
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: 0883-9514 (Print) 1087-6545 (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Approximate Q-Learning for Stacking Problems
with Continuous Production and Retrieval

Judith Fechter, Andreas Beham, Stefan Wagner & Michael Affenzeller

To cite this article: Judith Fechter, Andreas Beham, Stefan Wagner & Michael Affenzeller (2019)
Approximate Q-Learning for Stacking Problems with Continuous Production and Retrieval,
Applied Artificial Intelligence, 33:1, 68-86, DOI: 10.1080/08839514.2018.1525852

To link to this article: https://doi.org/10.1080/08839514.2018.1525852

Published online: 02 Nov 2018.

Submit your article to this journal

Article views: 818

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2018.1525852
https://doi.org/10.1080/08839514.2018.1525852
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2018.1525852
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2018.1525852
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1525852&domain=pdf&date_stamp=2018-11-02
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1525852&domain=pdf&date_stamp=2018-11-02
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2018.1525852#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2018.1525852#tabModule

Approximate Q-Learning for Stacking Problems with
Continuous Production and Retrieval
Judith Fechter, Andreas Beham, Stefan Wagner, and Michael Affenzeller

Heuristic and Evolutionary Algorithms Laboratory, School of Informatics, Communications and Media,
University of Applied Sciences Upper Austria, Hagenberg, Austria

ABSTRACT
This paper presents for the first time a reinforcement learning
algorithm with function approximation for stacking problems
with continuous production and retrieval. The stacking pro-
blem is a hard combinatorial optimization problem. It deals
with the arrangement of items in a localized area, where they
are organized into stacks to allow a delivery in a required
order. Due to the characteristics of stacking problems, for
example, the high number of states, reinforcement learning is
an appropriate method since it allows learning in an unknown
environment. We apply a SarsaðλÞ algorithm to real-world
problem instances arising in steel industry. We use linear func-
tion approximation and elaborate promising characteristics of
instances for this method. Further, we propose features that do
not require specific knowledge about the environment and
hence are applicable to any stacking problem with similar
characteristics. In our experiments we show fast learning of
the applied method and it’s suitability for real-world instances.

Introduction

This paper is about the application of an online reinforcement learning (RL)
algorithm to stacking problems with continuous production and retrieval. The
considered stacking problem ismotivated by a real-world problem instance arising
in steel industry. There steel slabs are continuously produced and need to be
delivered in a certain order or in predefined transport loads, that consist out of up
to four slabs. Since the slabs are not produced in the required delivery sequence,
they need to be rearranged. For that purpose a certain number of buffer stacks
exist. The goal of the optimization is to deliver all slabs in the required order while
minimizing the number of shuffling movements. Figure 1 shows the stacking
problem exemplarily. Here the continuous production and retrieval are repre-
sented by frequently increasing/decreasing production/delivery stacks.

The considered problem has been proposed by (Rei, Kubo, and Pedroso 2008)
as the steel stacking problem. It has been formalized and first heuristic methods

CONTACT Judith Fechter Judith.Fechter@fh-hagenberg.at Heuristic and Evolutionary Algorithms
Laboratory, School of Informatics, Communications and Media, University of Applied Sciences Upper Austria,
Hagenberg Campus, Softwarepark 11, Hagenberg, 4232, Austria

APPLIED ARTIFICIAL INTELLIGENCE
2019, VOL. 33, NO. 1, 68–86
https://doi.org/10.1080/08839514.2018.1525852

© 2018 Taylor & Francis

https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1525852&domain=pdf&date_stamp=2019-01-28

have been developed. In (Rei and Pedroso 2012) further semigreedy heuristics
are proposed and computationally compared regarding the number of con-
structed solutions and the best solution obtained using each heuristic. (Boysen
and Emde 2016) proposed the considered problem as parallel stack loading
problem (PSLP) and developed exact and heuristic solution procedures. A
dynamic programming approach is presented for small instances, for large
instances heuristic rules are presented.

Stacking problems in their general formdealwith the stockpiling of items on top
of each other. Such items can be containers in storage yards (Gharehgozli et al.
2014; Kefi et al. 2009; Salido, Sapena, and Barber 2009; Shin andKim 2015), pallets
in warehouses (Nishi and Konishi 2010) or slabs in the steel industry (Boysen and
Emde 2016; Kim, Koo, and Sambhajirao 2011; Rei and Pedroso 2012; Tang, Zhao,
and Liu 2012; Zäpfel and Wasner 2006). (Caserta et al. 2011a), (Caserta et al.
2011b) and (Lehnfeld and Knust 2014) provide a comprehensive survey on
stacking problems regarding loading, unloading or premarshalling of items.
However, most of the summarized research work address the Blocks Relocation
Problem (BRP) (Caserta et al. 2011a, Kim andHong 2006) or the Pre-Marshalling
Problem (Bortfeldt and Forster 2012). Both problem types consider an initial
configuration of stacks of items. The BRP deals with the rearrangement of items
in order to allow a continuous retrieval in a certain order. The Pre-Marshalling
Problem is about rearranging the initial configuration in order to obtain a new
layout, which allows a later retrieval without further relocations. In contrast to the

Figure 1. Example of a stacking problem with continuous production and retrieval of steel slabs
having a required delivery order.

