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Abstract 

A power tool for the analysis of quasi-Newton methods has been proposed by Byrd and Nocedal ([1], 1989). 
The purpose of this paper is to make a study to the basic property (BP) given in [1]. As a result of the BP, a 
sufficient condition of global convergence for a class of quasi-Newton methods for solving unconstrained 
minimization problems without convexity assumption is given. A modified BFGS formula is designed to 
match the requirements of the sufficient condition. The numerical results show that the proposed method is 
very encouraging. 
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1. Introduction 

Given a real-valued function : nf R  R , we are in- 
terested in solving the unconstrained optimization pro- 
blem 

  min nf x x R  

by Quasi-Newton methods, which have the form 

1 ,k k k kx x d    
where k  is a steplength, and  is a search direction 

given by the following linear equation 
kd

0.k kB d g                  (1.1) 

The matrix k  is updated at every step such that  
satisfies the so-called secant equation 

B kB

1 ,k k kB s    

where k1k ks x x  , 1k k kg g    and jg  denotes 
the gradient of f at jx . 

Global convergence of quasi-Newton methods has 
been widely studied in the past two decades. For convex 
minimization, Powell [2] showed that, with the weak 
Wolfe-Powell line search strategies, lim  inf 0.k kg    

Werner [3] made an extension of Powell’s result to some 
other line searches. Byrd, Nocedal and Yuan [4] made an 
inside study for the restricted Broyden class of quasi- 
Newton methods. Byrd and Nocedal (1989) proposed a 
very useful tool for the analysis of quasi-Newton meth-
ods. The basic property (BP) given by Byrd and Nocedal 
(1989) characterized not only the BFGS formula but also 
any formula with the structure of the BFGS, some of the 
examples are the modified BFGS methods given by Li 
and Fukushima [5-7]. In [5], Li and Fukushima gave a 
modified BFGS method with good convergence proper-
ties for solving symmetric nonlinear equations, while in 
[6,7], the BFGS type methods with global and superlin-
ear convergence are designed for nonconvex optimiza-
tion problems. The proofs of some main results given in 
[5-7] are related closely to the BP. Some modified BFGS 
methods which possess not only the gradient value but 
also the function value information have been proposed 
(see [8,9] etc.). The main purpose of this paper is to give 
some insight of the BP for a class of quasi-Newton me- 
thods. 

In the next section we recall some basic concepts and 
results of [1], and then study a class of quasi-Newton 
methods. By using the BP, we obtain a natural property 
of the proposed methods. Moreover, we give a sufficient 
condition for the quasi-Newton methods, which is moti-
vated also by BP. In section 3, we design a modified 
BFGS method to match the requirements of the given 
sufficient condition. As we will see, the proposed method  
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is globally and superlinearly convergent for nonconvex 
unconstrained minimization problems. The numerical 
results are contained in Section 4. In Section 5, we 
study the set of good iterates of BFGS and DFP formulas 
with different step size strategies by empirical analysis. 
Throughout this paper, the norm is the Euclidean vector 
norm. 

2. Set of Good Iterates 

After making an inside study on the tool given by Byrd 
and Nocedal, we found that the main contribution of [1] 
are three: 1) gave a power tool for analysis of quasi- 
Newton methods; 2) showed the BFGS formula pos-
sesses the BP that is independent of the algorithmic con-
text of the update for convex minimization proplems and 
3) characterized the set of good iterates by using the in-
formation of the update matrix  and the iteration 
point 

kB
 kx . 

