
British Journal of Mathematics & Computer Science
4(15): 2188-2196, 2014

SCIENCEDOMAIN international
www.sciencedomain.org

RCaller: A Software Library for Calling R from Java

M. Hakan Satman∗1

1Istanbul University, Department of Econometrics, Beyazit, Istanbul, Turkey.

Original Research
Article

Received: 15 April 2014
Accepted: 29 May 2014

Published: 06 June 2014

Abstract
R is a programming language and environment which is mainly aimed to be used for statistical
calculations and data analysis. Since a vast amount of human resource is consumed for its source
code and packages; it is comprehensive, large in size and more common among others. Extending
computer software with statistical calculation routines requires extra human resource, therefore, the
need of wrapper libraries has been appeared. There are many software libraries that communicate
R with other languages. Despite they render similar services, they have their own pros and cons.
RCaller is a software library which comes into prominence with its simplicity. In this paper we
introduce the library with some examples. We mention its abilities as well as its limitations. RCaller
can be used in relatively small projects as it has painless start-up process and steep learning
curve.

Keywords: R; Java; Statistical Software
2010 Mathematics Subject Classification: 62-04;00-68;68P05

1 Introduction
R [1] is an open source programming language and environment for statistical calculations and data
analysis. Since R is open source, there are hundreds of packages developed by the contributors
around the world. Source code of R is compiled for many platforms and this is an other reason for
fast growing of user and developer community.

R has many interfaces to communicate with the code written in foreign languages such as C, C++
[2], Fortran, Java [3] and Python [4], among others. Interoperability of the language not only makes
use of older software libraries written in other languages but it gives rise of extending new software
with capabilities of R [5].

Java [6] is a general purpose programming language which is aimed to run on a Java Virtual
Machine (JVM) [7]. Since a JVM can be implemented in several kinds of platforms, Java is supposed
to be a write once & run anywhere language. This characteristic of Java is the main reason of its wide

*Corresponding author: E-mail: mhsatman@istanbul.edu.tr

www.sciencedomain.org

British Journal of Mathematics and Computer Science 4(15), 2188-2196, 2014

use in web, desktop and mobile platforms. The popularity of the language implicitly increased the
need for statistical libraries. Despite there are open source mathematics, optimization and statistics
software libraries for Java [8], none of them are as comprehensive and scalable as R. This is the
basic motivation under developing bridge or wrapper code between Java and R.

In this paper, we introduce a new software library for calling R from Java and show its capabilities.
In Section 2 we refer to recent works and make a comparison with our library. In Section 3 we give
a quick reference and some illuminative examples. In Section 4, we compare time performances of
libraries that are mentioned in paper. Finally, we conclude.

2 R and Java Interoperability
There are many options to provide a calling convention for R in Java. Rserve is developed for
communicating R and other languages including Java [9]. Rserve is a compiled program that runs
within R and it listens for connection requests via network sockets on a pre-defined port. This is the
universal way of getting two programs communicated because the server and client programs should
not be set up in same machines and compiled to run together. Although R does not support multi-
threading internally, Rserve can manipulate more than one R processes simultaneously. The main
limitation of this library is that it requires some operation system based privileges are set for network
sockets.

rJava [3] is an other software library which is distributed as bundle of old rJava and JRI packages.
rJava communicates Java and R throughout JNI (Java Native Interface) which is the natural way of
calling compiled binary code in Java [10]. This library has some merit among others, in means of full
interoperability between R and Java using callbacks. It is robust for large scale projects, however, it is
painless at start-up process for relatively small projects. It is also been said that although JNI is native,
it is not that fast because of type conversations between C and Java [11]. A detailed comparison of
Rserve and rJava is reported in [5].

RCaller [12] is another way of calling R codes from within Java. RCaller converts data structures
to R code, sends them to an externally created R process, returns the generated results as XML
which is the universal way of storing data. XML structure is then parsed and returned values are
accessed directly in Java. Optionally, one can create an external process for each single operation,
however, this may cause a performance drawback. RCaller also supports sequential run of commands
in a single R process. As it does not share the same memory area when calling external code, permits
running more than one processes simultaneously and splits the running environments. RCaller has
some nice features of those which its competitors already have. But the key point is simplicity. RCaller
depends on a single jar file and no more setting up procedure is required.

3 Usage and Examples

3.1 Setup and Installation
The current version 2.2 does not require any files and ready for downloading and compiling [12].
Older versions of RCaller requires the R package Runiversal to be installed. After downloading the
source tree, the jar file can be compiled by using Maven as shown below.