APPLIED ARTIFICIAL INTELLIGENCE 69

proposed stacking problem, neither the BRP nor the Pre-Marshalling Problem
takes a continuous production of items into account. The considered stacking
problem deals with a continuous input of items (here: slabs) while also having an
ongoing retrieval (see Section 3). Further, as well for the BRP as for the Pre-
Marshalling Problem many solution approaches have been researched and devel-
oped, but none of those instances are solved by using RL, as the surveys by (Caserta
et al. 2011a) and (Lehnfeld and Knust 2014) show.

Stacking problems seem to be reasonably solvable by RL, since it is known
to be very efficient in learning in an unknown environment. It is a machine
learning framework for solving sequential decision problems that can be
modeled as a Markov Decision Process (MDP). An agent interacts with an
initially unknown environment, modifies its actions through trial and error
in order to develop a policy that maximizes a numerical cumulative reward.

Especially, the Q-Learning algorithm can be used to find an optimal policy
without requiring a model of the environment (Sutton and Barto 1998). In
(Hirashima 2008) a marshaling plan for container yard terminals is proposed
obtained by using Q-Learning. The marshaling process is divided into two
stages: In the first stage, the container to be rearranged is selected. In the second
stage, containers to be removed, above the target container from stage one, and
their destination stacks are selected. The Q-values are then updated iteratively
per episode until the destination layout is reached. However, Q-Learning is a so
called offline algorithm, which means that the optimal policy is learned and
updated, no matter which actions the agent actually carries out; whereas an
online algorithm also takes exploratory and randommoves into account (Sutton
and Barto 1998). Further, in Q-Learning all Q-values of each episode are stored
in a look-up table, which requires a lot of memory. In order to reduce the needed
memory size, (Hirashima 2009) present an update rule that limits the length of
an episode and corresponding Q-values in order to avoid ineffective stacking
moves due to preventable long episodes.

Nevertheless, the high number of states, the concomitant requiredmemory size
and the offline/online aspect is a crucial point that makes Q-Learning in real-
world problems impractical. Further, the data needed to fill the look-up tables
accurately is often not available. One approach to solve this is the so-called
approximate RL that combines RL with function approximation. Currently,
there are three methodologies within the focus of the research community differ-
ing in which part of the solution shall be approximated (Van Hasselt 2012, Xu,
Zuo, and Huang 2014): model approximation, value approximation or policy
approximation. Thosemethodologies have receivedmore interests by the research
community in recent years (Busoniu et al. 2010; Melo, Meyn, and Ribeiro 2008;
Tsitsiklis and Roy 1997; Uther and Veloso 1998; Wang, Cheng, and Yi 2007).
Further, (Baird 1995) present a class of residual algorithms with function approx-
imation. The paper proposes RL combined with general function approximation
systems and prove analytically and in experimental tests fast learning with

70 J. FECHTER ET AL.

guaranteed convergence. (Bertsekas and Tsitsiklis 1995) give an overview of
methods that combine ideas from the fields of neural networks, artificial intelli-
gence, cognitive science, simulation, and approximation theory. Further, the paper
describes the use of features for function approximation with neural networks.
(Melo, Meyn, and Ribeiro 2008) analyze the combination of RL with linear
function approximation of the Q-function with infinite state spaces. The paper
investigates the convergence of linear function approximation and of using the
Sarsa algorithm (Sutton and Barto 1998). However, they conclude that the target
function must be close to a linear function to obtain results of practical value. In
(Xu, Zuo, and Huang 2014) a comprehensive survey on recent developments in
RL with function approximation is presented, convergence and feature-based
representations of various methods are analyzed. For general introductions to
RL and derivedmethods we refer to the literature in (Bertsekas and Tsitsiklis 1996;
Busoniu et al. 2010; Sutton and Barto 1998; Szepesvári 2010).

Applications of approximate RL can be found in computer games or practical
applications. RL has been applied to how to play games for many years. The first
application of RL was the game Backgammon (Tesauro 1994). Another popular
game for applying approximate RL is Tetris (Bertsekas and Ioffe 1996; Bertsekas
and Tsitsiklis 1996; Gabillon, Ghavamzadeh, and Scherrer 2013; Tsitsiklis and
van Roy 1996). Further, approximate RL can be applied to packet routing
(Boyan and Littman 1994), job-shop scheduling (Zhang and Dietterich 1995)
or elevator dispatching (Crites and Barto 1996). Also traffic signal control can be
solved with various RL algorithms (Abdulhai, Pringle, and Karakoulas 2003;
Balaji, German, and Srinivasan 2010; Prashanth and Bhatnagar 2011). For
further information on applications, see (Xu, Zuo, and Huang 2014), where a
comprehensive overview of several applied RL algorithms is presented.

Applications of Sarsa(λ) can be found in (McPartland and Gallagher 2011;
Stone, Sutton, and Kuhlmann 2005). In the paper of (McPartland and Gallagher
2011) a tabular version of Sarsa(λ) applied to First Person Shooter Games is
proposed. The state and action spaces are discrete. The paper presents several
results using Sarsa(λ) for training the behaviors of the acting agents. Although
the algorithm was not able to meet the industry standard, the paper shows
successful use of approximate RL. (Stone, Sutton, and Kuhlmann 2005) propose
a SMDP Sarsa(λ) with linear tile-coding function approximation and variable λ
for learning a higher-level decision sequence in RoboCup soccer. The paper
deals with a continuous state space, but discrete action space. The results show
that multiple agents are learning simultaneously very fast and empirical results
prove the efficiency of approximate RL.