For the following BFGS formula 

1 ,  
T T

k k k k k k
k k T T

k k k k k

B s s B v v
B B

s B s v s            (2.1) 

Byrd and Nocedal [1] proposed a basic property that 
indicates, under some conditions, the most iterates gen-
erated by (2.1) are good iterates. It is more interesting to 
note that the above conclusion is independent on any line 
search strategies. The BP given by Byrd and Nocedal 
(Theorem 2.1 of [1] ) is as follows: 

Theorem 2.1. Let   be generated by (2.1) with 
the following properties:  and for all , 

kB

1B 0 1k 

1

T
k k
T
k k

v s

s s
  for some 1 0,          (2.2) 

2

2
k

T
k k

v

v s
  for some 2 0, 



       (2.3) 

Then for any  there exist constants  0,1p
1 2 3, , 0     such that, for all , the relations 1k 

1

j j

,  
s  B

T
j j j

j

s B s

d
            (2.4) 

2 ,j j j

T
j j

s B s

s s 3               (2.5) 

3
2

1

,
j j

j

B s

s




               (2.6) 

hold for at least  values of  kp    1, 2, 3, , .j k 
The conclusion of Theorem 2.1 is right for any for-

mula with the form 

1

T T
k k k k k k

k k T
k k k k k

B r r B u u
B B

r B r u r   
T

       (2.7) 

if 1  and for all , k k , where k k0B  k 0Tu r  , nu r  . 
Moreover, the proof of the conclusion for (2.7) does not 
need to change anywhere. This makes one can choose 

ks  and k  such that k , (2.2) and (2.3) hold. In 
fact, Li and Fukushima have followed this way and gave 
some modified BFGS formula which possess global and 
superlinear convergence for nonconvex minimization [6] 
and for symmetric nonlinear equations [5]. In this sense, 
the tool given in [1] for proving Theorem 2.1 is very 
powerful. 

y 0B

Let 

 0,   ,  all nonngative integerN   . 

Define four functions , ,  and SGI 1 2   as 
follows: 

 
   

  

1 2 3: : 2 has the form ,

        all the index which satisfis 2.4 , 2.5

            and 2.6 simultaneeousl

NSGI SGI ,  
     

  

 1 1 k: : 2  has the form ( ) B ;N
k kc k d c d

       

 
 

   

2 2

2

1 2

1 1 2 2

: : 2  has the form ( )

;

: : 2  has the form ,

.

N

T
k k k k

N

c

k c d d B d

c c

c c







 

   

 

    

 

 

In [1], the set  , ,SGI 1 2 3   was been called the 
“set of good iterates”. From Theorem 2.1 and p can be 
chosen to be close to 1, we can deduce that, for any line 
search strategies, if the conditions (2.2) and (2.3) are 
satisfied, then most of the iterates given by the BFGS 
formula are good iterates. The meaning of “good” is cer-
tified in [1] (Theorem 3.1) by proving, with some certain 
line search strategies, that any quasi-Newton method is 
R-linearly convergent for uniform convex minimization 
problems. 

In the remainder of this section, we will give a “set of 
good iterates” for a general quasi-Newton methods. In 
order to simplify the presentation, we use  0 0B   to 
denote any n n  symmetric and positive semi-definite 
(definite) matrix B. We state the method, which will be 
called the GQNLSS: (general quasi-Newton method with 
some certain line search strategies) as follows.  

Algorithm 2.1: GQNLSS 
Step 0: Choose an initial point  and an initial  1

nx 

matrix . Choose 1 0B  1
0, , 0,1

2
    

 
  Set : 1k  . 
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Step 1: If , Stop. 0kg 
Step 2: Solve (1.1) to obtain a search direction . kd
Step 3: find k  by some certain line search strate-

gies. 
Step 4: Set 1k k k kx x d   . Update  by 

some formula. 
1 0kB  

Step 5: Set  and go to Step 1. :k k 1
The line search strategies used in the GQNLSS is one 

of the following three forms: 
1) Efficient line search: find k  satisfies 

     2

1 2 ,
T
k k

k k k k

k

g d
f x d f x

d
      

where η1 is a positive constant. 
2) Standard Armijo line search: find jk

k 
j

 such 
that  is the smallest nonnegative integer  satisfy-
ing  

kj

    2 ,jk jk T
k k k k kf x d f x g d           (2.8) 

where  and are constants.  0,1 2

3) Weak Wolfe-Powell (WWP) line searches: find 
0,1  

k  
satisfies condition: 

    2 ,  jk jk T
k k k k kf x d f x g d          (2.9) 

and 

  T
k k k k kg x d g   d

 
            (2.10) 

where  and  are constants. 0,1 3 3

In order to study the convergence behavior of Algo-
rithm 2.1, we will impose the following two assumptions, 
which have been widely used in the literature to analyze 
the global convergence of iterative solution methods for 
minimization problem with inexact line searches (see 
[10,11] etc.). 

