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Abstract 
 

In this paper, we discuss the statistical learning theory based on intuitionistic fuzzy random 
sample. First of all, we introduce the definition of intuitionistic fuzzy number intuitionistic 
fuzzy random variables. Secondly, we give some properties of this concept. Thirdly, the 
definitions of intuitionistic fuzzy empirical risk functional, intuitionistic fuzzy expected risk 
functional, and intuitionistic fuzzy empirical risk minimization principle are presented. Finally, 
we prove the key theorem of intuitionistic fuzzy random sample and obtain the rate of uniform 
convergence of learning process based on the intuitionistic fuzzy random sample. 

Keywords:  Intuitionistic fuzzy numbers, intuitionistic fuzzy random variables, intuitionistic fuzzy 
empirical risk minimization principle, the key theorem, the bounds of the rate of 
convergence. 

 

1 Introduction 
 
Statistical learning theory (SLT, for short), put forward in 1960s and completely founded by 
Vapnik et al. in 1990s. [1-3], has become an interesting and good law that supports the 
development of small samples statistical learning. The SLT has become the fastest growing 
discipline in machine learning in the late 1990's. Its essence was to make the learning machines 
work effectively with the limited samples and then improve the generalization abilities of the 
learning machines. By doing this, we establish a meaningful theoretical framework for statistical 
learning based on small data samples. Meanwhile, SLT gave rise to a new category of general 
learning algorithms, which we called the Support Vector Machine (SVM, for short). Currently, the 
SLT and SVM constitute interesting research avenues in machine learning [4-24]. 
 
The SLT covers four main parts [4]: (1) the learning process that minimizes the necessary and 
sufficient conditions for the consistency of the empirical risk, which is referred to as the key 
theorem of learning theory; (2) the scope of generalization; (3) the structural risk minimization 
principle; (4) the support vector machine (SVM) algorithm that implements the structure risk 
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minimization principle. The key theorem of learning theory and the boundary of convergence of 
the learning process are the two most important foundations for further research on related topics, 
such as the structural risk minimization and the SVM. 
 
Although the SLT has reached a level of high maturity, there are still some problems to be solved, 
for example, the development of SLT and SVM is based on probability space and real-valued 
random sample (real-valued random variables). In the real world, there are many non-probability 
space (such as the Sugeno measure space [25], credibility measure space [26]) and non-real 
random samples (such as fuzzy sample [27], fuzzy random sample [28], and fuzzy complex 
random samples [29]). In order to solve these problems, the expansions of the SLT in non-
probabilistic space and non-real random samples have become an urgent need to move forward. 
Some studies have been achieved along this line [29-35]. For example, Ha et al. [29-31] studied 
the key theorem and the generalized boundary on Sugeno measure probability space and quasi-
probability measure space; Tian et al. [17] investigated the construction of statistical learning 
theory based on fuzzy random samples and fuzzy complex random samples; Lin et al. [15] 
constructed fuzzy support vector machine based on random sample. 
 
Intuitionistic (IF, for short) set, originated by Atanassov [36-41], is an important concept used to 
cope with imperfect and/or imprecise information. It is an intuitively straightforward extension of 
Zadeh’s fuzzy sets [42]: while a fuzzy set gives a degree to which an element belongs to a set, an 
intuitionistic fuzzy set gives both a membership degree and a non-membership degree. The 
membership and non-membership values induce an indeterminacy index, which models the 
hesitancy of deciding the degree to which an object satisfies a particular property. As the basis for 
the study of IF set theory, many operations and relations over IF sets were introduced [36-41]. 
Many concepts in fuzzy set theory were also extended to IF set theory, such as IF relations, 
intuitionistic L-fuzzy sets, IF implication, IF logics, and the degree of similarity between IF sets, 
etc., [43-50]. For a further study for the structure of IF sets, construction theorems of IF sets, IF 
topology and the axiomatic characterization of IF sets have been investigated [43,46,51,52]. 
Recently, IF set theory has been successfully applied in decision analysis and pattern recognition 
(see, e.g., [53-58]). 
 
However, the study for the combination of IF set theory and statistical learning theory is still 
blank. This paper discusses the statistical learning theory based on intuitionistic fuzzy random 
samples by combining intuitionistic fuzzy analysis and SLT, revisits the major parts of the SLT 
and establishes some ground material for further development of classifiers such as support vector 
machines. This paper is organized as follows: Section 2 introduces some basic definitions, 
elaborates on a number of properties of intuitionistic fuzzy random variables. In Section 3, we 
prove the key theorem of learning theory based on intuitionistic fuzzy random samples. In the 
sequel, in Section 4, the bounds of the rate of uniform convergence of learning process based on 
intuitionistic fuzzy random samples are discussed. The final section offers the conclusions and 
brings prospects of potential future developments. 
 