The focus of our work is on the methodology of policy approximation in
the sense of storing a policy directly and updating its values in order to
obtain the optimal policy. The Q-values must be learned by the agent to
approximate the optimal Q-function. It is about online learning, whereas the
error between the actions and states that actually occur and the approximated

APPLIED ARTIFICIAL INTELLIGENCE 71

values is minimized (Sutton and Barto 1998). States are represented by so-
called features. They contain information about relevant parts of the envir-
onment and are updated each time an action has been applied (Sutton and
Barto 1998). Currently, the research community focus on developing features
for which no specific knowledge is needed (Prashanth and Bhatnagar 2011).

Our contribution is the development of a feature-based RL-algorithm, namely
Sarsa(λ), applied to a real-world stacking problem. The features do not need
specific knowledge about the environment and hence are applicable to any
stacking problem having similar properties, like continuous production and
retrieval or a certain (un)loading order. In experimental studies, we show fast
learning of the proposed method and good results for real-world problem
instances. Further, we work out for which characteristics of instances the
considered algorithm is best suitable. The paper is organized as follows.
Section 2 provides a short overview of the theory of RL. Section 3 describes
the considered problem. In Section 4, the application of the method, for
example, approximated Q-Learning, to the considered stacking problem is
presented, for which the results are presented in Section 5.

The RL Framework

Reinforcement learning (RL) (Sutton and Barto 1998) is a method of machine
learning designed to allow an autonomous agent to maximize the accumulated
rewards receivedwhile interactingwith its environment. By observing the obtained
rewards and the feedback of the environment, the agent learns to optimally execute
actions until a predefined target is reached. In any problem environment there
exists a set of states, defining the state space S, which can be finite or infinite and
discrete or continuous. A state represents the actual environment conditions as
well as possible follow-up actions. Actions are activities, which an agent is able to
apply in certain states. The action spaceA can be finite or infinite. Beside that, there
can be identified four elements of RL (Sutton and Barto 1998): policy, value
function, reward function, and optionally a model of the environment.

The model of the environment represents the behavior of the agents environ-
ment. Being in a certain state and applying an action, the model may predict the
resultant state and reward. A model can be considered for planning, in the sense
of deciding which actions to take for experiencing future situations before
actually undergoing them. However, those models are often not known or to
complex in case of high dimensions of state and action spaces.

A policy π defines the sequence of actions. Roughly speaking, a determi-
nistic policy is a mapping from states to actions, determining which action
needs to be taken while being in a certain state.

π : S� A! ½0; 1�;
X
a

πðs; aÞ ¼ 1

72 J. FECHTER ET AL.

πðs; aÞ defines the probability of selecting action awhile being in state s. The goal
of RL is to find the optimal policy that maximizes the sum of received rewards in
the long run. Due to the fact that a model of the environment is only optional,
this is usually done by estimating the expected accumulated reward using a value
function. The value function gives the sum of rewards an agent can expect when
being in that state assuming that the agent acts optimally from here on until the
target is reached. Regarding the value function, we distinguish between the state-
value function and the action-value function. The state-value function can be
seen as a mapping from states to the sum of rewards.

VπðsÞ : S! R; VπðsÞ ¼ Eπ Rtjs ¼ st½ �
Similarly, the action-value function is defined as a mapping from state-action
pairs to the sum of rewards.

Qπðs; aÞ : S� A! R; Qπðs; aÞ ¼ Eπ Rtjs ¼ st; a ¼ at½ �
Qπðs; aÞ determines the expected return when starting in state s and perform-
ing action a and following from here on an optimal policy. From the
definition, it can be seen that each policy has a different value function.

Whereas the value function represents which behavior is good in the long run,
the reward function returns an immediate feedback. A reward is a numerical
value for each state after performing an action.

Ra
ss0 ¼ E rtjst ¼ s; stþ1 ¼ s0; at ¼ af g

where rt is the actual reward returned in state s after performing a. The reward
function helps the agent to learn the optimal behavior, in the sense of when
obtaining a low reward the agent learns to not choose that action in that state
anymore and vice versa.

The Stacking Problem

This work considers a stacking problem arising in steel industry at the production
stage.N slabs are continuously cast and come with a production and delivery date.
Slabs belonging to a certain transport load have the same delivery date. After being
cast, slabs are lifted either to the so-called hot storage area to allow for an arranging
process or directly to the delivery stack. The hot storage area consists ofM buffer
stacks, one delivery stack and one crane for moving slabs. Each stack has a
maximum height H. It is important that the slabs are moved to the delivery
stack in assorted loads, for example same delivery dates must be delivered in
common, whereas the order of the loads plays a minor role as long as the loads
are completely produced, given by the delivery date. The challenge is that the order
of the production dates is not identical with the order of the delivery dates. The
optimization goal is to deliver all slabs, respectively transport loads, to the delivery
stack in an assorted order while minimizing shuffling movements.

APPLIED ARTIFICIAL INTELLIGENCE 73

Due to the fact that there are as many possibilities to place a single slab as
stacks exist, a high number of possible states accrues when considering all
slabs; whereas a state describes the position of each slab and the height of
each stack at a certain time (see Section 4.1).

