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Abstract 

A direct almost Bernstein operational matrix of integration is used to propose a stable algorithm for numeri-
cal inversion of the generalized Abel integral equation. The applicability of the earlier proposed methods was 
restricted to the numerical inversion of a part of the generalized Abel integral equation. The method is quite 
accurate and stable as illustrated by applying it to intensity data with and without random noise to invert and 
compare it with the known analytical inverse. Thus it is a good method for applying to experimental intensi-
ties distorted by noise. 
 
Keywords: Abel Inversion, Bernstein Polynomials, Almost Bernstein Operational Matrix of Integration, 

Noise Resistance 

1. Introduction 

Abel’s integral equation [1] occurs in many branches of 
science. Usually, physical quantities accessible to meas-
urement are quite often related to physically important but 
experimentally inaccessible ones by Abel’s integral equa- 
tion. Some of the examples are: microscopy [2], seis-
mology [3,4], radio astronomy [5], satellite photometry 
of airglows [6], electron emission [7], atomic scattering 
[8], radar ranging [9], and optical fiber evaluation [10-12]. 
But it is most extensively used in flame and plasma di-
agnostics [13-15] and X-ray radiography [16-19]. 

Recently, Chakrabarti [20] employed a direct function 
theoretic method to determine the closed form solution 
of the following generalized Abel integral equation 
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where the coefficients  and  do not vanish 
simultaneously. 

 a x  b x

Earlier the generalized Abel equation (1) was exam-
ined in Gakhov’s book [21], under the special assump-
tions that the coefficients  and  satisfy Hol- 
der’s condition in 

 a x  b x
 ,  , whereas the forcing term 

 f x  and the unknown function  x  belong to those 
class of functions which admit representations of the 

form 
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where  *f x  possesses a Holder continuous derivative 
in  ,   and  * x  satisfies Holder’s condition in 
 ,  .  

The method of Gakhov’s has a particular disadvantage 
in the sense that while solving a singular equation that 
involves integrals only with weak singularity of the type 
  0t x

  1  

  1
t x

, occurrence of strongly singular 
integrals involving Cauchy type singularities of the type 

  has to be permitted [20,21]. Chakrabarti [20] 
obtained the solution involving only weakly singular 
integrals of the Abel type and thus Cauchy type singular 
integrals were avoided. But the numerical inversion is 
still needed for its application in physical models since 
the experimental data for the intensity  f x  is avail-
able only at a discrete set of points and it may also be 
distorted by noise. 

The aim of the present paper is to propose a new stable 
algorithm for the numerical inversion of Abel’s integral 
equation (1), based on the newly constructed almost 
Bernstein operational matrices of integration. Numerical 
examples are given to illustrate the accuracy and stability 
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of the proposed algorithm. 

2. The Bernstein Polynomials 

A Bernstein polynomial, named after Sergei Natanovich 
Bernstein, is a polynomial in the Bernstein form that is a 
linear combination of Bernstein basis polynomials. 

The Bernstein basis polynomials of degree  are de-
fined by 
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There are  degree Bernstein basis polyno-
mials forming a basis for the linear space n  consisting 
of all polynomials of degree less than or equal to  in 
R[x]—the ring of polynomials over the field R. For 
mathematical convenience, we usually set 
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Then  is called a polynomial in Bernstein form 
or Bernstein polynomial of degree . The coefficients 

i

 B x
n

  are called Bernstein or Bezier coefficients. But sev-
eral mathematicians call Bernstein basis polynomials 

 as the Bernstein polynomials. We will follow 
this convention as well. These polynomials have the fol-
lowing properties: 

 x,i nB

1)  , 00i n iB   and  , 1i n inB  , where   is the 
Kronecker delta function. 

2)  has one root, each of multiplicity  and 
, at  and  respectively. 
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5) The Bernstein polynomials form a partition of unity  
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Using Gram-Schmidt orthonormalization process on 

,i n , we obtain a class of orthonormal polynomials. We 
call them orthonormal Bernstein polynomials of order  
and denote them by . 
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3. Function Approximation 

A function  2 0,1f L  may be written as  
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where, ,in inc c b  and ,  is the standard inner prod-  

uct on  2 0,1L . 

If the series (5) is truncated at , then we have  n m
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where,  and C  B t  are  matrices given by  1 1m  
T 0 1, , , ,m m mmC c c c              (7) 

and 
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4. Solution of Generalized Abel Integral 
Equation 

In this section we solve generalized Abel integral equa-
tion by orthonormal Bernstein polynomials. 

Using Equation (8), we approximate  x  and 
 f x  as 

       , ,T Tx C B x f x F B x           (9) 

where the matrix F  is known. Then from equation (1) 
and (9) we have 
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it is obvious that 
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where  and  are P Q    1m m 1    matrices, which 
we call as almost Bernstein operational matrix of inte-
gration for Abel integral equation with generalized ker-
nel. 