 ,1 

Assumption A. The level set is bounded. 

    1 nx R f x f x     

Assumption B. There exists a constant L such that for 
any , ,x y

   g x g y L x y   . 

The following natural property, characterizes the up-
dated matrix k  and the direction  generated by 
GQNLLS method. 

B kd

Theorem 2.2. Suppose that Assumptions A and B hold, 
 , , ,k k k kx B d  is generated by GQNLSS. Then 

 2

2
1

.
T
k k k

k k

d B d

d





             (2.11) 

Proof: From Assumption A, we have that . 
Thus 

 kx  

   
1

1k k
k

f x f x



           (2.12a) 

1) For the line searches 1), we have (2.11) by using 
(1.1),  and (2.12). 0B k

2) For the line searches 2), it suffices to consider the 
case 1k  . From the definition of k , we have 

      2
T

k k k k k k kf x d f x g       d . 

Using the Mean Value Theorem in the above inequal-
ity, we obtain  0,1k  , such that 

       2 .
T T

k k k k k k k k kg x d d g d          

Dividing the both side of the above inequality by 

k  , we have 

   2 .
T T

k k k k k k kg x d d     g d  

Subtracting k
T

kg d  on the both sides of the above ine-
quality, we obtain 

       21 ,
T T

k k k k k k k kg x d g x d        g d  

which combining with Assumption B yields 

   2

21 .T
k k k k kL d g      d  

Therefore 

    
2

2

1
T

k k

k
k k

g x d

L d

 





  

Hence, we have, by using , that  0,1k 

   
2

2

1
T

k k

k

k

g x d

L d

 



  

Thus 

 2

2
1

T
k k k

k k

d B d

d





          (2.12b) 

by using (2.8), (1.1) and (2.12). 
3) From Assumption B and (2.10), we obtain 

    2

11 ,
TT

k k k k k k kg d g g d L d       

which implies that 

2

1
T
k k

k

k

g d

L d

 
  

Thus 

2

1 T
k k k

k

k

d B d

L d

 
  

by using (1.1). Thus, (2.11) holds by using (2.12).From 
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the results of a)-c), we have (2.11). The proof is com-
plete. 

Let k1 20 k k n    
( )kcond B

  be the eigenvalues of k  
and be the condition number of , i.e., 

B

kB

 
1

nk
k

k

cond B







 

Theorem 2.3. Suppose that Assumptions A and B hold, 
 , , ,k k k kx B d

k 

 is generated by GQNLSS. If there exist 
a positive constant M and an infinite index set  such 
that for all , 

K
K

  ,kcond B M              (2.13) 

then 

 lim 0.k
k

g x


              (2.14) 

Proof: From Theorem 2.2, we have 

22
1 2

lim lim 0.
T
k k k

k k
k k

k

d B d
d

d


 
   

Thus, 

1lim 0.k k
k

d


  

Therefore, from (2.13), we obtain 

1lim lim lim ( ) 0.k k nk k k k k
k K k K k K

B d d cond B d 
  

  





 

which implies that (2.14) holds by using (1.1). The proof 
is complete. 