2 Preliminaries 
 
Throughout this paper, we let ( ), ,PΩ A  be a probability measure space andR be the real numbers 

field. 
Definition 2.1 [28]. A fuzzy number is a fuzzy set [ ]: 0,1X →R �  with the following properties: 
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(1) X is normal, i.e., there existsx∈R such that ( ) 1X x = ; 

(2) X is upper semi-continuous; 

(3) ( ){ }supp : 0X cl x X x= ∈ >R is compact; 

(4) X is a convex fuzzy set, i.e., ( )( ) ( ) ( )( )1 min ,X x y X x X yλ λ+ − ≥ , for ,x y∀ ∈R  and 

[ ]0,1λ ∈ . 

 
Let ( )F R be the family of all fuzzy numbers onR . For a fuzzy setX , if we define 

 

( ) ( ){ }: ,0 1

supp , 0r

x X x r r
X

X r

 ≥ < ≤= 
=

, 

 
then it follows that X  is a fuzzy number if and only if ( )1

X ≠ ∅  and ( )r
X  is a closed bounded 

interval for each [0,1]r ∈ . Therefore, a fuzzy number X  is completely determined by the 

intervals( )r
X . 

 

Let ( ),X Y F∈ R , [0,1]r∀ ∈ , ( ) ( ) ( ),
r r r

X X X
− + =

 
and( ) ( ) ( ),

r r r
Y Y Y

− + =
 

. Define 

 

[ ]
( ) ( ) ( ) ( ){ }

0,1
,

r r r r r
X Y XY YX

− − + +

∈
 ± = ± ±
 

∪ . 

 

Let us introduce a partially ordered relation on( )F R as follow: for any ( ),X Y F∈ R , we say

X Y≤ , iff [ ] ( ) ( )0,1 ,
r r

r X Y∀ ∈ ≤  i.e., ( ) ( )r r
X Y

− −≤ and( ) ( )r r
X Y

+ +≤ . 

 
Definition 2.2 [28]. A fuzzy number valued function ( ): Fξ Ω → R is called fuzzy random 

variable if for every closed subsetB of R , the fuzzy set ( )1 Bξ −  is measurable when considered 

as a function from Ω  to [0,1] , where ( )1 Bξ −  denotes the fuzzy subset of Ω  defined by 

( )( ) ( )( )1 sup
x B

B xξ ω ξ ω−

∈
=  for every ω ∈Ω . 

Definition 2.3 [28]. A fuzzy random variable ( ) ( ) ( ){ }+= , 0 1r r rξ ω ξ ω ξ ω−  < ≤   is called 

integrable if for each [ ]0,1r ∈ , ( )rξ ω−  and ( )+
rξ ω  are integrable, or equivalently dPξ < ∞∫ , 

where { }0 0max ,ξ ξ ξ− += . In this case, the expected value of ξ  is defined in the following 

manner 
 

{ }, 0 1r rE dP dP dP rξ ξ ξ ξ− + = = < ≤ ∫ ∫ ∫ . 

 

Definition 2.4 [36]. LetU be a nonempty set. An intuitionistic fuzzy set A  in U  is an object 

having the form ( ) ( ){ }, ,A AA x x x x Uµ ν= ∈ , 
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where [ ]: 0,1A Uµ →  and [ ]: 0,1A Uν →  satisfy 0 1A Aµ ν≤ + ≤  for all x U∈ , and ( )A xµ  and 

( )xν  are, respectively, called the degree of membership and the degree of non-membership of the 

element x U∈  to A . The complement of an IF set A  is denoted by

( ) ( ){ }, ,c
AA x x x x Uν µ= ∈ . 

 

Obviously, every fuzzy set ( ){ } ( ){ }, , AA x A x x U x x x Uµ= ∈ = ∈  can be identified with the 

IF set of the form ( ) ( ){ }, ,1A Ax x x x Uµ µ− ∈  and is thus an IF set. 

 
We introduce some basic operations about IF sets as follows [36-41,55,56]: 

 
Let A andB be two IF sets, then 

 

A B⊆  iff ( ) ( )A Bx xµ µ≤  and ( ) ( )A Bx xν ν≤  for all x U∈ , 

A B⊇  iff B A⊆ , 

A B=  iff A B⊆  and B A⊆ , i.e., ( ) ( )A Bx xµ µ=  and ( ) ( )A Bx xν ν=  for anyx U∈ , 

( ) ( ) ( ) ( ){ }, ,A B A BA B x x x x x x Uµ µ ν ν= ∧ ∨ ∈∩ , 

( ) ( ) ( ) ( ){ }, ,A B A BA B x x x x x x Uµ µ ν ν= ∨ ∧ ∈∪ , 

[ ], 0,1 , 1α β α β∀ ∈ + ≤ , ( ) ( ) ( ){ }, , ,A AA x x x x Uα β α µ β ν= ∧ ∨ ∈ . 

 

Definition 2.5 [41]. Let A be an IF set and [ ], 0,1α β ∈ with 1α β+ ≤ , the ( ),α β − level cut set of

A , denoted byAβ
α , is defined as follows: 

 

( ) ( ){ },A AA x U x xβ
α µ α ν β= ∈ ≥ ≤  

 

( ){ }AA x U xα µ α= ∈ ≥ and ( ){ }AA x U xα µ α+ = ∈ > are, respectively, called the α − level cut 

set and the strong α − level cut set of membership generated byA . And ( ){ }AA x U xβ ν β= ∈ ≤  

and ( ){ }AA x U xβ ν β+ = ∈ <  are, respectively, referred to as the β − level cut set and the strong 

β − level cut set of non-membership generated by A . 

