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Abstract 
 
It is well established that in the pathology of the cardio-vascular system (CVS) only a portion of the blood 
volume (BV) can be in active circulation. This portion of BV is named the actively circulating volume (ACV) 
and is evaluated from a monotone decrease of dilution curve produced by an intravascular tracer. In given 
paper is presented Markov chain as a math model of the flow of a tracer throughout CVS. The consideration 
of CVS as a set of segments with respect to an anatomical structure and assuming the existence for CVS 
steady-state condition; leads to the Markov chain of the finite order with constant coefficients. The conclu-
sions of the article are 1) there are open and closed microvessels, such that the switching from open to closed 
and back is a stochastic process, 2) if the switching is slow then the ACV, as the volume of heart chambers 
and only open for circulation vessels, can be detected. 
 
Keywords: Blood Volume, Actively Circulating Volume, Microcirculation, Vasomotion, Markov Chain, 

Math Model of Cardiovascular System 

1. Introduction 
 
The importance of knowing BV is commonly accepted. 
However, BV is not routinely used in clinics or during 
experimental investigations. The primary drawback to 
measuring BV is that the mixing time for a tracer can 
vary from 2 - 3 min to 30 min [1]. Multiple blood-samp- 
ling method had been developed to solve the mixing di-
lemma. However, as stated by Wiggers [2], if mixing of a 
tracer requires more then 10 min, the resulting volume is 
not the volume responsible for cardiac output and the 
distribution of blood pressure. Thus, the concept that only 
part of the BV is actively circulating was developed [2], 
meaning that the BV separates into ACV and slow circu- 
lating volume (SCV). The analysis of blood sample data 
is based on a two-compartment representation of BV, 
such that within the ACV a tracer mixes instantaneously, 
and a slow exchange occurs between ACV and SCV [3,4]. 
The calculation of ACV is based on the back extrapola-
tion of the indicator’s concentration decay to the time of 
injection [4,5]. ACV could be up to 50% of BV [5,6]. In 
this paper we address the question: what could be a cause 
for the monotone drop of the concentration toward a 
steady state concentration (this concentration is used for 
BV calculation [1]). To answer this question we exploit 

the hypothesis made by Romanovsky in his monograph 
“Discrete Markov Chain” [6] that “the movement of 
blood particles in a human organism where the heart is 
the central point of branching, is a Markov (polycyclic) 
process.” 

A mathematical description of a tracer passing through 
the CVS began with the work of Stephenson [7]. He sug- 
gested that a dilution curve could be interpreted as a dis-
tribution of the time it takes for an indicator to pass thr- 
ough an organ. His approach was further developed by 
Meier & Zierler [8]. They established and generalized 
the relationship among mean transit time, flow, and blood 
volume based on the interpretation of dilution curves as a 
convolution of an input with a distribution of transit time. 
Application of operational methods, such as Laplace 
transform, to the distribution of time to pass different 
segments of the CVS leads to the system of linear equa-
tions for description of the evolution of a tracer through- 
out CVS [9]. If time is measured in car-diac-cycles and 
the CVS is a finite set of segments with respect to an 
anatomical structure then the flow of blood (and a tracer) 
can be described by a finite matrix A. The spectral de-
composition of A leads to the conclusion: the concentra-
tion of an intravascular tracer in any systemic artery is 
described by the sum of three terms: 1) the steady-state 
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term corresponding to the complete mixing of a tracer; 2) 
the term of damped oscillations corresponding to the first 
pass and recirculation waves, and 3) the term of steadily 
(exponentially) decreasing items. An analysis of the con-
ditions that enables the monotone decreasing term leads 
to the conclusion: the appearance of the SCV is due to 
the presence of closed microvessels and, additionally, the 
switching of the microvessels from the closed state to the 
open state and back is a slow process.  

2. Mathematical Model for the Passage of an  
Intravascular Tracer 

We begin with the assumption: the future trajectory of 
any blood particle depends only on the current site of the 
particle. A model based on the given assumption is a 
Markov chain [10] if it includes the following three com- 
ponents: 1) a structure of the CVS, 2) a distribution of a 
tracer throughout the CVS, and 3) an operator of the 
transition of the tracer throughout the CVS. In detail: 

1) A structure of the CVS. It is a set of segments {Sk; k 
= 1 ··· N}, such as the heart chambers, conductive vessels 
and microvessels. The segments are enumerated. The 
numeration starts with the right atrium (RA) designated 
as S1. The numeration of other segments follows the rule 
that blood flows from the segments with lower subscripts 
to segments with the higher subscripts. Only the segments 
connected with the RA are exceptions to this rule. Fig-
ure 1 demonstrated the numeration of segments begin-
ning at the left ventricle. 