From Theorem 2.3, we have the following result, 
which indicates that if GQNLSS fails to converge, then 
the condition numbers sequence  will tend 
to infinite. 

  kcond B

Corollary 2.1. Suppose that Assumptions A and B 
hold,  , , ,k k k kx B d  is generated by GQNLSS. If 

 liminf 0k
k

g x


  

Then 

 lim k
k

cond B


   

We call GQNLSS has property SC∞ if 

 1 2 1 2,  for some c ,cc c    



     (2.15) 

Theorem 2.4 Suppose that Assumptions A and B hold, 
 , , ,k k k kx B d  is generated by GQNLSS. If GQNLSS 
has property SC∞, then 

 
1 2( , )

lim 0k
k c c

g x


  

Proof: From the definition of Φ, we have 

 

2

1 2

1 2

 and c

, for , .

k k k k

T
k k k

B d c d d

d B d k c c



 
      (2.16) 

From Theorem 2.1, we have 

 

 
   2 2 2 2 2 2

2 42
22 2

22 20 lim lim lim
T
k k k k

k
k c k c k c

k k

d B d c d
c d

d d  
    

By using the definitions of  and ,we obtain 1 2

 1 2,
lim 0.k k

k c c
B d


  

Therefore, (2.16) follows (1.1). The proof is complete. 
The main contribution of Theorem 2.4 is that it identi-

fies the convergence indices of  kg . It indicates that 
 1 2,   is the “set of good iterates” in the sense that 

the method is globally convergent. From Theorem 2.4, 
we see that (2.15) is a sufficient condition of the global 
convergence for GQNLSS. The sufficient condition is 
tight under the sense that the set  1 2,    is as same 
as the convergence indices of the sequence kg . From 
the fact that  , SCI  1 2 1 2 3, ,      , we see that, 
for GQNLSS, the “set of good iterates” is little larger 
than which given in [1]. Note that the approach here 
without any convexity assumption. 

For BFGS formula, whether (2.2) and (2.3) hold is still 
open for nonconvex minimization problems. In general, 
it is very hard to prove them. By Theorem 2.3 and 2.4, 
we can obtain that if one can prove that for some positive 
constants  and ,  1c 2c

    1 2 1, kc c k cond B c     , 

then the BFGS formula with any one of the three line 
search strategies mentioned above is globally convergent. 
This result can be extended to any quasi-Newton formula 
(see GQNLSS), such as DFP formula. 

3. Design Methods with SC∞ 

The purpose of this section is to discuss how to design a 
BFGS-type method (i.e., the update has the form (2.7)) 
with global convergence (if possible with superlinear 
convergence). From Theorem 2.4, it suffices to design 
the methods which possess the property SC∞. Clearly, it 
is more than enough to find k  such that for all , 
(2.2) and (2.3) hold by using Theorem 2.1. Although 
following this way may yield some strict conditions (it 
seems that, for nonconvex minimization problems, it 
excludes the BFGS update), it is better than nothing at 
this moment. First we will propose a BFGS-type update 
to match the requirements of (2.2) and (2.3), and prove 
the corresponding method possesses the property SC∞ by 
using the same way given in the proof of Theorem 2.1 in 
[1]. Some other new formulas will also be given then in 
this section. 

y k

The first modified BFGS update is as follows: 

1 ,
T T

k k k k k k
k k T T

k k k k k

B s s B y y
B B

s B s y s           (3.1) 
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kwhere 1k k k ks x x d  
k km s 

m

, , 
. 

1k kv g g  k

k ky v
The parameter  is defined by k

1 2

T
k k

k T
k k

v s
m

s s
    

where  and 1 0,    2 1,    are two constants. 
For (3.1), we have a corresponding method, which is 
described as follows. 

Algorithm 3.1: A BFGS-Type Method with WWP 
(BFGSTWWP)  

Step 0: Choose an initial point  and an initial 
matrix . Set k := 1.  

