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Abstract 
 

The concept of semi-compatible and occasionally weakly compatible mappings is used to prove 
a common fixed point theorem. The theorem thus obtained is a generalization of the result of 
Cho et al. [10] in a non-Archimedean Menger PM-space. 
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1 Introduction 
 
There have been a number of generalizations of metric space. One such generalization is Menger 
space initiated by Menger [1]. It is a probabilistic generalization in which we assign to any two 
points x and y, a distribution function Fx,y. Schweizer and Sklar [2] studied this concept and gave 
some fundamental results on this space.  
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The notion of compatible mapping in a Menger space has been introduced by Mishra [3]. Using the 
concept of compatible mappings of type (A), Jain et al. [4,5] proved some interesting fixed point 
theorems in Menger space. Afterwards, Jain et al. [6] proved the fixed point theorem using the 
concept of weak compatible maps in Menger space.  
 

The notion of non-Archimedean Menger space has been established by Istr a


tescu and Crivat [7]. 
The existence of fixed point of mappings on non-Archimedean Menger space has been given by 

Istr a


tescu [8]. This has been the extension of the results of Sehgal and Bharucha - Reid [9] on a 
Menger space. Cho et al. [10] proved a common fixed point theorem for compatible mappings in 
non-Archimedean Menger PM-space.  
 
In this paper, we generalize the result of Cho et al. [10] by introducing the notion of occasionally 
weakly compatible self maps. Also, we cited an example in support of this.  
 

2 Preliminaries 
 
For terminologies, notations and properties of N.A. Menger PM-space, refer to [11,8] and [12]. 
 
Definition 2.1. [10] Let X be a non-empty set and D be the set of all left-continuous distribution 
functions. An ordered pair (X, F) is called a non-Archimedean probabilistic metric space (briefly, a 
N.A. PM-space) if F is a mapping from X×X into D satisfying the following conditions (the 
distribution function F(x,y) is denoted by Fx,y for all x,y X) : 
 

(PM-1) Fu,v(x) = 1, for all x > 0, if and only if u = v ; 
(PM-2) Fu,v = Fv,u; 
(PM-3) Fu,v (0) = 0 ; 
(PM-4) If  Fu,v (x) = 1 and Fv,w (y) = 1 then Fu,w (max{x, y}) = 1, 
  for all u, v, w  X and x, y > 0.  

 
Definition 2.2. [10] A t-norm is a function  [0,1] × [0,1]  [0,1] which is associative, 
commutative, nondecreasing in each coordinate and (a,1) = a for every a  [0,1]. 
 
Definition 2.3. [10] A N.A. Menger PM-space is an ordered triple (X, F, ), where  
(X, F) is a non-Archimedean PM-space and  is a t-norm satisfying the following condition: 
 

(PM-5) Fu,w (max{x,y}) (Fu,v (x), Fv,w(y) ), for all u, v, w  X and x, y  0. 
 
Definition 2.4. [10] A PM-space (X, F) is said to be of type (C)g if there exists a  

g  such that  
 

g(Fx,y(t)) g(Fx,z(t)) + g(Fz,y(t)) 
 
for all x, y, z X and t 0, where g | g : [0,1] [0,) is continuous, strictly decreasing, g(1) 
= 0 and g(0) < }. 
 
Definition 2.5. [10] A N.A. Menger PM-space (X, F, ) is said to be of type (D)g if there exists a  
g  such that  
 

g((s,t) (s) + g(t) 
 

for all s, t  
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Remark 2.1. [10] 
  

(1)  If a N.A. Menger PM-space (X, F, ) is of type (D)g then (X, F, ) is of type (C)g. 
(2) If a N.A. Menger PM-space (X, F, ) is of type (D)g, then it is metrizable, where the metric d 

on X is defined by  
 

 d(x,y) =   
1

x,y

0

g F (t) d(t) for  all x, y X.                                                             (*) 

 
Throughout this paper, suppose (X, F, ) be a complete N.A. Menger PM-space of type (D)g with a 
continuous strictly increasing t-norm . 
 
Let [0,+)  [0,) be a function satisfied the condition () : 
() is upper-semicontinuous from the right and (t) < t for all t > 0.   
 
