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Abstract

Let B,[x]/<x”"qm —1) and d=gcd(d(p”),#(q¢")) , where p , g , ( are distinct odd
primes, / is a primitive root both modulo p" and ¢”, p | (¢—1),q | p—1. We obtain explicit

expressions for all dmn+ m + n+1 ¢ -cyclotomic cosets modulo p“"g™ . We explicitly determine
generating polynomials and enumeration formulas of all self-orthogonal cyclic codes and
complementary-dual cyclic codes of length p"q™ over F,. As an example, we give all self-

orthogonal cyclic codes and complementary-dual cyclic codes of length 175 over F;.

Keywords: Cyclotomic cosets; self-orthogonal;, complementary-dual cyclic codes.

1 Introduction

Let F, be a finite field with ¢ elements and N be a positive integer coprime to /. A linear code
C is called cyclic if (ay_,a,,a,,--,ay_,)€C for every (a,,a,,--,ay ,,ay)€C . Let
E,[x]/(xN —1) . It is straightforward to show that a cyclic code of length N by viewing its

codewords as polynomials is an ideal in R . For the linear code C of length N over F, the dual

*Corresponding author: jiangao@mail.nankai.edu.cn;



Chang and Gao; BJMCS, 8(5): 401-410, 2015, Article no.BJMCS.2015.173

code C* is defined as C* ={ue F," |[u-v=0,Vve C}. If C is a cyclic code, so is C*. The
code C is said to be self-orthogonal if C — C*. The code C is said to be complementary-dual if

CNC*={0} . The classes of self-orthogonal and complementary-dual codes have some
attractive properties.

Self-orthogonal codes are closely related with the mathematical combination of design and lattice
theory [1]. Using self-orthogonal cyclic codes, quantum codes can be construction, which have
good parameters [2]. Cyclic codes over finite fields which are self-dual have been studied by many
authors [3,4,5,6]. Recently, Bakshi-Raka [7] determined all the self-dual negacyclic codes of length

2" over Fq where ¢ is a power of odd prime. Complementary-dual codes provide an optimum

linear coding solution for the two-user binary adder channel. It was shown in [8] that asymptotically
good complementary-dual exist and that complementary-dual codes have certain other attractive
properties. Yang-Massy gave the necessary and sufficient condition for a cyclic code to be a
complementary-dual code [9]. In recent years, Dinh has established the structure of the duals of all

repeated-root constacyclic codes of lengths 3p°, 4p* and 6p° over Fpm . By means of these

structures, complementary-dual codes were obtained among them (see [10,11,12]). Sahni-Sehgal
[13] have discussed cyclotomic cosets modulo p"q and the minimal cyclic codes of length p“g

over F,, where p, ¢ and / are distinct odd primes, ¢ is a primitive root both modulo p" andgq,

d =gcd(g(p"),#(q)). p | (g—1). In the direction of these previous researchers we obtain new
results, which provide some theoretical basis of constructing good codes.

In this paper, we consider cyclic codes of length p"g™ over F,, where p, ¢ and ¢ are distinct
odd primes, / is a primitive root both modulo p” and ¢”, d = gcd(¢(p"),#(q¢")). p|(g-1),
qg| p—1. In Section 2, We use simple direct method obtain explicit expressions for all

dmn+m+n+1 ( -cyclotomic cosets modulo p"g™ . In Section 3, we explicitly determine
generating polynomials and enumeration formulas of all self-orthogonal cyclic codes and

complementary-dual cyclic codes of length p"g™ over F, by means of the factorization

of x”" —1 . At the end, as an example, we give all self-orthogonal cyclic codes and
complementary-dual cyclic codes of length 175 over F;.

2 / -Cyclotomic Cosets Modulo p"g"

Throughout this paper we take R = F;,[x]/<x‘””qm —1), where p, ¢, ¢ are distinct odd primes,
m,n>1 are integers, ¢ is a primitive root both modulo p" and ¢", ged(d(p"),d(¢"))=d >2,
pl(@=1), gl p—1.For0<s<p'q"—1, let C, ={s,sl,s(*,---,5(" '} be the (-cyclotomic

coset containing s, where n, ={k e Z"|s/* =s(mod p"q")} . Let & be a primitive p"q" -th

root of unity in some extension field of F; . It is well known that the polynomial

M (x)=]](x-a)

i<C,
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is the minimal polynomial of ¢* over F, and
=T M, )

gives the factorization of x” " —1 into irreducible factors over F,, where s runs over a complete

set of representatives from distinct ¢ -cyclotomic cosets modulo p"g"™.