 
Proposition 2.1. Let ( ) [ ], , 0,1A IF U α β∈ ∈ and 1α β+ ≤ . Then 

 

( ) ( ) ( ) ( ), , , ,A A A A Aβ β β β
α α α αα β α β α β α β+ +

+ += = = =∪ ∪ ∪ ∪ . 

 
Proof. We have only to prove that the equation ( ),A Aβ

αα β=∪ holds for anyx U∈ . The other 

equations can be proved in a similar way. On one hand, we have 
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( ) ( ) ( ) ( ) ( )( )

( )
( )( )( ) ( )

( )( )( )
( )

( )

, ,

0 1

0
.

A A

A

A A

x x

A
x

x x A x

A x A x

x

β β
α α

β
αα β α β

β β
α αα µ µ α

α µ

µ µ α

α α

α µ
≤ ≤ < ≤

≤ ≤

= ∨ = ∨ ∧

= ∨ ∧ ∨ ∨ ∧

= ∨ =

∪

 

 
  On the other hand, we have 
 

( ) ( ) ( ) ( ) ( )( )( )

( )
( )( )( )( ) ( )

( )( )( )( )
( )

( )

, ,

0 1

1

1

1 1

.

A A

A

A A

x x

A
x

x x A x

A x A x

x

β β
α α

β
αα β α β

β β
α αβ ν ν β

ν β

ν ν β

β β

β ν
≤ ≤ < ≤

< ≤

= ∧ = ∧ ∨ −

= ∧ ∨ − ∧ ∧ ∨ −

= ∧ =

∪

 

 
Thus ( ),A Aβ

αα β=∪ . 

 

Definition 2.6 [41]. The IF set ( ) ( ){ }, ,A AA x x x xµ ν= ∈R is called an IF number if and only if

Aµ and c
Aν are two fuzzy numbers, where 1c

A Aν ν= − . 
 
The family of all intuitionistic fuzzy numbers is denoted by ( )IF R . 

 
Proposition 2.2. Let ( )A IF∈ R . Then the membership function ( )A xµ and non-membership 

function ( )A xν have the following properties: 

 

(1) [ ]: 0,1Aµ →R is an upper semi-continuous function and [ ]: 0,1Aµ →R is a lower semi-

continuous function; 

(2) ( ) 0A xµ = , ( ] [ ), ,x c d∀ ∈ −∞ +∞∪ , ( ) 1A xν = , ( ] [ ), ,x e f∀ ∈ −∞ +∞∪ ; 

(3) ( ) ( )1, 0A Ax xµ ν= = , [ ],x a b∀ ∈ ; 

(4) ( )A xµ is strictly monotonously increasing on [ ],c a and strictly monotonously decreasing 

on [ ],b d ; ( )A xν is strictly monotonously decreasing on [ ],e a and strictly monotonously 

increasing on [ ],b f . 

 
Definition 2.7. Some Operations on ( )IF R are defined as follows: 

 

( ),A B IF∀ ∈ R , 

 

( ) ( )( ) ( ) ( )( ), sup , inf ,A B A Bx y zx y z
A B z x y x y x y Uµ µ ν ν

+ =+ =

 
+ = ∧ ∨ ∈ 

 
; 
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, , ,A A

z z
A z z x x Uρ µ ν ρ

ρ ρ
     = = ∈    

     
, 0ρ ≠ ; 

 
  If 0ρ = , then 
 

( ) ( ){ }
0

sup , 0

0, 0

A
A

x x U z
z

z

µ
µ

 ∈ == 
≠

, ( ) ( ){ }
0

inf , 0

1, 0

A
A

x x U z
z

z

ν
ν

 ∈ == 
≠

. 

 
Proposition 2.3. Let ( ),A B IF∈ R . And ( ),α β − level cut set ofA andB are denoted by 

 

  ( ), , , , ,L R L R
A A A AAβ

α µ µ ν ν α β =   , ( ), , , , ,L R L R
B B B BBβ

α µ µ ν ν α β =   . Then we have 

  ( ) [ ]{ }, , , , , , 0,1 , 1L L R R L L R R
A B A B A B A BA B µ µ µ µ ν ν ν ν α β α β α β + = + + + + ∈ + ≤  , 

  
( ) [ ]{ }
( ) [ ]{ }

, , , , , , 0,1 , 1 , 0

, , , , , , 0,1 , 1 , 0

L R L R
A A A A

R L R L
A A A A

if
A

if

ρµ ρµ ρν ρν α β α β α β ρ
ρ

ρµ ρµ ρν ρν α β α β α β ρ

   ∈ + ≤ ≥ = 
  ∈ + ≤ <  

. 

 

Definition 2.8 [41]. Let ( ) ( ){ } ( ) ( ){ } ( ), , , , ,A A B BA x x x x U B x x x x U IFµ ν µ ν= ∈ = ∈ ∈ R .  