RL in the Stacking Problem

In our work, we developed an online method for finding the optimal stacking
policy. The state-action value function, for example, Q-function, shall be
approximated by a linear function using a gradient-descent SarsaðλÞ algorithm
(Sutton 1988). We use a linear approximation since the convergence can be
guaranteed for a suitable step size (Tsitsiklis and Roy 1997). An advantage of the
SarsaðλÞ algorithm is that nomodel of the environment is required.We focus on
approximating the state-action value functionQt � Qπ that shall be represented
as a parameterized functional form with parameter vector θt. The gradient-
descent update for the state-action value prediction is then

θtþ1 ¼ θt þ αδtet (1)

with a prediction error

δt ¼ rtþ1 þ γQtðstþ1; atþ1Þ � Qtðs; aÞ;
eligibility traces

et ¼ γλet�1 þ �θtQtðst; atÞ; (2)

with e0 ¼ 0 and a step size α. γ is a discount factor, representing the
weighting of states in the past or future. λ influences the learning rate, in
the sense that it determines how many past states shall be recorded as visited
by the eligibility traces (see Section 4.4). The step size α plays an important
role for the convergence of the algorithm. In order to achieve convergence in
stochastic approximation we need to assure (Sutton and Barto 1998):

X1
k¼1

αk ¼ 1^
X1
k¼1

α2k <1; (3)

which means that the step size must be large enough to not get caught by
random behavior, but decrease enough to ensure convergence.

For updating the state-action value function, we use a feature representa-
tion in order to reduce the high dimensionality which is due to the high
number of possible states.

Qt ¼
X
i2Fa

θtðiÞ

where Fa is the set of used features. Features describe the current state and
are weighted by the parameter vector θ (see Section 4.3).

74 J. FECHTER ET AL.

In the following section, the stacking problem and the developed algo-
rithm are described in detail as well as all components of it.

State Space

The state space S is represented by all possible states st. A state st indicates

● the location of each slab being placed on a buffer or delivery stack
within the hot storage area at time t,

● properties of each slab, like length, width, temperature, delivery date,
and transport load number and

Regarding M þ 1 stacks, for example, M buffer stacks and one delivery stack,
N slabs and all possibilities of placing and relocating them we obtain a

dimension of
M þ N
M

� �
at a fixed time t without considering any retrieval

until t, for example having 6 stacks and 35 slabs we get 4.496.388 possibilities
of placing them. Due to the high number of states, we consider an approx-
imate algorithm where each state is represented by a feature vector (see
Section 4.3).

Action Space

The action space A is represented by six possible actions.
Put Action: one slab is moved from the production to a buffer stack.
Put Direct Action: one slab is moved from the production to the delivery

stack.
Relocate Action: one slab is moved from one buffer stack to another buffer

stack.
Remove Action: one slab is moved from a buffer stack to the delivery stack.
Delivery Action: one transport load, consisting of up to four slabs, is

moved away from the delivery stack by a transport vehicle.
NOP Action: nothing happens.
Only slabs being placed on top of a stack can be moved. Hence, whether

an action for a certain slab can be performed depends on the current location
of that slab.

Features

Features represent the state space in the sense that they give information
about the locations of slabs or transport loads. On the one hand, we consider
action features independent of the current state, on the other hand we use

APPLIED ARTIFICIAL INTELLIGENCE 75

state-action features indicating a value for performing a certain action and
getting to a certain state. All used features are binary features.

● State-independent features
– Each type of action

● State-action features
– Relocate action frees/does not occupy slabs of the same load as the

delivery stack contains at the source/target stack
– Relocate action when source stack is unsorted regarding to delivery

dates, for example, earlier dates are beneath later dates
– Relocate action implies that source and target stack are sorted
– Relocate action reduces/does not increase shuffles for the next or any

completely produced load at the source/target stack
– Put action places slabs of the same load at the same stack
– Put action could place the current slab better, for example, slabs of the

same load as the current slab are placed on other stacks than the
chosen target stack

– NOP action in case no improvement can be reached

Features are weighted by the parameter vector θ, that is updated at each time
step, as can be seen in equation (1). Due to the decreasing step size α, the
parameter vector converges as the algorithm proceeds. θ represents the
approximated Q-function. We use binary features in order to keep the
weights in a bounded range.

Eligibility Traces

Eligibility traces support learning by recording which states have recently
been visited. They define how likely each state is eligible for undergoing
learning changes (Sutton and Barto 1998). What “recently” means, that is,
how many states in the past may be remembered, is determined by λ. In case
λ ¼ 0, only the current state is changed by the prediction error. The larger λ,
still λ< 1, the more preceding states are undergoing learning changes. Still,
due to the definition of the traces (equation (2)), the more recent a state is,
the more it is changed. In case λ ¼ 1, only the discount rate γ has an impact
on the effects of preceding states.

Reward Function

The reward function shall support the agent in learning an optimal behavior.
As the goal of our agent is to deliver all transport loads to the delivery stack
with minimal movements, the reward function Ra

ss0 remunerates actions that
support the delivery of slabs and penalizes additional movements: � 10 for

76 J. FECHTER ET AL.

each relocate action, þ 10 for each put-direct or remove action, and þ 100
for each delivery action.

Learning-Algorithm

In our work, a gradient-descent SarsaðλÞ algorithm with linear function
approximation of the state-action value function is applied. It is an online
algorithm that learns in interaction with a simulation framework calculating
current representations of states and rewards. The state-action values are
represented by features, which must be weighted by the algorithm. The
learned weights represent the optimal policy. The simulation runs T epi-
sodes, whereas the agent learns from episode to episode but also within one
episode. In each episode the agent chooses an action for each time step
following an �-greedy policy, that is, with the probability of � a random
action is chosen, with probability 1� � the agent performs the action with
the highest Q-value. The exploration rate � is defined as

�t ¼ 1
t þ 2

; t ¼ 0; . . . ;T;

ensuring that exploration decreases with proceeding episodes. In case of
random moves, the eligibility traces are set to 0, since no learning can be
extracted. The step size α is set to

αt ¼ 1
t þ 2

; t ¼ 0; . . . ;T:

Algorithm 1 presents the applied gradient-descent SarsaðλÞ algorithm with
linear function approximation and binary features.