For any integer n>1, we denote by ordz*(f)zh the multiplicative order of ¢ in the

multiplicative group Z:, i.e. the order of ¢ modulo n.If h=¢(n),i.e. Z: = <£> ,then /is called a
primitive root modulo # .

Lemma 1 [13, Lemma 5] There exists an integera, 1 <a < pq, satisfying gcd(a, pg?) =1 and

#(ra)
a,a’,a’,,a" " ¢S where S={1,0,0%,---,0 4 }.

Lemma 2 There exists an integer a , 1<a<pq , satisfying gcd(a,pgl)=1 and

a' # (*(mod pq) for any integer ¢, k; 1<t<d—1and0<k <¢(pq)/d —1. Furthermore, for
this fixed @ andany 1<i<n—-1,0<;<m-1,

Zoe o =0 all) 1) e (1))

Proof Since /e Z: as Z:,,,,q,,,,, is a commutative group, we obtain <€> < Z;n,,qm,j }

u—,qm—j 3
With the notation of Lemma 1, we have that

¢(pn—iqm—/)71 ¢(pn—iqm—/)7l ] ] . P(p" g )71
,1 ,1 —
{L,L,-- 0 4 sa,al,---.al 4 ,oeat at e a0 9 }

has ¢(p"'q"~’) elements coprime to pg . It is sufficient to prove that they are all pairwise
incongruent modulo  p"¢"” . Let a'¢* =a’¢'(mod p"¢g"’) with 0<r<I<d-1 and
0<k,t< (¢(p”_iq"'—j)/d)—1 . Then a' " =0""modp"“q™’) , which implies that
a'" =(’(mod pq) where s=t—k(modd@(pq)/d) Therefore, ad”eS and 0<I-r<d .
Consequently, I=r . Therefore, we get (*=/((modp"'q"”’) , where
0<k,t<(p(p"'q"7)/d)~1 and the order of ¢ modulo p""¢"is #(p"'¢"7)/d . Thus we
have k =t , which implies that the set

9" 60" o ) 6"
-1 -1 -1
{LL,---,0 4 ,a,al,---,al ¢ ycoenat,at e at e e }

n—i _m—j

forms a reduced residue system modulo p
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Theorem 1 Llet p , g , { be distinct odd primes, m,n>1 be positive integers,
ord, (1)=¢(p") and ord, (£)=¢(q") , where d =ged(@(p").¢(¢") . pI(q-

q | (p—1) and a be as defined in Lemma 2. Then dmn+m+n+1 [ -cyclotomic cosets modulo

n__m

p q are
={0} :
s =GP P
C o, =P"a p"a L, p"q o, p g "

o s
Chpy =1a'p'q’,d' p'g’t,d" p'q’ o d' plg’t 4},

where 0<i<n—-1,0<j<m-1,0<k<d-1.

Proof Since EEZ;,qm , as Z;,,qm is a commutative group, we obtain <£>§Z;,1qm and

|< >|— ¢(p q") . From Lemma 2, Z;,‘qm ={<€>,a<€>,a2 <€>,~-,ad_1 <€>} For WEZ;,‘qm , let

gcd(w,p"q”’) =d . Then we Z;,‘qm f d=1, and we dZ;,‘qm if d#1 . Thus,
= U dZ*, ,and dZ°, ,=Z7",  ,where 0<i<n—1,0<j<m-1. Since <€>:Z*
P'q P'q g p

d|p"q" d

and a € Z; ,then a € Z;,‘,,. . Therefore a = ¢, where 0 < i < #(p"")—1.Thus

P'4"Z, . =C, . =p'q"({) o .p'q"a(l) ., p'g"a ™ (0) Ly =1{p'q" () .}
Similarly, we also have
P'aZ,,=Cy =" (0 0" q'a(l) s o, 0" (0) Y =AD" (1) )