 
Define A B≤  if A Bµ µ≤ and c c

A Bν ν≤ ; A B=  if A B≤  andB A≤ ; A B<  if A B≤ andA B≠ . 

  Obviously, ( )( ),IF ≤R is a partially ordered set. 

 
Definition 2.9. Let ( )S IF⊆ R and ( )M IF∈ R . We say that M is the supremum of the setS if 

the following two conditions are satisfied: 
 
  (1) for anyA S∈ , A M≤ , i.e., M is the upper bound of the setS ; 
  (2) for any the upper bound N of S , M N≤ . 
 
Similarly, we can define the infimum of the setS . 

 
Let ( )RK  be a family of all the nonempty compact convex subsets ofR . If ( ),A B∈ RK , then 

the Hausdorff metric is defined by 

( ) ( ) ( ), max supinf , ,supinf ,H y B x Ax A y B

d A B d x y d x y
∈ ∈∈ ∈

 =  
 

, 

 

where ( ),d x y denotes the distance between two real numbersx andy . 

Let us define a consistent Hausdorff metric in( )IF R to be in the following form 
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( )
[ ]

( ) ( ){ }

( ) ( ){ }
( ) ( ){ }

, 0,1
1

, sup max , , ,

max , , ,

max , , ,

H H

A B A B

c c
A B A B

d A B d A B d A B

d d

d d

β β
α α

α β
α β

µ µ ν ν

µ µ ν ν

∈
+ ≤

=

=

=

 

 

where ( ) ( ){ } ( ) ( ){ } ( ), , , , ,A A B BA x x x x U B x x x x U IFµ ν µ ν= ∈ = ∈ ∈ R . 

Proposition 2.4. If ( ), ,A B C IF∈ R , then ( ) ( ) ( ), , ,d A B d B C d A C+ ≥ . 

Proposition 2.5. If ( ), ,A B C IF∈ R andA B C≥ ≥ , then ( ) ( ), ,d A C d A B≥ and ( ) ( ), ,d A C d B C≥ . 

 
Definition 2.10. Let ( ), ,PΩ A be a probability measure space. An intuitionistic fuzzy number 

valued mapping ( ): IFξ Ω → R , ( ) ( ) ( ) ( ) ( ){ }, ,x x x xξ ω ξ ωω ξ ω µ ν→ = ∈R  is called an 

intuitionistic fuzzy random variable if ξµ and c
ξν are two fuzzy random variables defined on 

( ), ,PΩ A , where ( ):ξ ξ ωµ ω µ→ , ( ):ξ ξ ων ω ν→ and 1c
ξ ξν ν= − . 

 

Definition 2.11 Let ( ) ( ) ( ) ( ) ( ){ }, ,x x x xξ ω ξ ωξ ω µ ν= ∈R  be the intuitionistic fuzzy random 

variable defined on( ),Ω A . We called 

 

( ) ( ){ } ( ) ( ){ },Z ZF Z P Z P ξ ω ξ ωξ ω µ µ ν ν= ≤ = ≤ ≥  

as the distribution function of ξ , where ( ) ( ){ } ( ), ,Z ZZ x x x x IFµ ν= ∈ ∈R R . 

 

Definition 2.12. We call ( ) ( ) ( ) ( ) ( ){ }, ,x x x xξ ω ξ ωξ ω µ ν= ∈R  integrable if ξµ and c
ξν are 

integrable. In this case, we define the mathematical expectation ofξ  as the following manner 
 

( ) ( ) ( ) ( ) ( ){ }
( ) [ ]{ }

, ,

, , , , , , 0,1 , 1L R L R

E dP x E x E x x

dP dP dP dP

ξ ξ

ξ ξ ξ ξ

ξ ξ µ ν

µ µ ν ν α β α β α β

= = ∈

 = ∈ + ≤ 

∫

∫ ∫ ∫ ∫

R

, 

 

where ( ) ( )1 cE Eξ ξν ν= − . 

 
Proposition 2.6. Let ξ  be an intuitionistic fuzzy random variable, then the following equalities 
 

1. ( ){ } ( ) ( ) ( )E E E E
β β β

α αα
ξ ξ ξ ξ= = ∩ for 0 1r< ≤ ; 

2. ( )E c cEξ ξ= , wheneverc∈R ; 

3. ( )1 2 1 2E E Eξ ξ ξ ξ± = ±  

hold. 
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Definition 2.13. Assume that ( ) ( ){ }, , , 1,2,
n nn x x x x U nξ ξξ µ ν= ∈ = ⋯ is a collection of 

intuitionistic fuzzy random variables. 
 

(1)  If the fuzzy random variables sequence, 1,2,
n

nξµ = ⋯and , 1,2,
n

c nξν = ⋯are respectively 

mutually independent, then , 1,2,n nξ = ⋯ is called a collection of mutually independent 

intuitionistic fuzzy random variables. 
(2)  If , 1,2,

n
nξµ = ⋯  and , 1,2,

n

c nξν = ⋯  are two sequences of identically distributed fuzzy 

random vectors, then , 1,2,n nξ = ⋯ is referred to as a sequence of identically distributed 
intuitionistic fuzzy random variables. 