Experimental Studies

The model is implemented in HeuristicLab (Wagner et al. 2014) using the
framework SimSharp (Beham et al. 2014). Since for the stacking problem
no benchmark instances exist, we have defined nine test instances, avail-
able at the HeuristicLab website [HEAL, 2015]. There are three instances
of varying time horizons and number of slabs, each of them having three
varying complexities. The complexities differ in the time slots between
production and delivery of slabs or transport loads. Figure 2 shows the
schema of the test instances. The abscissa represents the past time from
the beginning of the production. Each column represents a test instance,
having production slots colored in dark gray and delivery slots colored in
light gray. The written number within the column stands for the number
of slabs being produced/delivered within that slot. The number at the end
of each column represents the total number of processed slabs per

APPLIED ARTIFICIAL INTELLIGENCE 77

instance. Test instances of number 1 have a wide time horizon of around
14 hours while processing 20 slabs. Instances of number 2 have a time
horizon of around 4 hours, but processing 27 slabs. Instances of number 3
have a relatively short horizon of 2 hours, while processing 12 slabs. The
second number describes the complexity of the production/delivery order.
Instances marked with .1 have a slight mix of production and delivery. .2
instances show a strictly separated order. Instances of complexity .3 have a
strong mix of productions and deliveries. Each test instance has five buffer
stacks, one delivery stack and one crane.

All tests were calculated on a laptop with an Intel(R) Core(TM) i7-4600U
CPU @2.10 GHz 2.70 GHz processor.

Model Parameters

Based on the content of Section 4.3, we have defined 19 binary features for
representing the states. The discount factor γ is set to 0.8 (γ ¼ 1means no discount
over time). λ is set to 0.7, referring to (Sutton and Barto 1998) concluding that the
peak of performance is reached for λ within the interval 0:7; 0:8½ �.

Exploration and Learning Rate

The exploration rate � is set to 0,5 at the beginning and is gradually
decreasing over time (see Section 4.6). The relatively high rate during the
first episodes ensures that the agent is exploring many actions and conse-
quent rewards, whereas the gradual decrease effects that more promising
actions are taken the more the time proceeds. Beside that, starting with a
relatively high exploration rate guarantees that an acceptable performance is
reached during early episodes. This fact is reflected in the exponential
behavior of the learning curves, discussed in Section 5.3.

Figure 2. Schema of production and delivery order per test instance.

78 J. FECHTER ET AL.

Likewise, the learning rate, or step size, α is set to 0,5 at the beginning
and is gradually decreasing over time. In order to achieve convergence, α
must satisfy equation (3). The decreasing step size effects that the weight-
ing of features is less updated the more the time proceeds, as equation (1)
shows.

Performance Results

Each test instance performed 10 runs, each with 500 episodes. The figures
below show the averaged results over all runs per instance. As the main
objective of RL is to maximize the cumulated reward over time, and the goal
of the considered stacking problem is to minimize shuffling movements, we
present performance results regarding the total reward and the number of
shuffling movements. Further, we discuss results regarding the weighting of
features since this represents the final approximation of the Q-function.
Worth to mention is that each run converged. Divergence only occurs in
case of nondecreasing exploration and learning rates.

Figure 3 shows the learning behavior regarding the total reward obtained
during a run. The light-colored area represents the results of each run. The dark-
colored curve shows the averaged result of 10 runs. The results show that all runs
have an exponential-like shape indicating a fast convergence rate of the model.
This is also due to the high exploration and learning rate during early episodes,
as described in Section 5.2. Further, instances of type 2, for example, having
many processed slabs in a relatively short time horizon, show a wide variance

Figure 3. Total reward obtained per instance over 500 episodes.

APPLIED ARTIFICIAL INTELLIGENCE 79

regarding the behavior of the single runs. Especially instance 2.2 seems hard to
solve referring to the variance of the results. In general, it can be seen that
instances of complexity .2, for example, having strictly separated production/
delivery order, perform widely spread regarding the total reward. As expected,
instances of type 3, for example, having a short time horizon and a little number
of processed slabs, performs best regarding constant results over all runs.
Summarized it can be said that the more mixed the production/delivery order
is, the easier is the instance to solve. This fact is due to the occupancy rate of the
buffer stacks. Since a continuous delivery effects a lower occupancy rate which
makes it easier to deliver the required slabs or transport loads which again effects
a high reward.

Figure 4 shows the learning behavior regarding the shuffling movements.
Again, the light-colored area shows the results of all runs, whereas the dark-
colored curve represents the averaged result. Similarly, we can see the exponen-
tial-like shape showing good results for minimizing the number of movements.

However, when looking at the number of shuffling movements, we need to
take the percentage of reaching the goal, for example, the number of deliv-
ered slabs or transport loads, into account. Since it is intelligible that less
movements were needed in case not all required slabs could be delivered.
Table 1 shows the percentage of successfully delivered transport loads in
average over 10 runs.

Taking only instances with a high percentage of achieving the goal into
account, we see that instances of type 1 perform best regarding goal
achievement, shuffling movements and total reward, especially 1.1 and

Figure 4. Shuffling movements needed per instance over 500 episodes.