2) Distribution of a tracer throughout the CVS. The 
distribution is a vector z(t) = {zk(t), k = 1, ···, N}, where 
the kth component of z(t) is the fraction of a tracer within 
the Sk at time t. As an initial distribution of a tracer, z(0), 
will be taken z1(0) = 1, and for all k > 1 zk(0) = 0, mean- 
ing that a tracer is injected into the right atrium at time t 
= 0,  

3) An operator A = {aij} that provides the transition of 
a tracer during one cardiac cycle, where the aij is the 
fraction of a tracer within Si that passes during one car- 
diac-cycle into Sj: As a result the distribution of the trac-
er at time t, z(t), transforms to the distribution at time t + 
1: z(t + 1) = z(t)A, and, recursively: 
 

 
Figure 1. A possible numeration of the segments beginning 
with the left ventricle. 

   0 tt z z A                 (1) 

The text-book approach to dealing with (1) is to ex- 
pand it through the characteristic numbers, {si}, (the 
roots of the equation Det(sA − E) = 0). Thus the dilution 
curve recorded in the aorta, zm(t), is the power series of 
three components: 

   11
1 cos

tt
m m mi i mj j jz t b b s b s t

        (2) 

where, bm1, {bmi}, {bmj}, and {ωj} are the combinations 
of eigenvectors of matrix A [10]. 

The examination of the components of (2) leads to the 
following: 

1) The constant, bm1, corresponds to the concentration 
of tracer after the mixing has been complited. 

2) The second term, with all si real and > 1, is the 
steadily decreasing term; it will be connected with the 
detection of ACV. 

3) The damped oscillating term, with the frequencies 
of oscillations {ωj}. All sj are the complex numbers and, 
by modulus, > 1.  
 
3. Results 
 
The main conclusion of this article is the consequence of 
the statement: if diagonal elements of A, are zero {aii = 0} 
then the equation Det(sA – E) = 0 has only one real solu- 
tion, s1 = 1. The proof follows from the statement that 
two equations Det(sA – E) = 0 and F(s)=1 are equivalent 
(see Appendix 1) (F(s) is the generating function of the 
first pass throughout CVS). The equation for F(s) is, see 
(A2):  

  1k
kF s p s             (3) 

where pk is the fraction of a tracer that passes through the 
CVS (from RA to RA) in k-cardiac-cycles. Since the pk 
add to 1, then s = 1 is the only real positive characteristic 
number. Taylor decomposition of (3) at s = 1, leads to 
the other characteristic numbers. They are  

 1 2 1 ; 1,ks ki F k     . 

with  1F   as the mean transit time (MTT) for passage 
throughout CVS. Conclusion: thus, zm(t), see (2), has 
only damped oscillations around bm1 and the frequencies 
of damped oscillations are multiples of  2 1F  .  

In other words, to have a steadily decreasing term in (2) 
we must have non-zero elements on the main diagonal of 
A. There are at least four aii > 0, and they correspond to 
the heart chambers. However, the mean time to pass any 
heart chamber is about 2 - 3 cardio-cycles (in pathologi- 
cal enlargement of the heart the time to pass can be up to 
20 cm3), thus the heart cannot be the cause of a monotone 
drop with the half-time 3 - 9 min. Consequently, there 
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must be non-heart elements aii > 0. The passage through 
such segments can be described as follows: if in the i- 
segment a tracer stays for a while, we should have at least 
two segments, let them be numbered (i − 1) and (i + 1), 
such that the tracer enters i-segment from (i − 1) and lea- 
ves to (i + 1)-segment. Formally, from the (i − 1)-seg- 
ment a tracer partly enters the i-segment and could partly 
enter the (i + 1)-segment, these parts are ai − 1i and ai − 1i + 1, 
and will be denoted as  and  = 1 − . A tracer from i- 
segment partly stays for the next cardiac-cycle, and partly 
passes to the (i + 1)-segment, these parts are aii and aii + 1, 
and are denoted as  and  = 1 − . The generating func-
tion to pass such construction is given by (4), see Appen- 
dix 2. 

  ;
1

s
v s s s

s

  



   
 

          (4) 

There are two realizations of the formal construction, 
see Figure 2: 

1) Required segment (with aii > 0) contains microves- 
sels closed for circulation, and (i − 1)-segment contains 
perfused microvessels. When closed microvessel beco- 
mes open its content passes to (i + 1) segment. 

2) Segment (or a group of segments) is a mixing ch- 
amber, kind of “peripheral heart”. 

The following reasoning is based on the first realize- 
tion. The first realization is chosen because 1) it is well 
established that practically in all tissues a part of micro- 
vessels is closed, and their recruitment is a way to res- 

pond to an increase in flow [11,12]; 2) in muscle tissue it 
is established that a fraction of ink-containing capillaries 
depends on the time of infusion of ink. For 4 sec of the 
infusion the fraction of ink-containing capillaries is about 
12%, and for 90 sec infusion there are 90% of ink-con- 
taining capillaries [13]; 3) despite the presence of a kind 
of “peripheral” hearts, they fall far from the needed rela-
tion [volume]/[flow] be 3 - 9 min. 