 
Definition 2.14. Let , 1,2,n nξ = ⋯be a sequence of intuitionistic fuzzy random variables and let 

ξ  be an intuitionistic fuzzy random variable (or an intuitionistic fuzzy number). If 0ε∀ > , 

 

( ) ( )( ){ }lim , 0n
n

P dω ξ ω ξ ω ε
→∞

> = , 

 
then  nξ  converge in probability P  to ξ , denoted by 
 

,P
n nξ ξ→ → ∞ , or lim n

n
ξ ξ

→∞
= . 

 

Theorem 2.1. Suppose that ( ) ( ){ }, , , 1,2,
n nn x x x x U nξ ξξ µ ν= ∈ = ⋯ is a sequence of 

intuitionistic fuzzy random variables and ( ) ( ){ }, ,x x x x Uξ ξξ µ ν= ∈  is an intuitionistic fuzzy 

random variable. Then, P
nξ ξ→  if and only if 

n

P
ξ ξµ µ→  and

n

P
ξ ξν ν→ . 

Proof. By the definition of Hausdorff metric in ( )IF R , we have 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , ,
n n n nn n nd d d d d d dξ ξ ξ ξ ξ ξ ξ ξµ µ ξ ξ ν ν ξ ξ ξ ξ µ µ ν ν≤ ≤ ≤ + . 

 
Hence, 
 

 ( ){ } ( ) ( ){ } ( ) ( ), , , , ,
2 2n n n nnP d P d d P d P dξ ξ ξ ξ ξ ξ ξ ξ
ε εξ ξ ε µ µ ν ν ε µ µ ν ν   > ≤ + > ≤ > + >   

   
. 

 
The theorem is easily proven. 
 
Theorem 2.2 (The strong law of large numbers of fuzzy random variables) [28]. Let

{ }, 1,2,n nξ = ⋯ be a sequence of independent and identically distributed fuzzy random variables 

with 1E ξ < ∞ . Then we have 

1
1

1
,

n
P

j
j

E n
n

ξ ξ
=

→ → ∞∑ . 
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Theorem 2.3 (The strong law of large numbers of intuitionistic fuzzy random variables). Let 

{ }, 1,2,n nξ = ⋯ be a sequence of independent and identically distributed intuitionistic fuzzy 

random variables with
1

E ξµ < ∞ and
1

E ξν < ∞ . Then 

 

1
1

1
,

n
P

j
j

E n
n

ξ ξ
=

→ → ∞∑ . 

 
Proof. It follows from Theorem 2.2 and Proposition 2.3. 
                                                                                                                                                                                           

3  The Key Theorem of Learning Theory Based on Intuitionistic 
Fuzzy Random Samples 

 
Let , 1, 2, ,j j lξ = ⋯ be a sequence of independent and identically distributed intuitionistic fuzzy 

random samples whose distribution is given as( )F ξ . 

 
Definition 3.1. We call ( ) ( ) ( ), ,ifR E Q Q dPα ξ α ξ α= =   ∫ ,α ∈ Λ , where Λ is an index set and

( ),Q ξ α denotes the loss functional, the expected risk functional on the basis of intuitionistic 

fuzzy random samples. It could be considered as the intuitionistic fuzzy expected risk functional. 

Definition 3.2. ( ) ( )
1

1
,

l

ifemp j
j

R Q
l

α ξ α
=

= ∑ , α ∈ Λ is called the intuitionistic fuzzy empirical risk 

functional. 
 
Let the risk functional obtain its minimum at( )0,Q ξ α and the empirical risk functional obtain its 

minimum at ( ), lQ ξ α . 

 
Definition  3.3. We minimize ( )ifempR α  to replace ( )ifR α  and refer to the function ( ), lQ ξ α  as 

an approximation to the function ( )0,Q ξ α . We call this principle the intuitionistic fuzzy 

empirical risk minimization principle. 
 
Definition  3.4. If the following two sequences converge in probability to the same limit: 

( ) ( )infP
if l ifl

R R
α

α α→∞ ∈Λ
→ , 

( ) ( )infP
ifemp l ifl

R R
α

α α→∞ ∈Λ
→ , 

then the intuitionistic fuzzy empirical risk minimization principle is consistent for the set of 

functions ( ),Q ξ α ,α ∈ Λ  and for the distribution functional ( )F ξ  

 
Definition  3.5. If for any nonempty subset ( ) ( ),C C IFΛ ∈ R of this set of functions such that 

( ) ( ){ }: ,C Q dP Cα ξ αΛ = ≥∫  the convergence 
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( )
( )

( )
( )inf infP

ifemp iflC C
R R

α α
α α→∞∈Λ ∈Λ

→ , 

 
then the intuitionistic fuzzy empirical risk minimization principle is strictly consistent for the set 
of function ( ),Q ξ α ,α ∈ Λ and the distribution function ( )F ξ . 

 
Remark 3.1. We only consider the sequence of intuitionistic fuzzy random variables that are 

partially ordered" "≤ . We denote by ( ) ( )( )( ),if ifempd R Rα α
≥

 the Hausdorff metric when

( ) ( )ifemp ifR Rα α≤ . 