Lemma 2.1. [10] If a function : [0,+)  [0,+) satisfies the condition (), then we have 
 

(1) For all t 0, limn 
n
(t) = 0, where 

n
(t) is n

th
 iteration of (t). 

(2) If {tn} is a non-decreasing sequence of real numbers and tn+1 (tn), n = 1, 2, … then 
limntn = 0.  In particular, if t (t) for all t 0, then  t = 0. 

 

Definition 2.6. [10] Let A, S : X X be mappings. A and S are said to be compatible if 
n
lim


 

g(FASxn,SAxn
(t)) = 0 for all t > 0, whenever {xn} is a sequence in X such that  

n
lim


 
Axn = 

n
lim
  

Sxn = z for some z in X. 

 
Definition 2.7. Self maps A and S of a N.A. Menger PM-space (X, F, ) are said to semi-

compatible if 
n
lim


 g(FASxn,Su(t)) = 0 for all t > 0, whenever {xn} is a sequence in X such that 

n
lim


Axn = 
n
lim
  

Sxn  = u for some u in X. 

 
Example 2.1. Let (X, F, ) be the N.A. Menger PM-space, where X = [0, 1] and the metric d on X 
is defined in condition (*) of Remark 2.1. Define self maps S and T as follows: 
 

1x, if 0 x ,
2Sx

11, if x 1,
2

  
 

 

  and   

11 x, if 0 x ,
2Tx

11, if x 1.
2

   
 

   
 
Take xn = 1/2- (1/n).    
Then Sxn  1 as n . Similarly, Txn 1 as n .   

Therefore, 
n
lim


 g(FSTxn,TSxn
(t))0 t0. 

Hence, the pair (S,T) is not compatible.  

Also, 
n
lim


 g(FSTxn,Tu(t))  0 for all t0. Thus (S,T) is semi-compatible maps. 

 
Definition 2.8. [12] Self maps A and S of a N.A. Menger PM-space (X, F, ) are said to be weakly 
compatible (or coincidentally commuting) if they commute at their coincidence points, i.e. if Ap = 
Sp for some p X then ASp = SAp.  
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Remark 2.2. [12] Compatible maps are weakly compatible but converse is not true.  
 
Definition 2.9. Self maps A and S of a N.A. Menger PM-space (X, F, ) are said to be 
occasionally weakly compatible (owc) if and only if there is a point x in X which is coincidence point 
of A and S at which A and S commute.  
 
Example 2.1. Let (X, F, ) be the N.A. Menger PM-space, where X = [0, 2] and the metric d on X 
is defined in condition (*) of Remark 2.1. Define A, S: X  X by  

Ax = 2x and Sx = x2 for all x  X then Ax = Sx for x = 0 and 2. But AS(0) = SA(0) and 
AS(2)SA(2).  
 
Thus, S and T are occasionally weakly compatible mappings but not weakly compatible. 
 
Proposition 2.1. If self-mappings A and S of a N.A. Menger PM-space (X, F, ) are compatible 
then they are occasionally weakly compatible.  
 
Proof. Suppose Ap = Sp, for some p in X.  
 
Consider the constant sequence {pn} = p. 

Now, {Apn}  Ap and {Spn}  Sp (= Ap).  

As A and S are compatible, we have
  n
lim


 g(FASp, SAp(t)) = 0 for all t > 0. 

 
Thus, ASp = SAp and so (A, S) is occasionally weakly compatible. 
 
The following is an example of pair of self maps in a N.A. Menger PM-space  
(X, F, ) which are occasionally weakly compatible but not compatible. 
 
Example 2.1. Let (X, F, ) be a N.A. Menger PM-space, where X = [0, 2] and the metric d on X is 
defined in condition (*) of Remark 2.1. Define self maps A and S as follows: 
 

2 x, if 0 x 1,
Ax

2, if 1 x 2,

  
 

 
    and   

x, if 0 x 1,
Sx

2, if 1 x 2.

 
 

 
 

 
Take xn = 1- (1/n). 
Then Axn  1 as n . Similarly, Sxn 1 as n .  

Therefore, 
n
lim


 g(FASxn,SAxn
(t))0 t0. 