$ hg clone https://code.google.com/p/rcaller/

$ cd rcaller/RCaller

$ mvn package

The other option is to download pre-compiled file and it can be found at the home page of the
project.

2189

British Journal of Mathematics and Computer Science 4(15), 2188-2196, 2014

3.2 Basic Interactions
RCaller wraps complex interactions in an easy way. Since calculations are handled at R side, the full
path to Rscript executable file can defined correctly using setRscriptExecutable method. Java arrays
can also be passed to R in an easy way. Suppose that matrix is a matrix with dimensions 2 × 2. In
the example below, matrix is passed to R and inverse of this matrix is calculated at R side and result
is handled in Java again.

RCaller caller = new RCaller();

caller.setRscriptExecutable("path/to/Rscript.exe");

double[][] matrix = new double[][]{{6, 4}, {9, 8}};

RCode code = new RCode();

// Passing Java objects to R

code.addDoubleMatrix("x", matrix);

code.addRCode("s <- solve(x)");

caller.setRCode(code);

// Performing Calculations

caller.runAndReturnResult("s");

// Passing R object to Java

double[][] inverse = caller.getParser().getAsDoubleMatrix("s", 2, 2);

The interesting part of this code is the line of caller.runAndReturnResult(”s”);. The object s is an
R primitive such as vector or matrix and it is returned in XML object. In getAsDoubleMatrix(”s”, 2, 2),
the matrix s is supposed to have dimensions of 2× 2. In some cases, dimension vector of a returned
matrix is unknown. To cope with this, getDimension method can be invoked as shown in the example
below.

int[] mydim = caller.getParser().getDimensions("s");

double[][] inverse = caller.getParser().getAsDoubleMatrix("s", mydim[0], mydim[1]);

The content of the matrix inverse is shown in Table 1.

Table 1: Content of the matrix inverse
1 2

1 0.67 -0.33
2 -0.75 0.50

Objects of objects can be returned instead. Suppose that some descriptive statistics are calculated
and returned to Java. The example below shows a calculation with multiple results.

code.addDoubleArray("x", new double[]{1.0, 2.2, 3.9, 4.3, 5.5});

// Returning multiple values from R to Java using lists

code.addRCode("s <- list(r1=mean(x), r2=median(x), r3=sd(x))");

caller.setRCode(code);

2190

British Journal of Mathematics and Computer Science 4(15), 2188-2196, 2014

// Handling returned list in Java

caller.runAndReturnResult("s");

// Accessing r1, r2, r3 in Java

double mean = caller.getParser().getAsDoubleArray("r1")[0];

double median = caller.getParser().getAsDoubleArray("r2")[0];

double sd = caller.getParser().getAsDoubleArray("r3")[0];

In this way, results of multiple calculations can be collected in a single list object and external
process call burden can be handled efficiently. Note that, variables mean,median and sd hold the
values 3.380000, 3.900000 and 1.779607, respectively.

3.3 Passing Plain Java Objects
Plain Java Objects (PJOs) can be passed to R in an efficient way. Suppose that TestClassWithArrays
is a Java class which inherits an other class TestClass.

class TestClass {

public int i = 9;

public float f = 10.0f;

public double d = 3.14;

public boolean b = true;

public String s = "test";

}

// TestClassWithArrays have variables i, f, d, b, s

// because it inherits TestClass

class TestClassWithArrays extends TestClass {

public int[] ia = new int[]{1, 2, 3, 4, 5};

public double[] da = new double[]{1.0, 2.0, 3.0, 4.0, 9.9, 10.1};

public String[] sa = new String[]{"One", "Two", "Three"};

public boolean[] ba = new boolean[]{true, true, false};

}

TestClassWithArrays tcwa = new TestClassWithArrays();

// Making a Java object ’passable’ to R

JavaObject jo = new JavaObject("tcwa", tcwa);

RCaller rcaller = new RCaller();

RCode code = new RCode();

Globals.detect_current_rscript();

rcaller.setRscriptExecutable(Globals.Rscript_current);

code.clear();

// Java class is being passed to R with its members

code.addRCode(jo.produceRCode(false));

// The member ’da’ of Java class ’tcwa’ is accessable

2191

British Journal of Mathematics and Computer Science 4(15), 2188-2196, 2014

// in R using tcwa$da

code.addRCode("result <- quantile(tcwa$da, 0.95)");

rcaller.setRCode(code);

rcaller.runAndReturnResult("tcwa");

double quantile = rcaller.getParser().getAsDoubleArray("result")[0];

In the example above, the double array da is a member of object tcwa which is accessed in Java
using the notation tcwa.da is also current in the R side with the corresponding notation tcwa$da.
Finally, 0.95th quantile of object tcwa$da is returned as 10.05.

