given by Markvart and Kreider 
[45] as, 

 




sin
365

2
cos033.01 







J
RR SCa

              (10) 

 
Where m is the air mass ratio calculated for clear 
sky condition by Kreith and Kreider [46] as, 

 

    sin614sin6141229
5.02
m       (11) 

 
Where    is the sun altitude angle (degree) 
obtained from Iqbal [5], 

 

  sinsincoscoscossin     (12) 

 

  is the geographical latitude (degree) and   is 

the solar declination angle (degree) defined by 
Iqbal  [5]: 

 

 







 284

365

360
sin5.23 J                          (13) 

 
Where J is the number of days of the year 
starting from January 1. The hour angle in 
degree ( ) is an angular measure of time and is 
equivalent to 15 per hour with morning (+) and 
afternoon (-). It is measured from noon-based 
local solar time (ST) from the equation given by    

 

 ST 1215                                         (14) 

 
The local solar time (ST, hour) is calculated from 
the local standard time (LT, hour) and the 
equation of time (ET, min) as follows: 

 LS LL
ET

LTST 
60

4

60
                  (15) 

 
Where LS is the standard meridian (degree) for 
the local time zone (Egypt standard meridian is 
31.205753° E) and LL is longitude of the location 
in degrees (Alexandria longitude is 
29.924526° E). The equation of time is obtained 
from formula given by Tasdemiroglu [47] as: 
 

BBBET cos5.1cos53.72sin87.9        (16) 
 

Where     
365

81360 


J
B  in degrees          (17) 

 
An excel spreadsheet was developed for the 
model calculations. 
 

2.4 Global Solar Flux on a Horizontal 
Surface Model  

 
Global solar flux is the sum of the direct and 
diffuse solar radiation [11]:  
 

hhh DIG                                            (18) 

 

Where hI  is direct solar flux (W/m
2
). It can be 

calculated by the formula given by El Mghouchi 
et al. [11]: 
 



sin

sin

13.0
exp 








 tSCh CRI                    (19) 

 

Where SCR  (W/m
2
) is the solar constant and 

equals 1367 W/m2 [48], Ct (dimensionless) is the 
correction of the earth–sun distance and can be 
calculated as described in El Mghouchi et al. [11] 
by the equation:  

 

 2cos034.01  JCt                       (20) 

 
  (dimensionless) is the turbidity atmospheric 
factor for clear skies  as mentioned by El 
Mghouchi et al. [11]. It can be calculated by the 
formula: 

 
  284986.0sin01.0796.0  J         (21) 

 

hD  is the diffuse solar flux (W/m2) and can be 

calculated by the formula given by El Mghouchi 
et al. [11]: 
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 












sin4511.0

1
exp120hD        (22) 

 
2.5 Statistical Criteria for Models 

Evaluation  
 
The performance of the developed models                    
in this study has been assessed using                  
various standard statistical performance 
evaluation criteria. The statistical measures 
considered have been three criteria. The                    
first criterion is coefficient of determination                 
(R2). The second one is mean absolute error 
(MAE). The third criterion is root mean                        
square error (RMSE). The MAE and RMSE                 
are calculated according to the following 
equations: 

 





aN

i
pa

a

YY
N

MAE
1

1
                              (23) 

 

a

N

i
pa

N

YY

RMSE

a






 1

2)(
                            (24) 

 
Where Ya and Yp are the observed and predicted 

data, respectively and aN  is the number of data 

points.  

 
3. RESULTS AND DISCUSSION 
 
3.1 Correlation Analysis between the 

Observed Total Solar Radiation and 
the Variables 

 
When studying the results of the correlation 
analysis, there was a correlation between the 
observed total radiation and air temperature                 
and relative sunshine duration as depicted in 
Table 1. The Pearson's correlation coefficient 
between the observed total solar radiation                   
and the dependent variables analyzed                          
(air temperature and relative sunshine                   
duration) points to a positive correlation. In                    
the scatter plots of Fig. 9, the relationship 
between the observed total solar radiation and 
the other variables is shown. The graphics 
displayed moderate correlation with air 
temperature and relative sunshine duration and 
low correlation with the rest variables was 
observed.  
 

3.2 Performance of the Total Solar 
Radiation Prediction Models 

 
In this study, the potential of ANFIS technique to 
estimate the hourly horizontal total solar radiation 
using local time, Julian day, air temperature, 
relative humidity and relative sunshine duration 
as inputs was appraised. To achieve further 
reliability in the evaluations, the developed 
ANFIS model was tested by a data set that was 
not used during the training process. The 
suitability of the proposed ANFIS system was 
assessed statistically using different well-known 
indicators. Then to ensure the accuracy level of 
the ANFIS model, its performance was compared 
against two empirical models. Values of 
coefficient of determination, mean absolute error 
and root mean square error between observed 
and estimated values of solar radiation using 
testing data for the investigated models are 
shown in Table 2. Scatter plots between 
observed and estimated solar radiation for the 
investigated models are depicted in Fig. 10 using 
testing data. It is clear that there are favorable 
agreements between the ANFIS predictions and 
the measured ones as the amount of deviations 
of data points are truly limited. This proves the 
high rate of correlation between the measured 
and the estimated values. The presented                 
values in Table 2 indicate that small differences 
exist between the estimated total solar                 
radiation values and the measured ones. In fact, 
the low values of MAE and RMSE along with the 
high value of R2 demonstrate the high                
capability of the developed ANFIS model to 
estimate the hourly total solar radiation on 
horizontal surface based upon the investigated 
variables. 
 