 
Hence, the pair (A,S) is not compatible.  
Also, 2 is the coincidence points of A and S and therefore,  
 

AS(2) = SA(2). 
 
Thus, A and S are occasionally weakly compatible but not compatible. 
 
From the above example it is obvious that the concept of occasionally weak compatibility is more 
general than that of compatibility.  
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Proposition 2.2. [12] Let A and S be compatible self maps of a N.A. Menger PM-space (X, F, ) 
and let {xn} be a sequence in X such that Axn, Sxn  u for some u in X. Then ASxn  Su provided 
S is continuous. 
 
Proposition 2.3. [12] Let S and T be compatible self maps of a N.A. Menger PM-space (X, F, ) 
and Su = Tu for some u in X   then STu = TSu = SSu = TTu. 
 
Lemma 2.2. [10] Let A, B, S, T: X X be mappings satisfying the condition (1) and (2) as follows: 
 

(1) A(X) T(X) and B(X) S(X). 
(2) g(FAx,By(t)) (max{g(FSx,Ty(t)), g(FSx,Ax(t)), g(FTy,By(T)), ½(g(FSx,By(T)) + g(FTy,Ax(t)))}) 

 
for all t > 0, where a function : [0,+) [0,+) satisfies the condition (). Then the sequence 
{yn} in X, defined by Ax2n = Tx2n+1 = y2n and Bx2n+1 = Sx2n+2 = y2n+1    for n = 0, 1, 2, ..., such that 
 

n
lim


g(Fyn,yn+1
(t)) = 0 for all t > 0 is a Cauchy sequence in X.  

 
Cho et al. [10] established the following result: 
 
Theorem 2.1 [10]. Let A, B, S, T: XX be mappings satisfying the condition (1), (2), 
 

(3) S and T is continuous, 
(4) the pairs (A, S) and (B, T) are compatible maps.  

 
Then A, B, S and T have a unique common fixed point in X. 
 

3 Main Results 
 
In the following, we extend this result to six self maps and generalize it in other respects too. 
 
Theorem 3.1. Let A, B, S, T, L, M : X X  be mappings satisfying the condition  
 

(3.1.1) L(X) ST(X),  M(X)   AB(X); 
(3.1.2) AB = BA, ST = TS, LB = BL, MT = TM; 
(3.1.3)  either AB or L is continuous;  
(3.1.4) (L, AB) is semi-compatible and (M, ST) is occasionally weakly compatible;; 
(3.1.5) g(FLx,My(t)) (max{g(FABx,STy(t)), g(FABx, Lx(t)), g(FSTy, My(t)), 

  
                                                ½(g(FABx, My(t)) + g(FSTy, Lx(t)))}) 
 

 for all t > 0, where a function : [0,+) [0,+) satisfies the condition ().       
 
Then A, B, S, T, L and M have a unique common fixed point in X.  
 
Proof. Let x0  X. From condition (3.1.1), there exist x1, x2  X such that  
  

Lx0 = STx1 = y0 and Mx1 = ABx2 = y1.   
 
Inductively, we can construct sequences {xn} and {yn} in X such that 
 

(3.1.6) Lx2n = STx2n+1 = y2n and Mx2n+1 = ABx2n+2 = y2n+1 for n = 0, 1, 2, ... .  
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Step 1. We prove that 
n
lim
  

g(Fyn,yn+1
(t)) = 0 for all t > 0.   

From (3.1.5) and (3.1.6), we have 
 

g(Fy2n,y2n+1
(t)) =  g(FLx2n,Mx2n+1

(t))  

max{g(FABx2n,STx2n+1
 (t)), g(FABx2n, Lx2n

(t)), g(FSTx2n+1, Mx2n+1
(t)),  

                    ½(g(FABx2n, Mx2n+1
(t)) + g(FSTx2n+1, Lx2n

(t)))}) 

max{g(Fy2n-1,y2n
(t)), g(Fy2n-1, y2n

(t)), g(Fy2n, y2n+1
(t)), ½(g(Fy2n-1, y2n+1

(t)) + g(1))}) 

(max{g(Fy2n-1,y2n
(t)), g(Fy2n, y2n+1

(t)),  ½(g(Fy2n-1, y2n
(t)) + g(Fy2n, y2n+1

(t))}). 