Clearly,

q

d-1
akpiqu;"qm :,E:J()Ca"p’q’ - {piqj <£>p””q"l’/ ’apiqj <€>p”” i o ad lplq <€> m’f}'
Where (£) ={1,0,--,¢" "'} and ord(¢) =m'(mod ().

n_m

Finally, these are all the £ -cyclotomic cosets modulo p"q™ because of

G+ [+1C, 141C, |
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—1+"Z¢<p" 3T Y OIS 3 ) At i) "’m )

j=0 i=0 j=0 k=0
=1+p"—1+q" —1+d><g><(p” ~1)x(¢" -1)
=p"q".

The following Lemmas 3, 4 and 5 can be obtained easily by the results in [13]. Here, we omit these
proofs.

Lemma 3 For each i, 0<i<n-1,-C , =C .

Lemma4 Foreach j, 0<j<m—1, —Cp,,q, sz,, ;-
Lemma 5 -1, or —leCd/z. -C,=C,, then C,(,,:Ckp‘q_,. and if —CleCad/z, then
—Ckp,j—Cki Jforall i, j, k,0<i<n-1,0<;<m-1,0<k<d-1.

a 2p'q

3 Cyclic Codes of Length p"¢" Over F,

For any polynomial f(x)= Zaixi of degree r(a, #0) over F,, let £ (x) denote the reciprocal
i=0

polynomial of f'(x) given by f*(x)zx"f(l)=2ar_ixi . It is clear that (fg) = f g for any
X °

polynomial f(x),g(x) € F,[x]. Let C be a cyclic code of length N over F, generated by g(x).
The annihilator of c denoted by ann (C ) is the set of

N

ann(C)z{f(x)eE[x]/(x"_l)|f(X)-g(x)=0}' Put h(X)zxg(;)l

. Clearly ann(C) is an

*

ideal in E.[x]/(x” —1) generated by A(x) . It is well known that the dual code C* is(ann(C))
and is generated by /" (x).

Suppose that f(x) is a monic polynomial of degree k with /(0)=c # 0. Then, by the momic

reciprocal polynomial of f(x), we mean the polynomial f(x) =c' f(x).

Note that forany s, M_ (x)= [ (x—a)=][(x—a™),

ieC_; ieCy
M (x)=x"M 1/ x)=[]0-xa") =M O] [(x-a™) =M (OM_(x). (1
ieC ieCy
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1
M (0)

s

M, (x) = M (x) =M _(x). (2)
Let C be a cyclic code of length p"q™ over F, . We have C=<g(x)> . And for

0<i<n-1,0<;<m-1,0<k<d-1, ¢, ¢,. &, &,;€10,1},wehave

i,m n,j

n—1 m—1 d-1

—1 m—

- 1 m-1
gx)=(x-1°" H (Mp’q"’ (x))ghm H (Mp”q/ (x))gw (Ma"piq/ (x))gk'i'l 3)
i=0 j=0 k=0 i=0 ;=0
Therefore,
- n—l1 - m—1 - d-1 n—-1 m-1 s
) =-D"TTM e TT )™ TITTITM,,, ()™
i=0 j=0 k=0 i=0 ;=0

Using equation (1) we get, for some nonzero element y € F},

Y

-1 n-1 m—

M, ()

-a*plq

n—1 m—1
B =yae-D"= [, ) = [T, )™
i=0 Jj=0

1 m-1
0 i=0 j=0

=~
Il

(i) If =C, = C}, from Lemmas 3, 4 and 5, we get

U

n—1 -1 n-1 m-1

B =yG=D" [T )™ H M, ) TITTTT M )7 (4)

0 i=0 j=0

>~
Il

(i) If =C, = Cad/2 , from Lemmas 3, 4 and 5, we get

m—1 d-1 n—

K (x)=y(x=1)" H (M, )" T T oy T (M, () (5)

1 m-1
k=0 i=0 j=0 a 2p'q’

Let S =1{¢),&,,,€,,;,6,,;,10<5i<n-1,0< j<m-1,0<k <d-l}and

m>“n,jo

S'=1€0:6 58, 10<i<n-1,0< j<m-—1}
3.1 Self-orthogonal Cyclic Codes of Length p"¢” over F,