3.4 Sequential Commands
Each time runAndReturnResult method invoked, a Rscript process is created and this operation
causes a computational burden. Therefore, it is not convenient to invoke this method sequentially.
Instead of runAndReturnResult, the method runAndReturnResultOnline can be used. The example
below shows using a single R process for calculating 3 separated commands sequentially in an
efficient way.

rcaller.setRExecutable("path/to/R.exe");

code.addDoubleArray("x", new double[]{1.0, 2.0, 3.0, 4.0, 50.0});

code.addRCode("result <- mean(x)");

// First step, getting mean of x

// Creating a single R process

rcaller.setRCode(code);

rcaller.runAndReturnResultOnline("result");

double mean = rcaller.getParser().getAsDoubleArray("result")[0];

System.out.println("mean: " + mean);

// Getting standard deviation of x through same process

code.clear();

code.addRCode("result <- sd(x)");

rcaller.runAndReturnResultOnline("result");

double sd = rcaller.getParser().getAsDoubleArray("result")[0];

System.out.println("sd: " + sd);

// Getting mad of x through same process

code.clear();

code.addRCode("result <- mad(x)");

rcaller.runAndReturnResultOnline("result");

double mad = rcaller.getParser().getAsDoubleArray("result")[0];

System.out.println("mad: " + mad);

rcaller.stopStreamConsumers()

In the example above, a single R process instead of Rscript process is created. It is important
here to be aware of using rcaller.setRExecutable(”path/to/R.exe”); which defines the location of R
executable. This process is first used for calculating the mean of x, then the result is handled in Java,

2192

British Journal of Mathematics and Computer Science 4(15), 2188-2196, 2014

following this, standard deviation of x is calculated using the same process and these operations go
on. Finally, after invoking the method stopStreamConsumers, process ends. The output is shown
below.

mean: 12.0

sd: 21.2720473861826

mad: 1.4826

3.5 Generating Plots
Standard graphics routines in R such as plot, lines, points, etc., draws on screen by default. However,
directive functions such as png, bmp, jpeg, pdf, etc., switches the device to a file with corresponding
format. RCaller wraps these utilities in a clever way. The example given below produces a line
graphics.

double[] numbers = new double[]{1, 4, 3, 5, 6, 10};

code.addDoubleArray("x", numbers);

// Generated plot will be handled using a File object

File file = code.startPlot();

// Generating the plot in R

code.addRCode("plot(x, pch=19)");

// Stop generating

code.endPlot();

caller.setRCode(code);

// ’file’ holds the file information of generated image

// an ImageIcon can be created using ’file’

caller.runOnly();

code.showPlot(file);

In the example above, neither runAndResultResult nor runAndReturnResultOnline methods are
used. runOnly method is responsible for creating an Rscript process and creating the graphics.
startPlot method creates a png file by default and following codes create the aimed graphics. Finally,
endPlot method closes the device. The file object points to created image which is accessible in
Java. This image file can be later accessed in ImageIcon type as shown below

ImageIcon myplot = rcaller.getPlot(file);

and the generated plot is shown in Figure 1.

4 Performance Issues
We perform a simulation study to compare required computation times of three libraries by means of

• Establishing a connection between Java and R

2193

British Journal of Mathematics and Computer Science 4(15), 2188-2196, 2014

Figure 1: Generated Plot

• Passing data from Java to R

• Handling returned results from R to Java.

The test case includes Rserve, rJava, RCaller with the method runAndReturnResult and RCaller
with the method runAndReturnResultOnline. Simulations are implemented and run in a PC with 4
GBs memory, a solid state disc and Linux (Ubuntu) OS installed. Setting up process is relatively
easy for RCaller and Rserve as the former requires a single jar file added to classpath and the latter
requires two jar files added and an Rserve process is started within R. Differently, rJava requires the
java.library.path variable to be correctly defined to point out the location of jri.dll (libjri.so in Linux). In
the test case, we create an integer array x with size of 1000. This array is then passed to R, x2 values
are calculated and the new array is handled by Java. While operations performed in R side do not
affect the performances of libraries, no larger calculations are preferred. Operations are iterated 100
times for each library. Performances of algorithms are shown in Table 2.