1
nx 

1

Step 1: If , Stop. 
0B 
g 0k 

Step 2: Solve (1.1) to obtain a search direction dk. 
Step 3: find k  by WWP (2.9) and (2.10). Moreover, 

if 1k   satisfies WWP, set 1k  . 
Step 4: Set 1k k k kx x d   . Update  by (3.1). 1kB 

Step 5: Set k := k + 1 and go to Step 1. 
The following Lemma shows that the updated matrix 

, so we can always solve (1.1) uniquely. 0kB 
Lemma 3.1. Suppose that  , , ,k k k kx B d

1, kk B 
k 0B 

 is gener-
ated by BFGSTWWP. Then for all . 0

Proof: Suppose that for a given , . From the 
definitions of  and 

k

ky ks , we have 

   
 

1  1  

1 0

T T T T
k k k k k k k k k k

T
k k k k

v s g d g d g d

d B d

 

 

    

  



T

 

By using (2.10) and (1.1). Thus 

  
1 2

1 2

1

         1 1

         

T T T T
k k k k k k k k

T
k k k k k k

T
k k

y s v s s s v s

s s d

s s

 

   



  

   



B d



   (3.2) 

It is easy to prove that 1  by using  
and (3.2). By using  and the induction, we may 
deduce that for all , . 

0kB  

0

0kB 
1 0B 
B k k

Theorem 3.1. Suppose that Assumptions A and B hold, 
 , , ,k k k kx B d  is generated by BFGSTWWP.  

Then for any  there exist constants 0,1p  1 2, 0    
such that, for all , the relations 1k 

1j jB s s j               (3.3) 

2 ,T T
j j j j js s s B s               (3.4) 

hold for at least  values of  k

Proof: For any given , from the definition of v  
and Assumption B, we have 

p    1,2, , .j k 
k k

1 ,

                0

k k k k

T
k k

v g g L s

v s

  


 

and 

1 2 1 2 .  k k
k T

k k

v s
m L

s s
      

Using the above two inequalities and the definitions of 
,  and ky kv ks , we have 

    

2

2 22

22
1 2 1 2

         2

        2 .

T T T
k k k k k k k

k k k k k k

T
k k

y y v v m s s

v m v s m s

L L L L   

 

  

     s s

 

Therefore, we obtain, by using (3.2), that 

1

T
k k
T
k k

y s

s s
                (3.5) 

and 

   22
1 2 1 2

1

2
.

T
k k
T
k k

L L L Ly y

y s

   


   
    (3.6) 

Thus, the proof follows from that of Theorem 2.1 in 
[1]. 

From Theorem 2.4 and Theorem 3.1, we have the fol-
lowing global convergence result for BFGSTWWP. 

Theorem 3.2 Suppose that Assumptions A and B hold, 
 , , ,k k k kx B d  is generated by BFGSTWWP. Then 

 
 

1 2,
lim 0.k

k
g x

 
  

Proof: Omitted. 
From the proof of Lemma 3.1, we observe that (3.2) is 

not independent of the line searches, thus, (3.5) and (3.6) 
is also not independent of the line searches. Therefore, 
like the BFGS formula, when the standard Armijo line 
search is used to the BFGS-type formula (3.1), k  
cannot be guaranteed for some cases because whether the 
relation k k  holds is still open for nonconvex pro- 
blems. It is possible to give a formula such that k , 
(3.5) and (3.6) hold without any line search strategies. 
For example, the  in (3.1) is replaced by 

0B 

0B 
0Ty s 

km

0
1

T
k k

k T
k k

v s
m

s s
    

with ∈ [1, +∞). In this case, the results of Lemma 3.1, 
Theorem 3.1, (therefore SC∞) hold for any k


0  . This 

implies clearly, by using Theorem 2.4, that the result of 
Theorem 3.2 holds if any one of the line search strategies 
given in Section 2 is used. 

From the proof of Theorem 2.1 in [1], it is possible to 
give the exact values of 1  and 2 . Let 

      
   

1 1 1

22
1 2 1 2

1

ln det ,

2

B tr B B

L L L L
M



   


 

   


 

Copyright © 2011 SciRes.                                                                                AJCM 



L. H. HUANG  ET  AL. 245 
 
and 

  1 1

1
1 ln .

1
B M

p
    




2

 

Let 1   denote the two solutions of the following 
equation 

1 lnt t     .