With non zero diagonal elements, the expression for a 
generating function for the passage of the CVS should 
include 1) the passage through the heart chambers with  

the generating function as 
4

1 1
j

j j

b s

a s  , where aj and bj  

are residual and ejection fractions of j-heart chamber; 2) 
the passage through the systemic and pulmonary conduc- 
tive vessels; and 3) the passage through the microcircula- 
tion. The (5) gives the combined generating function, 
F(s), to pass throughout CVS, where F1(s) includes the 
passage of the heart and conductive vessels, and the ex- 
pression in the brackets is the generating function of the 
passage through microcirculation, p1 + p2 = 1. 

     1 1 3 2 2 1

s
F s F s p F s p F s s

s

 


         
 (5) 

Additionally to F(s), given by (5), we introduce the ge-
nerating function, F0(s), to pass CVS if there is no 
switching of the state (open/closed) of microvessels ( = 
0 and  = 1, Figure 2): 

 
(a) 

 

 
(b) 

Figure 2. Two possible realizations for non-zero elements from main diagonal of A. (a) Schematic for stochastic ex- 
change between open and closed microvessels; (b) Schematic for the passing of microvessels as a mixing chamber.   
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        0 1 1 3 2 2F s F s p F s p F s         (6) 

Thus, our model of CVS has two distinct blood vol- 
umes:  

1) Total blood volume, BV. By using established by 
Meier & Zierler [8] the relationship among mean transit 
time, flow, and volume we have: 

 1BV F SV  , with SV as the stroke volume; (7) 

2) A second blood volume, ACV, as the volume of 
open for circulation segments of CVS, such as heart 
chambers, conductive vessels, and open for flow micro-
vessels. From (6): 

 1oACV F SV  .            (8) 

Now the aim of the article can be formulated as fol- 
lows: the volume given by (8) and the volume obtained 
by back extrapolation, if monotone decrease of zm(t) ex- 
ists are the same. In Appendix 3, there are derivations of 
the next parameters: 

1) The expression for a concentration after complete 
mixing occurs,  1 1 1mb F  . 

   1

1

1m m

SV
z b

F BV
   


;         (9) 

2) The expression for the real characteristic number,  
s2 > 1,  

2 1
BV

s
ACV

                (10) 

with ACV as the volume given by (8) 
3) The term  2 21mb F s  that is the factor at s2, and 

the term  2 21t t
mb s F s s   is responsible for mono- 

tone decrease of zm(t). The back extrapolation of zm(t):  

1 2
1 2

m m
m m

SV SV
b b ACV

ACV b b
   


     (11) 

By compare (8) and (11) one can conclude that ACV 
as the volume of the heart, conductive vessels, and open 
microcirculation and ACV obtained by the back extrapo- 
lation of zm(t) are the same.  

From (10) one has the condition to have a clear mo- 
notone decrease of the concentration of the intravascular 
tracer toward the steady state (and consequently to have 
opportunity to measure ACV): the  should be small, 
such as 1/ ~ 3 - 5 min (after cardiac cycles are transfor- 
med into minutes).  

The volume SCV = BV – ACV with minutes consti- 
tuting the mean time of returning to the circulation could 
be used as the explanation for the disorder: 1) the bends 
from the removal of N2 since nitrogen in the tissue around 
microvessels constituent SCV has slow removal; 2) the 
urea rebound, since removing of the urea in patients un-

der dialysis treatment from the tissue around of SCV is 
delayed [14]. Thus, the appearing of monotone decrease 
of zm(t) could be a the sign of microcirculation disorder.  

There is a high probability that different parts of the 
microcirculation have different characteristics in the 
change of the state (open-closed) of microvessels. Con- 
sequently, (5) transforms into: 

     1 1 3
2 1

with 1

K
j

j j j j
j j

i

s
F s F s p F s p F s s

s

p


 



  
         





　
  

(12) 

This poses the main problem with the traditional me- 
thod for obtaining ACV. From Appendix 3 it follows that 
different  in (12) lead to different real characteristic 
numbers, and the back extrapolation becomes dependent 
on the chosen time interval, the phenomena observed in 
the measurements of ACV [15]. 
 
4. Discussion 
 
The main assumption, that leads to a Markov chain as a 
model for the transition of a trace throughout the CVS, is 
that every sequence of segments from the aorta to the 
right atrium and from the pulmonary trunk to the left 
atrium can be presented as a finite set. Two other assum- 
ptions are less significant. However, they simplify calcu- 
lations: 1) the stability of hemodynamic, meaning that 
matrix A is a constant matrix, and 2) the velocity of blood 
is the same throughout the cross-section of any vessel. 