 
If  g(Fy2n-1,y2n

(t)) g(Fy2n,y2n+1
(t))  for all t > 0, then by (3.1.5) 

  g(Fy2n,y2n+1
(t)) (g(Fy2n,y2n+1

(t))), 

 
on applying Lemma 2.1, we have g(Fy2n,y2n+1

(t)) = 0  for all t > 0.      

 
Similarly, we have g(Fy2n+1,y2n+2

(t)) = 0 for all t > 0.  

 
Thus, we have  
 

n
lim
  

g(Fyn,yn+1
(t)) = 0 for all t > 0.  

 
On the other hand, if g(Fy2n-1,y2n

(t)) g(Fy2n,y2n+1
(t)), then by (3.1.5), we have 

g(Fy2n,y2n+1
(t))  g(Fy2n-1,y2n

(t)))  for all t > 0. 

 
Similarly, g(Fy2n+1,y2n+2

(t)) g(Fy2n,y2n+1
(t))) for all t > 0. 

 
Thus, we have g(Fyn,yn+1

(t)) (g(Fyn-1,yn
(t))) for all t > 0 &  n = 1, 2, 3, … . 

Therefore, by Lemma 2.1,  
 

n
lim


 g(Fyn,yn+1
(t)) = 0 for all t > 0, which implies that {yn} is  a Cauchy sequence in X by Lemma 

2.2. 
 
Since (X, F, ) is complete, the sequence {yn} converges to a point  
z X. Also its subsequences converges as follows: 
 

(3.1.7)    {Mx2n+1} z  and {STx2n+1}   z,                                           
(3.1.8)    {Lx2n} z  and {ABx2n} z. 

 
Case I. L is continuous and (L, AB) is semi-compatible, we get 
 

L(AB)x2n  Lz and L(ABx)2n ABz  
 

Since the limit in Non-Archimedean Menger PM space is unique, we get 
 

Lz = ABz. 
 
Step 2. Putting x = z and y = x2n+1 for t > 0 in (3.1.5), we get 
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g(FLz,Mx2n+1
(t)) (max{g(FABz,STx2n+1

(t)), g(FABz, Lz(t)), g(FSTx2n+1, Mx2n+1
 (t)),  

                         ½(g(FABz, Mx2n+1
(t)) + g(FSTx2n+1, Lz(t)))}). 

 
Letting n , we get  
 

g(FLz,z(t)) (max{g(Fz,z(t)), g(Fz, Lz(t)), g(Fz, z(t)),  
                 ½(g(Fz, z(t)) + g(Fz, Lz(t)))}) 
(g(FLz,z(t))), 
 

which implies that g(FLz,z(t)) = 0 by Lemma 2.1 and so we have Lz = z. 
Thus, we have Lz = z = ABz. 
 
Step 3. Putting x = Bz and y = x2n+1 for t > 0 in (3.1.5), we get 
 

g(FLBz,Mx2n+1
(t)) (max{g(FABBz,STx2n+1

(t)),g(FABBz, LBz(t)),g(FSTx2n+1,Mx2n+1
(t)),  

       ½(g(FABBz, Mx2n+1
(t)) + g(FSTx2n+1, LBz(t)))}) 

 
As BL = LB,  AB = BA,  so we have  
  

L(Bz) = B(Lz) = Bz  and  AB(Bz) = B(ABz) = Bz. 
 

Letting n , we get  
 

g(FBz,z(t)) (max{g(FBz,z(t)),g(FBz, Bz(t)),g(Fz,z(t)),  
                           ½(g(FBz, z(t)) + g(Fz, Bz(t)))}) 
(g(FBz,z(t))) 

 
which implies that  g(FBz,z(t)) = 0 by Lemma 2.1 and so we have Bz = z. 
 
Also, ABz = z and so Az = z. 
Therefore, Az = Bz = Lz = z.  
 
Step 4. As L(X)  ST(X), there exists v  X such that z = Lz = STv. 
     
Putting x = x2n    and y = v for t > 0 in (3.1.5),  we get 
 

g(FLx2n,Mv(t)) (max{g(FABx2n,STv(t)), g(FABx2n, Lx2n
 (t)), g(FSTv, Mv(t)),  

½(g(FABx2n, Mv(t)) + g(FSTv, Lx2n
(t)))}). 