Theorem 2 For p,q,/ be distinct odd primes, m,n >1 are integers, ¢ is a primitive root both

modulo p" and ¢" , ged(d(p”),¢(¢")=d =22, pl(g-1) ., q/(p-1) , 0<i<n-1,
0<j<m-land 0<k<d-1.

n_m

(i) If —=C, = C,, then the self-orthogonal cyclic codes of length p"g™ over F, are C=0.
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dmn

(iiy If =C, :Cad/z, then there are precisely 32 self-orthogonal cyclic codes of length p"g"

over I, given by

d-1 n-1 m-1

k=0 i=0 j=0

<(" D [T, =TT, )™ (M, () >

where &, ¢ &, are always equal to 1 and at least one of Eri and ¢ d is 1 for each i,

im’
5 k+—,i,j
2 J

Jj.k (k+% is modulo d ).

Proof (i) Let C be a self-orthogonal cyclic code of length p"g” over F,. If —=C, =C,, then we
have C=<g(x)> Since Cc C*, it follows that % (x)| g(x) (expression of g(x) and A" (x)
see equation (3),(4)). This is possible if and only if & >1—¢, and & €1{0,1}, whereg €S .

Consequently, & =1. Therefore C =0.

(i) f -C,=C ,, , we have C=<g(x)>, h'(x)| g(x) (expression of g(x) and A’ (x) see
equation(3),(5)). This is possible if and only if £, >21-¢,, and &, €{0,1}, where ¢, € S".
Consequently, &, =1 and ¢, ,+¢ , 21.
s k+Zi,j
2

3.2 Complementary-dual Cyclic Codes of Length p"¢"” over F,

Lemma 6 [9, Theorem] If g(x) is the generator polynomial of a cyclic code C of length N over
F,, then C is a complementary-dual code if and only if g(x) is self-reciprocial (i.e. g(x)=g(x))

and all the monic irreducible factors of g(x) have the same multiplicity in g(x) andin x" —1.

Theorem 3 For p, g,/ be distinct odd primes, m,n >1 are integers, ¢ is a primitive root both

modulo p" and ¢" , ged(d(p"),d(¢")=d=22, pf(g-D, ql(p-1), 0<i<n-1,
0<j<m-land 0<k<d-1.

2dmn+m+n+l

(i) If —=C, =C,, then there are precisely complementary-dual cyclic codes of length

p"q" over F, given by

d-1 n-1 m—

<(x = ln;[ (Mp"l"’ ()" ﬁ (Mp”q’ ()™ (M, Pe’ (x))™* > ,

-1 n-1 m-1
=0 i=0 j=0

>~

where &,,¢&

im’?

&

n,j’

& €10,1}.
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dmn
——+m+n+1

(iiy If =C, = Cad/2 , then there are precisely 2 2 complementary-dual cyclic codes of length
p"q" over F, given by

d-1 n-1 m-1

<(x = ﬁ (MP’q'” (@)™ ﬁ (Mp”q/ ()™ (]MaA e’ ()" > ,

k=0 i=0 j=0

where &,,¢

im’

&

n,j

d
&..€4{0,1},and ¢,,.=¢ , (k+— ismodulo d).
iy ) k+§,i,j 2

Proof (i) From Lemmas 3, 4, and 5, if —C, = C,, we get M (x) =M _(x), Mplqm (x)= M_p[qm (%),
Mpan (%) :prnq/(x) , Makp:q/(-x) ZMfakp,q,(x) , but M (x)=M__(x) (see equation (1)),
where ¢ €S , so M, (x)=M,(x) , Mp,,qm (x)= Mp,.qm (x) , Mp"qj (x) :Mpan (x) .,
Makpiq./' (x) = Makptq./' (x) .