 
Theorem 3.1 (The key theorem of learning theory based on intuitionistic fuzzy random samples). 
Suppose that there exist two intuitionistic fuzzy numbers 1W  and 2W , such that for all functions in 

the set ( ),Q ξ α , α ∈ Λ , and for a given distributed function ( )F ξ , the inequalities 

( )1 2,W Q dP Wξ α≤ ≤∫  hold true. Then the sufficient and necessary conditions for the strict 

consistency of IFERM principle is that the convergence 
 

( ) ( )( )( ){ }sup , 0if ifemp l
P d R R

α
α α ε →∞≥∈Λ

> →  

 
holds for any 0ε > . 
 
Proof. Necessary: By Definition 3.5 for the set( ) ( ){ }: ifC R Cα αΛ = ≥ , we have 

 
        

( )
( )

( )
( )inf infP

ifemp iflC C
R R

α α
α α→∞∈Λ ∈Λ

→                              (3.1) 

 

We denote by A  the event of the form ( ) ( )( )( )sup ,if ifempd R R
α

α α ε
≥∈Λ

> . 

Suppose that A holds. Then there exists ( )* Cα ∈ Λ such that ( ) ( )( )( )* *,if ifempd R Rα α ε
≥

> . We 

can find 1 2kW a W≤ ≤ , such that ( )*
kaα ∈ Λ and ( )( )( )* ,

2if kd R a
εα

≥
< . Then for these ( )kaΛ  

the inequalities 

( )
( )

( )* , inf
2k

if ifa
d R R

α

εα α
∈Λ ≥

   <    
and ( )

( )
( )* inf

k
ifemp ifemp

a
R R

α
α α

∈Λ
≥  

hold true. 
Therefore 
 

( )
( )

( )
( )

( ) ( )
( ) ( ) ( )

( )* *

inf , inf

, inf , inf
2

k k

k k

if ifempa a

if ifemp if ifa a

d R R

d R R d R R

α α

α α

α α

εα α α α

∈Λ ∈Λ ≥

∈Λ ∈Λ≥ ≥

  
    

      ≥ − >            

. 
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According to (3.1), we have 

( )
( )

( )
( )inf , inf 0

2k k
if ifemp la a

P d R R
α α

εα α →∞∈Λ ∈Λ ≥

    > →      
. 

 

Denote by kT  the event
( )

( )
( )

( )inf , inf
2k k

if ifemp
a a

d R R
α α

εα α
∈Λ ∈Λ ≥

   >    
, then k

k

A T⊆∪ , 

( ) 0k l
k

P A P T →∞

 ≤ → 
 
∪ . 

Hence 

         ( ) ( )( )( ){ }sup , 0if ifemp lP d R R
α

α α ε →∞≥∈Λ
> →                             (3.2) 

Sufficiency: We denote by A  the event 
( )

( )
( )

( )( ){ }: inf , infif ifemp
C C

d R R
α α

ω α α ε
∈Λ ∈Λ

>
 

 

( )
( )

( )
( )( )1 : inf , infifemp ifC C

A d R R
α α

ω α α ε
∈Λ ∈Λ ≥

  = >  
  

 

( )
( )

( )
( )( )2 : inf , infif ifempC C

A d R R
α α

ω α α ε
∈Λ ∈Λ ≥

  = >  
  

. 

Then 1 2A A A= ∪ , and ( ) ( ) ( )1 2P A P A P A≤ + . 

Suppose that the event 1A  occurs, we can find ( ) ( )*, ,Q Cξ α α ∗ ∈ Λ , such that 

( )
( )

( )( )* , inf
2if ifC

d R R
α

εα α
∈Λ ≥

  < 
 

and ( )
( )

( )infifemp ifemp
C

R R
α

α α∗

∈Λ
≥ . 

By
( )

( )
( )

( )( )inf , infifemp ifC C
d R R

α α
α α ε

∈Λ ∈Λ ≥

  > 
 

, we have 

( )
( )

( )( )* , infifemp if
C

d R R
α

α α ε
∈Λ ≥

  > 
 

. 

Therefore 

( ) ( )( )( )* *,
2ifemp ifd R R
εα α

≥
> . 

 
In virtue of the monotonicity of probability and the strong law of large numbers of intuitionistic 
fuzzy random variables, we obtain 

( ) ( ) ( )( )( )* *
1 , 0

2ifemp if l
P A P d R R

εα α →∞≥

 ≤ > → 
 

. 

On the other hand, if the event 2A  takes place, we can find( ) ( )** **, ,Q Cξ α α ∈ Λ , such that 

( )
( ) ( )( )**inf ,

2if ifempC
d R R

α

εα α
∈Λ ≥

  > 
 

 and ( )
( )

( )** infif if
C

R R
α

α α
∈Λ

≥ . 

Then 
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( ) ( )( )( )** **,
2if ifempd R R
εα α

≥
> . 