 
Letting n  and using equation (3.1.8), we get  

g(Fz,Mv(t)) (max{g(Fz,z(t)), g(Fz, z(t)), g(Fz, Mv(t)),  
½(g(Fz, Mv(t)) + g(Fz, z(t)))}) 

       = (g(Fz,Mv(t))) 
 

which implies that g(Fz,Mv(t)) = 0 by Lemma 2.1 and so we have z = Mv. 
 
Hence, STv = z = Mv.  
 
As (M, ST) is occasionally weakly compatible, we have 
 

STMv = MSTv.       
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Thus, STz = Mz. 
 
Step 5.  Putting x = x2n, y = z for t > 0 in (3.1.5), we get 
 

g(FLx2n,Mz(t)) (max{g(FABx2n,STz(t)), g(FABx2n, Lx2n
 (t)), g(FSTz, Mz(t)),  

½(g(FABx2n, Mz(t)) + g(FSTz, Lx2n
 (t)))}). 

 
Letting n  and using equation (3.1.8) and Step 5, we get  
 

g(Fz,Mz(t)) (max{g(Fz,Mz(t)), g(Fz, z(t)), g(FMz, Mz(t)),  
½(g(Fz, Mz(t)) + g(FMz, z(t)))}) 

g(Fz,Mz(t))) 
 

which implies that g(Fz,Mz(t)) = 0 by Lemma 2.1 and so we have z = Mz. 
 
Step 6. Putting x = x2n and y = Tz    for t > 0  in (3.1.5), we get 
 

g(FLx2n,MTz (t)) (max{g(FABx2n,STTz (t)), g(FABx2n, Lx2n
 (t)), g(FSTTz, MTz (t)),  

½(g(FABx2n, MTz (t)) + g(FSTTz, Lx2n
(t)))}) 

 
As MT = TM and ST = TS we have  
               MTz = TMz = Tz and ST(Tz) = T(STz) = Tz. 
 
Letting n  we get 
 

g(Fz,Tz (t))max{g(Fz,Tz (t)), g(Fz, z(t)), g(FTz, Tz (t)),  
½(g(Fz, Tz (t)) + g(FTz, z(t)))}) 

                 = (g(Fz,Tz (t))), 
 
which implies that g(Fz,Tz(t)) = 0 by Lemma 2.1 and so we have z = Tz. 
 

Now  STz = Tz = z implies Sz = z.  
Hence Sz = Tz = Mz = z.                                                                                                  (3.1.10) 

 
Combining, we get  
 

Az = Bz = Lz = Mz = Tz = Sz = z. 
 
Hence, the six self maps have a common fixed point in this case.  
 
Case II. AB is continuous. 
 As AB is continuous and (L, AB) is semi-compatible, we get 
 

(AB)2x2n  ABz, (AB)Lx2n  ABz. 
        and L(AB)x2n  ABz. 
 
Thus, (AB)Lx2n  = L(AB)x2n = z as n  
Now, we prove ABz = z. 
 
Step 7. Putting x = ABx2n and y = x2n+1 for t > 0 in (3.1.5), we get 
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g(FLABx
2n

,Mx
2n+1

(t)) (max{g(FABABx
2n

,STx
2n+1

(t)), g(FABABx
2n

, LABx
2n

(t)),     

                        g(FSTx
2n+1

, Mx
2n+1

(t)),  

                                    ½(g(FABABx
2n

, M x
2n+1

(t)) + g(FSTx
2n+1

, LABx
2n

(t)))}). 

Letting n , we get  
 

g(FABz,z(t)) (max{g(FABz,z(t)), g(FABz, ABz(t)), g(Fz, z(t)),  
½(g(FABz, z(t)) + g(Fz, ABz(t)))}) 

         = (g(FABz,z(t))) 
which implies that g(FABz,z(t)) = 0 by Lemma 2.1 and so we have ABz = z. 
 
Step 8. Putting x = z and y = x2n+1 for t > 0 in (3.1.5), we get 
 

   g(FLz,Mx2n+1
 (t)) (max{g(FABz,STx2n+1

(t)), g(FABz, Lz(t)), g(FSTx2n+1, Mx2n+1
(t)),  

½(g(FABz, Mx2n+1
(t)) + g(FSTx2n+1, Lz(t)))}). 