80 J. FECHTER ET AL.

1.3. As well when looking at instances of type 2: 2.1 and 2.3 perform
better than 2.2 regarding the total reward and the percentage of goal
achievement. Only test instance 3.2 could be solved better than 3.1 and
3.3. This is due to the little number of processed slabs. The results shown
in Table 1 coincide with the results regarding the total reward. A wide
variance of obtained cumulated rewards goes along with a low percentage
of goal achievement.

Another important result is the behavior of the weights of each feature, as
the weights represent the final approximation of the Q-function. In Figure 5,
we can see the behavior of the averaged weighting of each feature (light gray)
in comparison to the curve of the total reward (dark gray). What we can
derive from here is the correlation between single features and the total
reward. As an example in terms of the features content, the action-features
type of action is delivery action or type of action is remove action are positive
correlated to the total reward; whereas the feature type of action is relocate
action shows a negative correlation.

Further, it can be seen that the weights of each feature converge. This
is an important result in order to obtain a reliable approximation of the

Table 1. Averaged percentage of delivered slabs over 10 runs per instance.
Complexity

Instance .1 .2 .3

1 99.6% 99.1% 99.9%
2 48% 19.6% 51.4%
3 78.4% 99.9% 49.6%

Figure 5. Behavior of the weights per feature averaged over 10 runs compared to the total
reward.

APPLIED ARTIFICIAL INTELLIGENCE 81

Q-function. The weighting of each feature depends on the impact on the
total reward. Features get higher weights in case they contribute to a
high reward, for example, that a relocate action reduces shuffling
movements needed for the next or any completely produced transport
load.

Taken all results together we can derive that the denser the production and
delivery events are the harder is the problem to solve. Further, instances of
complexity .2, for example, having production only followed by delivery only,
seem to be hard to solve with our model. The reason for that could be that a
linear approximation of the Q-function is not good enough in that case, since
the production process calls for other features than the delivery process.
However, even though the developed features do not require specific knowl-
edge about the environment, the weighting plays an important role. Due to
that fact, the linear approximation may not be suitable for each problem type.
Instances that show a strictly separated character of production and delivery
events may require a nonlinear approximation of the Q-function; whereas
the linear approximation works well for instances having a mixed character
of events.

Conclusion

We have applied a linear, gradient-descent SarsaðλÞ-algorithm to complex
real-world problem instances. Even though the model did not perform well at
all test instances, we elaborated the characteristics of promising instances.
For those, the agent achieves good results with remarkably few episodes.
Even though no theoretical results guarantee a successful performance of
SarsaðλÞ, it performs quite well in practice. This paper provides another
method for solving complex stacking instances that often arise in real
world. Since stacking problems are very hard to solve, especially for real-
world applications, this paper is a remarkable contribution to the research
community.

Future work will include a nonlinear approximation of the Q-function in
order to be able to solve also instances of other characteristics, for example,
in case another order of production and delivery events is required. Our
future work will also focus on a comprehensive comparison study, including
exact approaches as well as heuristic methods.

List of Algorithms

1 Linear, gradient-descent Sarsa(λ) with binary features and replacing traces
(Sutton and Barto 1998), 28.

82 J. FECHTER ET AL.

Algorithm 1 Linear, gradient-descent Sarsa(λ) with binary features and
replacing traces (Sutton and Barto 1998)

Require: Let θ and e be vectors having a component for each feature.
Let Fa be a set of features for each action.
Initialize θ= 0, Fa ¼ ;.
repeat

e ¼ 0
S;A initial state and action of episode (�-greedy)
FA set of features, when choosing A in S
repeat
for all i 2 Fa do

ei 1
end for
Take action A, observe reward R and next state S0

δ R�P
i2Fa

θi
if S0 is terminal state then

θ θþ αδe
Go to next episode

else
for all a 2 AðS0Þ do
Fa set of features, when choosing a in S0

Qa
P

i2Fa
θi

end for
A0 new action in S0 (�-greedy)
δ δ þ γQA0

θ θþ αδe
e γλ e
S S0

A A0

end if
until S0 is terminal state
until Terminal episode is reached

Acknowledgments

The work described in this paper was done within the COMET Project #843532
Heuristic Optimization in Production and Logistics (HOPL) funded by the Austrian
Research Promotion Agency (FFG) and the Government of Upper Austria.

APPLIED ARTIFICIAL INTELLIGENCE 83

References

Abdulhai, B., R. Pringle, and G. Karakoulas. 2003. Reinforcement learning for true adaptive
traffic signal control. Journal Transp Engineering 129 (3):278–85. doi:10.1061/(ASCE)0733-
947X(2003)129:3(278).

Baird, L. 1995. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the 12th International Conference on Machine Learning, 30–37. Tahoe
City, California.

Balaji, P. G., X. German, and D. Srinivasan. 2010. Urban traffic signal control using reinfor-
cement learning agents. IET Intelligent Transport Systems 4 (3):177–88. doi:10.1049/iet-
its.2009.0096.

Beham, A., G. K. Kronberger, J. Karder, M. Kommenda, A. Scheibenpflug, S. Wagner, and M.
Affenzeller. 2014. Integrated simulation and optimization in HeuristicLab. In Proceedings
of the 26th European Modeling and Simulation Symposium EMSS, 418–23, Bordeaux,
France.

Bertsekas, D. P., and S. Ioffe. 1996. Temporal differences–based policy iteration and applica-
tions in neuro–dynamic programming. Lab. for Info. and Decision Systems Report LIDS–P–
2349. Cambridge, MA: MIT.