Therefore 

( ) ( ) ( )( )( )
( ) ( )( )( )

** **
2 ,

2

sup , 0.
2

if ifemp

if ifemp l

P A P d R R

P d R R
α

εα α

εα α

≥

→∞≥∈Λ

 ≤ > 
 

 ≤ > → 
 

 

Hence 
 

( ) ( ) ( )1 2 0
l

P A P A P A →∞≤ + → . 

 
The theorem has been proved. 
The samples become fuzzy random samples when1ξ ξν µ= − . Then we have 

 
Corollary 3.1 [29]. Let the set of functions ( ), ,Q ξ α α ∈ Λ , satisfies ( )X R Yα≤ ≤ . Then the 

sufficient and necessary condition for the strict consistency of FERM principle is the convergence 

( ) ( )( )( ){ }lim sup , 0f femp
l

P D R R
α

α α ε
≥→∞ ∈Λ

> =  

is valid. 
 

The samples become random samples in the usual sense when the samples are not represented as 
fuzzy sets, and let d  be the subtraction of real numbers. Then we have 
 
Corollary 3.2 [3]. Assume that there exist the constants a  and A  such that for all functions in 

the set ( ), ,Q ξ α α ∈Λ , and for a given distribution function( )F ξ , the inequalities 

( ) ,a R Aα α≤ ≤ ∈ Λ  

hold true. Then the following two statements are equivalent: 
 

1.  For the given distribution function( )F ξ , the empirical risk minimization method is 

strictly consistent on the set of functions( ), ,Q ξ α α ∈ Λ . 

2.  For the given distribution function( )F ξ , the uniform one-sided convergence of the 

means to their mathematical expectation takes place over the set of functions

( ), ,Q ξ α α ∈Λ . 

 

4 Bounds of the Rate of Uniform Convergence of Intuitionistic 
Fuzzy Random Samples 

 
In statistical learning theory, the important conclusions about the relationship between empirical 
risk and actual risk form the promotion of some boundary. They are essential to learning machine 
capacity analysis and the development of new learning algorithms. An important part of the rate of 
convergence of learning processes is the generalization bounds. In this section, consensus 
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convergence of learning process based on intuitionistic fuzzy random samples is discussed. We 
consider the model where a set of intuitionistic fuzzy measurable functions ( ), ,Q ξ α α ∈Λ  

contains a finite numberN of elements ( ), , 1,2, ,kQ k Nξ α = ⋯ . At first, we introduce a basic 

theorem: 

Theorem 4.1[28,29]. Let ( ) ( ) [ ]{ }, 0,1 , 1,2, ,j j jr r
r j nξ ξ ξ

− + = ∈ =  
⋯ be a sequence of fuzzy 

random variables, and ( ) ( ),j jr r
ξ ξ

− +
have the limited variance and the same upper boundsM . Then 

 

2
1

1 2
,

n

j j
j

M
P d E

n n
ξ ξ ε

ε=

   ≥ ≤   
   

∑ . 

 

Theorem 4.2. Let ( ) ( ){ }, , , 1,2, ,
j jj x x x x U j nξ ξξ µ ν= ∈ = ⋯ be a sequence of intuitionistic 

fuzzy random variables, ( ) ( ),
j jr r

ξ ξµ µ
− +

and ( ) ( ),
j jr r

ξ ξν ν
− +

 have the limited variance and the same 

upper bounds 1M  and 2M , respectively. Then  
 

( )1 2

2
1

81
,

n

j j
j

M M
P d E

n n
ξ ξ ε

ε=

  +  ≥ ≤   
   

∑ . 

 
Proof. According to Theorem 4.1, we have 
 

1 1 1

1 1

1

1 1 1
, max , , ,

1 1
, ,

1 1
,

j j j j

j j j j

j j

n n n

j j
j j j

n n

j j

n

j

P d E P d E d E
n n n

P d E d E
n n

P d E d
n n

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ

ξ ξ ε µ µ ν ν ε

µ µ ν ν ε

µ µ

= = =

= =

=

              ≥ = ≥          
             

     ≤ + ≥     
     

   ≤ +  
  

∑ ∑ ∑

∑ ∑

∑
1

1 1

1 1

1

,

1 1
, , , ,

2 2

1 1
, ,

2 2

1 1
, &

2

j j

j j j j

j j j j

j j

n

j

n n

j j

n n

j j

n

j

E

P d E or d E
n n

P d E P d E
n n

P d E d
n

ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ

ν ν ε

ε εµ µ ν ν

ε εµ µ ν ν

εµ µ

=

= =

= =

=

 ≥ 
 

    ≤ ≥ ≥        

       = ≥ + ≥ −      
      

   ≥ 
 

∑

∑ ∑

∑ ∑

∑
1

1 1

1 2 1 2
2 2 2

,
2

1 1
, ,

2 2

8 8 8( )

j j

j j j j

n

j

n n

j j

E
n

P d E P d E
n n

M M M M

n n n

ξ ξ

ξ ξ ξ ξ

εν ν

ε εµ µ ν ν

ε ε ε

=

= =

  ≥ 
  

       ≤ ≥ + ≥      
      

+
≤ + =

∑

∑ ∑
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Theorem 4.3. Suppose that ( ), , 1,2, ,kQ k Nξ α = ⋯  is a set of the functions, ( ),E Q ξ α    exists 

and satisfies the conditions of Theorem 4.2. Then the following inequality  

( ) ( )( )( ) ( )1 28
,if l ifemp l

N M M
d R R

l
α α

η≥

+
≤  

holds with probability of at least1 η− . 