Letting n , we get 
  

g(FLz,z(t)) (max{g(Fz,z(t)), g(Fz, Lz(t)), g(Fz, z(t)),  
½(g(Fz, z(t)) + g(Fz, Lz(t)))}) 

g(FLz,z(t))) 
 

which implies that  g(FLz,z(t)) = 0 by Lemma 2.1 and so we have Lz = z. 
 
Therefore, ABz = Lz = z. 
 
Futher, using step 3, we get  
 

Bz = z, so Az = Bz = Lz = z.  
 
Also,  it follows from steps 4, 5 and 6 that 
 

Sz = Tz = Mz = z. 
 
Hence, all Az = Bz = Lz = Sz = Tz = Mz = z, i.e z is a common fixed point of A, B, S, T, L and M. 
 
Step 9. (Uniqueness) Let u be another common fixed point of A, B, S, T, L and M; then  
Au = Bu = Su = Tu = Lu = Mu = u. 
 

Putting x = z and y = u for t > 0 in (3.1.5), we get 
g(FLz,Mu(t)) (max{g(FABz,STu(t)), g(FABz, Lz(t)), g(FSTu, Mu(t)),  
                        ½(g(FABz, Mu(t)) + g(FSTu, Lz(t)))}). 
 

Letting n   we get 
 

g(Fz,u(t)) (max{g(Fz,u(t)), g(Fz, z(t)), g(Fu, u(t)), ½(g(Fz, u(t)) + g(Fu, z(t)))}) 
g(Fz,u(t))), 
 

which implies that  g(Fz,u(t)) = 0 by Lemma 2.1 and so we have z = u. 
  
Therefore, z is a unique common fixed point of A, B, S, T, L and M. 
This completes the proof. 
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Remark 3.1. If we take B = T = I, the identity map on X in Theorem 3.1, then the condition 
(3.1.2) is satisfied trivially and we get 
 
Corollary 3.1. Let A, S, L, M: X X be mappings satisfying the condition:  
 

(3.1.11) L(X)  S(X), M(X)   A(X);   
(3.1.12) Either A or L is continuous; 
(3.1.13) the pair (L, A) is semi-compatible and (M, S) is occasionally weakly  
                 compatible;  
(3.1.14)  g(FLx,My(t)) (max{g(FAx,Sy(t)), g(FAx, Lx(t)), g(FSy, My(t)),  
                                               ½(g(FAx, My(t)) + g(FSy, Lx(t)))}) 

 
for all t > 0, where a function : [0,+) [0,+) satisfies the condition (). Then A, S, L and M 
have a unique common fixed point in X.  
 
Remark 3.2. In view of Remark 3.1, Corollary 3.1 is a generalization of the result of Cho et al. [10] 
in the sense that condition of compatibility of the pairs of self maps has been restricted to semi-
compatible and occasionally weakly compatible self maps and only one of the mappings of the first 
pair is needed to be continuous.  
 
Corollary 3.2.  Let A, S, L, M : X  X be mappings satisfying the condition :  
 

(3.1.15) L(X)   S(X), M(X)  A(X);   
(3.1.16) Either A or L is continuous; 
(3.1.17) the pair (L, A) is semi-compatible and (M, S) is weakly  
                 compatible;  
(3.1.18)  g(FLx,My(t)) (max{g(FAx,Sy(t)), g(FAx, Lx(t)), g(FSy, My(t)),  
                                                 ½(g(FAx, My(t)) + g(FSy, Lx(t)))}) 

 
for all t > 0, where a function : [0,+) [0,+) satisfies the condition ().       
 
Then A, S, L and M have a unique common fixed point in X.  
 
Proof. Since weak compatibility implies occasionally weak compatibility, the proof follows from 
Corollary 3.1. 
 

4 Conclusion 
 
The concept of semi-compatible and occasionally weakly compatible mappings, which are more 
general than the concept of compatible mappings, has been used to prove a common fixed point 
theorem. The theorem thus obtained is a generalization of the result of Cho et al. [10] in a non-
Archimedean Menger PM-space. 
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