Bertsekas, D. P., and J. N. Tsitsiklis. 1995. Neuro–dynamic programming: An overview. In
Proceedings of the 34th Conference on Decision & Control, 560–64. New Orleans, LA.

Bertsekas, D. P., and J. N. Tsitsiklis. 1996. Neuro–dynamic programming. Belmont: Athena
Scientific.

Bortfeldt, A., and F. Forster. 2012. A tree search procedure for the container premarshalling
problem. European Journal of Operational Research 217:531–40. doi:10.1016/j.
ejor.2011.10.005.

Boyan, J., and M. Littman. 1994. Packet routing in dynamically changing networks: A
reinforcement learning approach. Advances in Neural Information Processing Systems
6:671–78.

Boysen, N., and S. Emde. 2016. The parallel stack loading problem to minimize blockages.
European Journal of Operational Research 249 (2):618–27. doi:10.1016/j.ejor.2015.09.033.

Busoniu, L., R. Babuska, B. De Schutter, and D. Ernst. 2010. Reinforcement learning and
dynamic programming using function approximators. NY: CRC Press.

Caserta, M., S. Schwarze, and S. Voss. 2011a. Container rehandling at maritime container
terminals. In Handbook of terminal planning in operations research/computer science
interfaces series 49, ed. J. W. BöSe, 247–69. NY: Springer.

Caserta, M., S. Voss, and M. Sniedovich. 2011b. Applying the corridor method to a blocks
relocation problem. OR Spectrum 33:915–29. doi:10.1007/s00291-009-0176-5.

Crites, R. H., and A. G. Barto. 1996. Improving elevator performance using reinforcement
learning. Advances in Neural Information Processing Systems 8:1017–23.

Gabillon, V., M. Ghavamzadeh, and B. Scherrer. 2013. Approximate dynamic programming
finally performs well in the game of Tetris. Advances in Neural Information Processing
Systems 26:1754–62.

Gharehgozli, A. H., Y. Yu, R. de Koster, and J. T. Udding. 2014. A decision–Tree stacking
heuristic minimising the expected number of reshuffles at a container terminal.
International Journal of Production Research 52 (9):2592–611. doi:10.1080/
00207543.2013.861618.

HEAL. 2015. HeuristicLab additional material for publications. Accessed December 23, 2015.
http://dev.heuristiclab.com/AdditionalMaterial.

84 J. FECHTER ET AL.

https://doi.org/10.1061/(ASCE)0733-947X(2003)129:3(278)
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:3(278)
https://doi.org/10.1049/iet-its.2009.0096
https://doi.org/10.1049/iet-its.2009.0096
https://doi.org/10.1016/j.ejor.2011.10.005
https://doi.org/10.1016/j.ejor.2011.10.005
https://doi.org/10.1016/j.ejor.2015.09.033
https://doi.org/10.1007/s00291-009-0176-5
https://doi.org/10.1080/00207543.2013.861618
https://doi.org/10.1080/00207543.2013.861618
http://dev.heuristiclab.com/AdditionalMaterial

Hirashima, Y. 2008. An intelligent marshalling plan using a new reinforcement learning system
for container yard terminals in new developments in robotics automation and control.
Rijeka: INTECH Open Access Publisher.

Hirashima, Y. 2009. A Q–Learning system for container marshalling with group–based
learning model at container yard terminals. In Proceedings of the International
MultiConference of Engineers and Computer Scientists Vol I.

Kefi, M., O. Korbaa, K. Ghedira, and P. Yim. 2009. Container handling using multi–
Agent architecture. International Journal of Intelligent Information and Database
Systems 3 (3):338–60. doi:10.1504/IJIIDS.2009.027691.

Kim, B. I., J. Koo, and H. P. Sambhajirao. 2011. A simplified steel plate stacking
problem. International Journal of Production Research 49 (17):5133–51. doi:10.1080/
00207543.2010.518998.

Kim, K. H., and G. P. Hong. 2006. A heuristic rule for relocating blocks. Computers &
Operations Research 33:940–54. doi:10.1016/j.cor.2004.08.005.

Lehnfeld, J., and S. Knust. 2014. Loading, unloading and premarshalling of stacks in storage
areas: Survey and classification. European Journal of Operational Research 239 (2):297–312.
doi:10.1016/j.ejor.2014.03.011.

McPartland, M., and M. Gallagher. 2011. Reinforcement learning in first person shooter
games. IEEE Transactions on Computational Intelligence and AI in Games 3 (1):43–56.
doi:10.1109/TCIAIG.2010.2100395.

Melo, F. S., S. P. Meyn, and M. I. Ribeiro. 2008. An analysis of reinforcement learning with
function approximation. In Proceedings of the 25th International Conference on Machine
Learning, 664–71.

Nishi, T., and M. Konishi. 2010. An optimisation model and its effective beam search
heuristics for floor–Storage warehousing systems. International Journal of Production
Research 48:1947–66. doi:10.1080/00207540802603767.

Prashanth, L., and S. Bhatnagar. 2011. Reinforcement learning with function approximation for
traffic signal control. IEEE Transactions on Intelligent Transportation Systems 12 (2):412–21.
doi:10.1109/TITS.2010.2091408.

Rei, R. J., M. Kubo, and J. P. Pedroso. 2008. Simulation–Based optimization for steel stacking.
In Modelling, computation and optimization in information systems and management
sciences, ed. H. A. Le Thi, P. Bouvry, and T. Pham Dinh, 254–63. Berlin, Heidelberg:
Springer Berlin Heidelberg.