Proof. 

( ) ( )( )( ){ } ( ) ( )( )( ){ }
( )

1 1

1 2

2

sup , ,

8

N

if k ifemp k if k ifemp k
k N k

P d R R P d R R

M M
N

l

α α ε α α ε

ε

≥ ≥≤ ≤ =

> ≤ >

+
≤ ⋅

∑
 

 

Let
( )1 2

2

8 M M
N

l
η

ε
+

⋅ = , we conclude that
( )1 28N M M

l
ε

η
+

= . 

Therefore 

( ) ( )( )( ) ( )1 28
, 1if l ifemp l

N M M
P d R R

l
α α η

η≥

 + ≤ ≥ − 
  

. 

 
Theorem 4.4. The inequality 

( ) ( )( )( ) ( )1 2
0

2
, 2if l if

N M M
d R R

l
α α

η≥

+
≤  

is satisfied with probability of at least 1 2η− . 

Proof. Considering the properties of d and Theorem 4.3, we have 
 

( ) ( )( )( ) ( ) ( )( )( ) ( ) ( )( )
( ) ( )( )( ) ( ) ( )( )( )
( )

0 0

0 0

1 2

, , ,

, ,

8
2 .

if l if if l ifemp l ifemp l if

if l ifemp l ifemp if

d R R d R R d R R

d R R d R R

N M M

l

α α α α α α

α α α α

η

≥ ≥

≥ ≥

≤ +

≤ +

+
≤

 

 
Let the following relationships hold 
 

( ) ( )( )( ) ( )1 28
: ,if l ifemp l

N M M
A d R R

l
α α

η≥

+
≤ ; 

( ) ( )( )( ) ( )1 2
0 0

8
: ,ifemp if

N M M
B d R R

l
α α

η≥

+
≤ ; 

( ) ( )( )( ) ( )1 2
0

8
: , 2if l if

N M M
C d R R

l
α α

η≥

+
≤ , 

and ( ) ( )1 ; 1P A P Bη η≥ − ≥ − . 
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We can conclude that C  must hold true in virtue of A  and B  true, then ( ) ( )P C P AB≥ . 

Therefore 

( ) ( ) ( )( ) ( ) ( )1 1 1 2
c c cP C P AB P AB P A P B η≥ = − ≥ − − ≥ − . 

The theorem is proved. 

When the samples are the fuzzy random samples, let ( ) ( ) ( ) { }( )0, ,f lR d Q dF Iα ξ α ξ= ∫ and

( ) ( ) { }0
1

1
, ,

l

femp l k
k

R d Q I
n

α ξ α
=

 =  
 
∑ . Then we have 

 
Corollary 4.1[28,29]. Suppose that ( ), ,kQ ξ α  1,2, ,k N= ⋯ is a set of functions and

( ) ( )( ) ( )( ), , , ,k k kr r r
Q Q Qξ α ξ α ξ α− + =

 
. If ( )( ), k r

Q ξ α −
, ( )( ), k r

Q ξ α +
have the limited variance 

and the same upper boundsM , then 
 

1) ( ) ( ) 2
f l femp l

M
R R

l
α α

η
− ≤ holds true with probability of at least 1 η− . 

2) ( ) ( )0

2
2f l f

M
R R

l
α α

η
− ≤ is satisfied with probability of at least 1 2η− . 

 
Let d  denote the subtraction of real numbers. We use Hoeffding’s inequalities when the samples 
are the random samples in the usual sense. We have 
 
Corollary 4.2[3]. If ( ){ }, , , 1,2, ,k kQ k Nξ α α ∈ Λ = ⋯  is bounded, i.e., ( ), kA Q Bξ α≤ ≤ , then 

1) ( ) ( ) ( ) ln ln

2l emp l

N
R R B A

l

ηα α −− ≤ −  is valid with probability of at least1 η− . 

2) ( ) ( ) ( )0

ln ln ln

2 2l

N
R R B B A

l l

η ηα α − −− ≤ + − holds true with probability of at least1 2η− . 

 

5 Conclusion 
 
This paper discusses the intuitionistic fuzzy numbers and intuitionistic fuzzy random variables. 
We have proved the strong law of large numbers of intuitionistic fuzzy random variables and 
showed some related theorems and useful properties. Furthermore, based on intuitionistic fuzzy 
random samples, we propose the principle of intuitionistic fuzzy empirical risk minimization of 
learning theory, prove the key theorem of learning theory based on intuitionistic fuzzy random 
samples, and discuss the bounds of the rate of uniform convergence of learning process. 
Altogether these findings have laid the foundation for further research in statistical learning theory 
involving intuitionistic fuzzy random samples. Further investigations might focus on such 
fundamental issues as intuitionistic fuzzy structural risk minimization and address the applied 
aspects such as support vector machines based on intuitionistic fuzzy random samples, etc. 
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