Then by Lemma 6, complementary-dual cyclic codes of length p"g™ over F, are

n—1 m—1 d-1 n-1 m-1
<(x SIS (RO § (A R 1 1§ 1 (A > .
i=0 7=0 k=0 i=0 j=0
(i) From Lemmas 3, 4 and 5, if —-C, =C ,,, we have M, (x) =M _(x), Mp,.qm (x) =M_p,.qm (x),
Mpﬂq/ (x)= M_p”q, (%), M_akpfq/ (x)=M , (x). However, ]\;[S (x)=M __(x) (see equation

a 2plgl
(2)), where & €S , which implies that M,(x)=M,(x) , Mplqm (x)= M. (x) ,
M, (x)=M, (x)and M, ()=M , (x).

ki j
“rd a 2p'q/

Then by Lemma 6, complementary-dual cyclic codes of length p"g™ over F, are

n-1 m-1 d-1 n-1 m-1
& Eim Enj Ekij
<(x—1)0H<Mp,qm @[], ) M, () >
i=0 j=0 k=0 i=0 j=0
1 = k 4,
where &,,¢,,.¢,,.6,,€{0,1},and & = gki,l_,j( +5 is modulo d ).
2

4 An Example
Take (=3, p=7,q=5,n=1,m=2.Thend =2, a=19, —leCa(,/z.

(a) The eight 3 -cyclotomic cosets modulo 175 are
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C, =1{0},

C =1{1,3,4,9,11,12,13,16, 17,27, 29, 33, 36, 38, 39, 44, 46, 47, 48, 51, 52, 62, 64, 68, 71,
73,74,79, 81, 82, 83, 86, 87, 97, 99, 103, 106, 108, 109, 114, 116, 117, 118, 121, 122,
132, 134, 138, 141, 143, 144, 149, 151, 152, 153, 156, 157, 167, 169, 173},

C, =15, 15, 20, 45, 55, 60, 65, 80, 85, 135, 145, 165},

C, =17, 14,21, 28, 42, 49, 56, 63, 77, 84, 91, 98, 112, 119, 126, 133, 147, 154, 161, 168}

C,=12,6,8,18,19,22,23,24, 26, 31, 32, 34, 37, 41, 43, 53, 54, 57, 58, 59, 61, 66, 67,69,
72,76, 78, 88, 89, 92, 93,94, 96, 101, 102, 104, 107, 111, 113, 123, 124, 127, 128, 129,
131,136, 137, 139, 142, 146, 148, 158, 159, 162, 163, 164, 166, 171, 172, 174},

C,. = {25, 50, 75, 100, 125, 150} , C,, = {35, 70,105, 140},

C,, =110, 30, 40, 90, 95, 110, 115, 120, 130, 155, 160, 170} .

(b) 9 self-orthogonal cyclic codes of length 175 over F; are

(M ()M 5 ()M, (X)M 5 (x)M, (x)M, (x) M, (x)M 15 (),
(M ()M 5 ()M, (x)M 15 ()M (x)M (%))

(M, (x)M 15 ()M, (x)M 5 (x) M, (x)M 5 (x)),

(M, (x)M 5 (x)M, (X)M 35 ()M (X)M 5 (x)) ,

(M (x)M 15 ()M, ()M 5 (X)M, 5 (x) M5 (x))

(M ()M ,5(x)M, (xX)M 15 (x)M, (x)M,, (x)M 5 ()},

(Mo (x)M 15 (x)M, (X)M 35 (x)M, (x)M 14 (x) M 5 (),

(M, (x)M 15 (x) M, (x)M 5 (X)M, (x)M ()M 55 (%)),

(M ()M 5 (x)M 5 (X)M 35 (X)M 15 ()M (x)M 45(x) ) .

(c) 64 complementary-dual cyclic codes codes of length 175 over F; are

2 120 115 95 90 85 80 70 65 60 55 50 40 35 30
<(x—1)r°(x —x X —x X x4+ xT =X+ —x T —xT X7 —x

x2S )00 (2 Byl glBylT 161 312 10 (BT 6
—x+D) (17 +x" + X7+ 270 (xx” + 570 + x5+ 27+ x0) 0 (I+x+x” + x° +xH)™ >

where &), &00s €015 1080, &g €10,1}.

5 Conclusion

n_m

In this paper, we mainly consider cyclic codes of length p“gq
generating polynomials and enumeration formulas of all self-orthogonal cyclic codes and
complementary-dual cyclic codes of length p”g™ over F,. Construction of good self-orthogonal

over F,. We explicitly determine

cyclic codes and complementary-dual cyclic codes of length p”g™ over F, may be interesting.
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