Rei, R. J., and J. P. Pedroso. 2012. Heuristic search for the stacking problem. International
Transactions in Operational Research 19 (3):379–95. doi:10.1111/itor.2012.19.issue-3.

Salido, M. A., O. Sapena, and F. Barber. 2009. The container stacking problem: An artificial
intelligence planning–Based approach. In Proceedings of the The International Conference
on Harbor, Maritime & Multimodal Logistics, Modelling and Simulation 2009, Tenerife.

Shin, E. J., and K. H. Kim. 2015. Hierarchical remarshaling operations in block stacking storage
systems considering duration of stay. Computers & Industrial Engineering 89:43–52.
doi:10.1016/j.cie.2015.03.023.

Stone, P., R. S. Sutton, and G. Kuhlmann. 2005. Reinforcement learning for RoboCup–Soccer
keepaway. Adaptive Behavior 13 (3):165–88. doi:10.1177/105971230501300301.

Sutton, R. 1988. Learning to predict by the methods of temporal differences. Machine
Learning 3:9–44. doi:10.1007/BF00115009.

Sutton, R., and R. Barto. 1998. Reinforcement learning: An introduction. Cambridge, London:
MIT Press.

Szepesvári, C. 2010. Algorithms for reinforcement learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning 4 (1):1–103. doi:10.2200/S00268ED1V01Y201005AIM009.

APPLIED ARTIFICIAL INTELLIGENCE 85

https://doi.org/10.1504/IJIIDS.2009.027691
https://doi.org/10.1080/00207543.2010.518998
https://doi.org/10.1080/00207543.2010.518998
https://doi.org/10.1016/j.cor.2004.08.005
https://doi.org/10.1016/j.ejor.2014.03.011
https://doi.org/10.1109/TCIAIG.2010.2100395
https://doi.org/10.1080/00207540802603767
https://doi.org/10.1109/TITS.2010.2091408
https://doi.org/10.1111/itor.2012.19.issue-3
https://doi.org/10.1016/j.cie.2015.03.023
https://doi.org/10.1177/105971230501300301
https://doi.org/10.1007/BF00115009
https://doi.org/10.2200/S00268ED1V01Y201005AIM009

Tang, L., R. Zhao, and J. Liu. 2012. Models and algorithms for shuffling problems in steel
plants. Naval Research Logistics 59:502–24. doi:10.1002/nav.v59.7.

Tesauro, G. 1994. TD-Gammon, a self–Teaching backgammon program, achieves master–
Level play. Neural Computation 6:215–19. doi:10.1162/neco.1994.6.2.215.

Tsitsiklis, J. N., and B. V. Roy. 1997. An analysis of temporal difference learning with function
approximation. IEEE Transactions on Automatic Control 42 (5):674–90. doi:10.1109/
9.580874.

Tsitsiklis, J. N., and B. van Roy. 1996. Feature–based methods for large scale dynamic
programming. Machine Learning 22:59–94. doi:10.1007/BF00114724.

Uther, M., and M. Veloso. 1998. Tree based discretization for continuous state space
reinforcement learning. In Proceedings of AAAI–98, 769–74.

Van Hasselt, H. 2012. Reinforcement learning in continuous state and action spaces. In
Reinforcement learning in adaptation, learning, and optimization 12, ed. M. Wiering and
M. van Otterlo, 207–51. Berlin, Heidelberg: Springer Berlin Heidelberg.

Wagner, S., G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug, E. Pitzer, S.
Vonolfen, M. Kofler, S. Winkler, V. Dorfer, et al. 2014. Architecture and design of the
heuristiclab optimization environment. Advanced methods and applications in computa-
tional intelligence. In Topics in intelligent engineering and informatics series, ed. R.
Klempous, J. Nikodem, W. Jacak, and Z. Chaczko, 197–261. Switzerland: Springer
International Publishing.

Wang, X., Y. Cheng, and J.-Q. Yi. 2007. A fuzzy actor–Critic reinforcement learning network.
Information Sciences 177 (18):3764–81. doi:10.1016/j.ins.2007.03.012.

Xu, X., L. Zuo, and Z. Huang. 2014. Reinforcement learning algorithms with function
approximation: Recent advances and applications. Information Sciences 261:1–31.
doi:10.1016/j.ins.2013.08.037.

Zäpfel, G., and M. Wasner. 2006. Warehouse sequencing in the steel supply chain as a
generalized job shop model. International Journal of Production Economics 104:482–501.
doi:10.1016/j.ijpe.2004.10.005.

Zhang, W., and T. G. Dietterich. 1995. A reinforcement learning approach to job–Shop
scheduling. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence, 1114–20.

86 J. FECHTER ET AL.

https://doi.org/10.1002/nav.v59.7
https://doi.org/10.1162/neco.1994.6.2.215
https://doi.org/10.1109/9.580874
https://doi.org/10.1109/9.580874
https://doi.org/10.1007/BF00114724
https://doi.org/10.1016/j.ins.2007.03.012
https://doi.org/10.1016/j.ins.2013.08.037
https://doi.org/10.1016/j.ijpe.2004.10.005

	Abstract
	Introduction
	The RL Framework
	The Stacking Problem
	RL in the Stacking Problem
	State Space
	Action Space
	Features
	Eligibility Traces
	Reward Function
	Learning-Algorithm

	Experimental Studies
	Model Parameters
	Exploration and Learning Rate
	Performance Results

	Conclusion
	List of Algorithms
	Acknowledgments
	References