3.3 Behavior of the Proposed Models  
 
To inspect the behavior of the proposed models 
to predict hourly total solar radiation on horizontal 
surface, the January data were averaged and 
represented in Fig. 11. It is clear that the                   
trend curves of solar radiation of the proposed 
models flow the actual data. However, in morning 
and evening hours, lower solar radiation data         
are observed. The maximum solar radiation                
was observed at 12 a.m as shown in Fig. 11                
with values of 475.24, 380.19, 525.24 and 
602.04 W/m

2
 for actual data, ANFIS data, clear 

sky hourly global solar radiation data and global 
solar flux on a horizontal surface data, 
respectively. 
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Table 1. Correlation matrix between total solar radiation and other meteorological variables 
using training data set 

 
 Local 

time 
Julian 
day 

Air 
temperature 

Relative 
humidity 

Relative 
sunshine 
duration 

Total 
solar 
radiation 

Local time 1      
Julian day -0.046 1     
Air temperature 0.095 0.253 1    
Relative humidity -0.186 -0.048 0.007 1   
Relative sunshine 
duration 

0.146 0.0008 0.388 -0.176 1  

Total solar 
radiation 

-0.070 -0.034 0.474 -0.121 0.597 1 

 

 
 

Fig. 9. Scatter plots of relationships between total solar radiation 
and other meteorological variables 
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Fig. 10. Scatter plots between observed and estimated solar  
radiation for the investigated models  
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Fig. 11. Behavior of the proposed models during prediction of hourly  
total solar radiation on horizontal surface during January month 

 

3.4 Graphical Representation of the Rules 
for Hourly Total Solar Radiation on 
Horizontal Surface Prediction 

 

A graphical depiction of the all rules generated to 
map the input data (antecedent) with the output 
(consequent) for hourly total solar radiation on 
horizontal surface in the ANFIS is shown in     
Fig. 12. This figure shows that each rule is 

represented by an individual row, while variables 
are represented by individual columns. The first 
five columns depict the membership functions    
for the five input variables (Time, JD, AT, RH    
and SH), referenced by the antecedent or the              
“if-part” of each rule. The sixth column                   
shows the membership functions used by                  
the consequent or the “then-part” of each                      
rule. 
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Fig. 12. Graphical representation of the rules for solar radiation ANFIS model  
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Table 2. Values of coefficient of determination, mean absolute error and root mean square 
error between observed and estimated values of solar radiation using testing data for the 

investigated models 
 

Investigated model Root mean square 
error (W/m

2
) 

Mean absolute 
error (W/m

2
) 

Coefficient of 
determination 

Clear sky hourly global solar 
radiation model 

165.42 109.32 0.6428 

Global solar flux on a horizontal 
surface model 

168.37 111.36 0.6355 

ANFIS total hourly solar radiation on 
horizontal surface model 

82.28 52.73 0.8949 

  

The vertical lines in the first five columns       
(Fig. 12) indicate the current data inputs for local 
time, Julian day, air temperature, relative 
humidity and relative sunshine duration to be 
11.5, 274, 20.7, 59.9 and 0.495, respectively.  
The bottom plot in the right column represents 
the aggregate of each consequent. Whereas, the 
defuzzified output value was represented by a 
thick line passing through the aggregate fuzzy 
set. For system inputs of local time of 11.5, JD of 
207, AT of 20.7, RH of 59.9 and SH of 0.495, the 
defuzzified output (solar radiation) was shown to 
be 635 W/m2 (Fig. 12).   
 

4. CONCLUSION 
 

In this research work, the adaptive neuro-fuzzy 
inference system (ANFIS) was applied to 
estimate the hourly horizontal total solar 
radiation. The inputs were local time, Julian day, 
air temperature, relative humidity and relative 
sunshine duration. Basically, the prediction of 
total solar radiation based upon meteorological 
parameters offers advantages. One of these 
advantages that the inputs can be measured 
directly by simple tools. Furthermore, there is no 
need to any pre-calculation analysis. The 
predictions accuracy of the developed ANFIS 
model was evaluated using different statistical 
indicators such as MAE, RMSE and R2. The 
results demonstrated that ANFIS would be an 
efficient technique to provide the highly accurate 
predictions of hourly horizontal total solar 
radiation using the selected inputs. The 
developed ANFIS model in this study had several 
intrinsic worth including the simplicity, easy 
usage as well as high accuracy. As a result, the 
suggested ANFIS model would play a notable 
role in various solar energy applications 
particularly in isolated areas with no access to 
specific meteorological elements.  
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