Since the work of Krogh it has been well established 
that the recruitment of microvessels is the leading res- 
ponse of the tissue to the demand for nutrients [11,16]. 
Experiments with ink infusion [13] have demonstrated 
that the longer the infusion time the more microvessels 
are exposed to infused particles. Thus, the indirect evi-
dence for the involvement of closed microvessels into the 
circulation under the steady-state conditions is establi- 
shed.  

Back extrapolation of a tracer’s decreased concentra- 
tion is a way to obtain ACV [5,17]. The experiments and 
analysis presented in [15] point out the relatively low 
reliability of the back extrapolation, meaning that ACV 
depends on the time chosen for the back extrapolation. 
Consequently, it is plausible to suggest that different or- 
gans have different microcirculatory characteristics, thus 
a calculations based on a two-compartment presentation 
of CVS can produce low repeatability. The existence of 
microvessels that are out of circulation for more than 2 - 
3 min should be considered when the rate and dosage of 
a drug is chosen. 
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5. Conclusion 

ACV as the volume of heart chambers and only open for 
circulation vessels can be detected if the switching pro- 
cess is slow. 
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Appendix 1 
 
The expression for the determinant of the matrix B = sA 
– E, if all main diagonal elements of A are zeroes.  

To obtain the DetB let take b11= –1. By taking b11 we 
are forced to take only the elements from the main di-
agonal, thus the first term of DetB is (–1)N. To get other 
terms of DetB let take the second non-zero element, sa12, 
of the first row. The choice of next elements follows the 
repeatable procedure: 1) if the element saij is chosen, the 
next element should be taken from j-row; 2) if in j-row 
there is the choice then the closest to the main diagonal 
element should be taken. The procedure continues unless 
we run into the element ak1. The product of all chosen 
elements is 12 23 1

q
ka a a s  . This is the fraction of a 

trace that passes CVS by the chosen path for the time in 
q-cardiac-cycles. The product becomes the term of DetB 
after multiplication by (–1)q + 1, and by all bjj where j are 
the numbers of the segments not presented in the given 
path. Since all bjj = −1, we have the term of DetB as:  

   1

12 23 11 1
q N qq

ka a a s
            (A1) 

The (A1) establishes the one-to-one correspondence 
between the paths throughout CVS and nonzero elements 
of DetB, The sums of all terms of (A1) with the same 
time to pass CVS, let it be q, is the fraction of injected 
tracer such that passes CVS in q cardiac-cycles. Let de-
note this fraction as pq. With the use of {pq} the equation, 
DetB = 0 can be written as:  

1

1
M

q
q

q

p s


             (A2) 

with the M as the longest path from RA to RA.. By the 
definition [10] the left part of (A2) is the generating 
function for the first time to pass through the CVS, and 
will be denoted as F(s). 

Appendix 2 
 
The equations for the evolution of the part of the z(t) = 
(···, zi − 1(t), zi(t), zi + 1(t), ···), where subscript i denotes the 
non-heart segment of CVS with aii > 0, accordingly to 
Figure 1 is: 

     
     

1

1 1

1

1

i i i

i i i

z t z t z t

z t z t z t

 

 


 

    

    
      (A3) 

Multiplying both parts of (A3) by st + 1 and summing 
with respect to t, gives the following equation for con-
nection between zi − 1(t), and zi + 1(t) in terms of a gene-
rating function: 

     1 1 11
t

i i i
t

s
Z s z t s s s Z s

s

  
  
          

   

(A4) 

where  
1

s
v s s s

s

  



   
 

 is the generating func-  

tion for the passage through the segments (i – 1), (i), and 
(i + 1). 
 
Appendix 3 
 
The search for real characteristic numbers that are > 1.0. 

The equation v(s) = 1 has two solutions sv1 = 1 and 
 2 1 1vs     . Between s1 and s2 there is the pole 
 1 1ps    of v(s) and, consequently, of F(s). Since 

in the interval (sp, sv2) the F(s) varies from minus infinity 
to F(sv2) > 1, F(s) = 1 has the solution in the given inter-
val. The use of Taylor decomposition of F1(s), F2(s), and 
the difference for v(s) in the vicinity of sv2 (the difference, 
not the derivative, is taken because of the proximity of 
the pole of v(s)) leads to the expression for the real cha-
racteristic number >1: 

     

     
1 1 3 2 2

2
1 1 3 2 2

1 1 1
1 1

1 1 1

F p F p F
BV

s
F p F p F ACV

 
  

    
   

   
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The coefficient at s2, in the spectral decomposition of the A, bm2, is  21 F s  thus 
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                 (A6) 

The sum b1m + bm2, with b1m given by 
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, is as follows: 

         1 2
2 1 1 3 2 2

1 1 1

1 1 1 1m m

SV
b b

F F s F p F p F ACV
    

     
                     (A7) 