In Table 2 it is shown that the rJava and Rserve outperform the RCaller by means of interaction
times. Performance of RCaller includes creating of external Rscript.exe process, so the interaction
time is high as it is expected. While RCaller Online uses single R process, performance increases
drastically. Performances of rJava and Rserve look similar in Table 2. For these two algorithms,
we test equality of location parameters of performances against to the hypothesis of in-equality of
location parameters via Mann-Whitney U test. While the reported p-value is 0.487, we fail to reject
the null hypothesis, that is, performances of rJava and Rserve are not statistically different.

2194

British Journal of Mathematics and Computer Science 4(15), 2188-2196, 2014

Table 2: Descriptive statistics of times consumed by algorithms (in milliseconds)
RCaller RCaller Online Rserve rJava

Min 557.00 257.00 0.00 0.00
Max 643.00 296.00 14.00 9.00

Mean 569.90 266.96 1.21 1.28
Median 565.00 263.00 1.00 1.00

Std.Dev. 14.92 9.63 1.76 1.39
MAD 4.45 5.93 0.00 1.48

5 Conclusions
RCaller is a software library which is developed to simplify calling R from Java. Despite it is not
the most efficient way of calling R codes from Java, it is very simple to use and its learning curve is
steep. It successfully simplifies and wraps type conversations and makes variables in each languages
accessible between platforms. With the calling sequential commands facility, the performance is not
lost through a single external process. Although R is single-threaded, multiple R processes can
be created and handled by multiple RCaller instances in Java. A Servlet based application can
instantiate many RCaller objects as well as it can use a single object by using sequential command
invocation ability. The former use multiple environments which do not share the same variable pool,
whereas, the latter shares a mutual variable pool and clients can communicate as well. RCaller is
written purely in Java and it does not depend on any external libraries, that is, it is ready to run in any
machines that Java and R installed. Simulation studies show that the other libraries such as Rserve
and rJava outperform the RCaller by means of interaction times. As a result of this, RCaller is not
suitable for the projects which have many clients that request relatively single and small computations.

Competing Interests
The author declares that no competing interests exist.

References
[1] R Core Team, R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria; 2014.
Available: http : //www.R− project.org/.

[2] Eddelbuettel D, Seamless R. C++ Integration with Rcpp. Springer, New York; 2013.

[3] Urbanek S. rJava: Low-level R to Java interface. R package version 0.9-5; 2013.
Available: http : //CRAN.R− project.org/package = rJava.

[4] Xiao-Qin X, McClelland M, Wang Y. Pype R. A Python package for using R in Python. Journal of
Statistical Software. Code Snippets. 2010;35(2): 1-8.

[5] Urbanek S. How to talk to strangers: ways to leverage connectivity between R, Java and Objective
C. Computational Statistics. 2009;24(2):303-311.

[6] Gosling J, Joy B, Steele GL, Bracha G. The Java language specification. Addison-Wesley
Professional; 2000.

2195

British Journal of Mathematics and Computer Science 4(15), 2188-2196, 2014

[7] Venners B. Inside the Java virtual machine. McGraw-Hill Inc; 1996.

[8] The Apache Software Foundation. Commons-math: The apache commons mathematics library.
Accessed 1 May 2014
Available: http : //commons.apache.org/math.

[9] Urbanek S. A fast way to provide R functionality to applications. In Proceedings of DSC. 2003;2.
Available: http : //www.ci.tuwien.ac.at/Conferences/DSC − 2003/Drafts/Urbanek.pdf .

[10] Gordon R. Essential JNI: Java Native Interface. Prentice-Hall Inc; 1998.

[11] Wenner R. JNI testing - In Extreme Programming and Agile Methods-XP/Agile Universe -
Springer Berlin Heidelberg. 2003;2753:96-110.

[12] R Caller Development Team. R Caller: A library for calling R from Java; 2011.
Available: http : //code.google.com/p/rcaller.

———-
c©2014 M. Hakan Satman; This is an Open Access article distributed under the terms of the Creative Commons

Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
www.sciencedomain.org/review-history.php?iid=550&id=6&aid=4838

2196

http://creativecommons.org/licenses/by/3.0

	Introduction
	R and Java Interoperability
	Usage and Examples
	Setup and Installation
	Basic Interactions
	Passing Plain Java Objects
	Sequential Commands
	Generating Plots

	Performance Issues
	Conclusions