2

 

Then 10 1    . Using the above notation, we 
obtain 

2
1

2e


   

and 
2

2
2 .e




 

   
 

 

In [6], some modified BFGS methods with global con-
vergence and superlinear convergence for non-convex 
minimization problems have been given. It is easy to 
check that the methods satisfy (3.4) and (3.3). Thus, the 
global convergence of the methods given in [6] can be 
easy to obtained from Theorem 3.2. Under some condi-
tions, we can prove the superlinear convergence of 
BFGSTWWP by using the similar way of in [6]. We do 
not repeat the proof here. 

We concluded this section by proposing another for-
mula which can be view as a cautious BFGS update. Let 

 be a very small constant, define  1 0,1 

1 1
2

if

0 otherwise

T
T Tk k
k k k kT

k k k

s s
s s s

s
  

 

  



 

and 

1 2

T
k k

k k T
k k

v s
m

s s
    

Then,  10,km 

k s

 It can be proved for the corre-
sponding BFGS-type formula with any one of the line 
search strategies, that all the results in this section hold 
because for any 1  hold even without any 
line search. Notice that if for some 1 , 
then the corresponding formula deduce to the ordinary 
BFGS update. 

, T T
k k k ks s  .

, T T
k k k kk s s s 

4. Numerical Experiments 

In this section, we report the numerical results for the 
following three methods: 

Algorithm 3.1: The Algorithm 3.1 with 3
1 10   and 

. Where 10
2 10  3 0.1  , 0.9.   
Algorithm 3.2: (3.1) and (3.7) with the Armijor line 

search, where 3
1 10   v, , 1Q  0.5   and  

2 0.1.   BFGS: The BFGS formula with the WWP. 
ere Wh 3 0.1  , 0.9.   

For each test problem, the termination is 

  610 .kg x   

For each problem, we choose the initial matrix B1 = I, 
i.e., the unit matrix. Due to the roundoff error, sometimes 
the directions generated by the algorithms may be not 
descent. We then used the steepest descent direction to 
take place of the related direction if  The 
detail numerical results are listed at:  
http://210.36.16.53:8018/publication.asp?id=46065. 

1410 .T
k kg d  

In order to rank the iterative numerical methods, one 
can compute the total number of function and gradient 
evaluations by the formula 

total ,N NF m NG             (4.1) 

where m is some integer. According to the results on 
automatic differentiation [12,13], the value of m can be 
set to 5m  . That is to say, one gradient evaluation is 
equivalent to m number of function evaluations if auto-
matic differentiation is used. As we all known the BFGS 
method is considered to be the most efficient quasi- 
Newton method. Therefore, in this part, we compare the 
Algorithm 3.1 and Algorithm 3.2 with the BFGS method 
as follows: for each testing example i, compute the total 
numbers of function evaluations and gradient evaluations 
required by the evaluated method  and the S 
method by the formula (4.1), and denote them by 

 j EM j 

  total,i jN EM  and ; then calculate the 
ratio  

total,iN B FGS

     
 

total,

total,

i
i

i

N EM j
r EM j

N BFGS
  

If  0EM j  does not work for example 0 , we re-
place the 

i
  0iN EM j

0total,  by a positive constant   
which define as follows 

     total, 1max : ,iN EM j i j S    

where 

S1 = {  ,i j : method  does not work for example }. j i

The geometric mean of these ratios for method  EM j  
over all the test problems is defined by 

      1 s

i
i S

r EM j r EM j


  , 

where S denotes the set of the test problems and |S| the 
number of elements in S. One advantage of the above 
rule is that, the comparison is relative and hence does not 
be dominated by a few problems for which the method 
requires a great deal of function evaluations and gradient  
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Table 1. Performance of these Algorithms. 

Algorithm 3.1 Algorithm 3.2 BFGS 

0.9534 1.5763 1 

 
functions. 

From Table 1, we observe that the Algorithm 3.1 out-
performs the BFGS method. Therefore, the Algorithm 
3.1 is the most efficient algorithm among quasi-Newton 
algorithms for solving minimization problems for the 
chosen tested problems. 
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