Substituting (13) in (10), we get 

t ,           (5)     1T TC F a x P b x Q


          (14) 
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Hence, the approximate solution  for general-
ized Abel integral equation (1) is obtained by putting the 
value of  from (14) in (9). 
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TC

and compute the corresponding errors  and level 
them as 
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a noise term   is introduced in forcing term  f x  
and for 1000, 500N   the corresponding errors  5E t , 

     7 , 8E t E t  6 ,E t and      12E t9 , 10E t E , 11E t ,t , 
are computed for the four chosen values of   as men-
tioned above. In all the figures some of the error terms 

 jE t  are multiplied by 10 or some power of 10 for 
suitable scaling. Also we tabulated the approximate and 
exact solutions through Tables 1-4 for the four examples 
given below for various values of . t

5. Illustrative Examples 

The following examples are solved with and without 
noise terms to illustrate the efficiency and stability of our 
method. Note that in all the examples to follow, the se-
ries (5) is truncated at level 6m   and hence the almost 
operational matrix in (13) is of order . 7 7

Example 1. Consider the generalized Abel integral 
equation with     1a x b x   and 

The accuracy of the proposed algorithm is demon-
strated by calculating the parameters of absolute error 

 and average deviation  it   also known as root 
mean square error (RMS). They are calculated using the 
following equations: 
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where 2 1F  is the regularized hypergeometric function. 
This has the exact solution   11 2t t  .  

where  is the approximate solution calculated at 
point i  and  is the exact solution at the corre-
sponding point. Note that 

 it
t  it

 , henceforth, denoted by 

N  (for computational convenience) is the discrete 
-norm of the absolute error 2l   denoted by 

Figure 1 illustrates the effect of the absolute errors 
without noise for different values of  , whereas Fig-
ures 2 and 3 show the absolute errors with noise term 

1  added to the forcing term  f x  for  = 1000, 
500 respectively. Table 1 compares the approximate and 
exact values of Example 1. 
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The following examples are solved with and without 
noise to illustrate the efficiency and stability of our 
method by choosing two different values of the noises 

j  as 0 10, .N    In all the examples to follow, we 
take four different values of   as 1/10, 1/4, 1/2, 3/4  

having the exact solution .    3t t t  

Figure 4 illustrates the effect of the absolute errors  
 

Table 1. Approximate and exact solution of Example 1. 

t 0.0 0.2 0.4 0.6 0.8 1.0 

 t  0 0.00014 0.00648 0.06023 0.29309 1.0000 

 t at 1 10   0.00013 0.00018 0.00647 0.06020 0.29308 1.00025 

 t at 1 4   0.00001 0.00016 0.00646 0.06020 0.29311 1.00003 

 t at 1 2   –0.00004 0.00013 0.00646 0.06024 0.29309 1.00004 

 t at 3 4   –0.00004 0.00011 0.00646 0.06023 0.29308 1.00001 
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Table 2. Approximate and exact solution of Example 2. 

t 0.0 0.2 0.4 0.6 0.8 1.0 

 t  0 0.19200 0.33600 0.38400 0.28800 0.0000 

 t at 1 10  –0.00001 0.19199 0.33599 0.38400 0.28798 –0.000005 

 t at 1 4  –0.00001 0.19200 0.33601 0.38400 0.28801 –0.000033 

 t at 1 2  –0.00004 0.19200 0.33600 0.38400 0.28800 –0.000038 

 t at 3 4  –0.00037 0.19195 0.33601 0.38396 0.28800 0.00014 

 
Table 3. Approximate and exact solutions of Example 3. 

t 0.0 0.2 0.4 0.6 0.8 1.0 

 t  1 1.2214 1.49182 1.82212 2.22554 2.71828 

 t at 1 10   1.0002 1.22145 1.49183 1.82210 2.22558 2.71828 

 t at 1 4   1.00004 1.22140 1.49182 1.82214 2.22550 2.71853 

 t at 1 2   1.00012 1.22140 1.49183 1.82212 2.22556 2.71831 

 t at 3 4   1.00156 1.22116 1.49180 1.82190 2.22557 2.71868 

 
Table 4. Approximate and exact solutions of Example 4. 

t 0.0 0.2 0.4 0.6 0.8 1.0 

 t  0.0 0.03959 0.07306 0.10206 0.12764 0.15051 

 t at 1 10   0.00017 0.03960 0.07305 0.10204 0.12762 0.15073 

 t at 1 4   0.00008 0.03955 0.07307 0.10208 0.12762 0.15056 

 t at 1 2   –0.00006 0.03960 0.07306 0.10206 0.12764 0.15052 

 t at 3 4   0.00007 0.03958 0.07306 0.10205 0.12764 0.15055 
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Figure 1. Comparison of absolute errors, Example 1. 
 
without noise for different values of  , whereas Fig-
ures 5 and 6 show the absolute errors with noise term 

1  added to the forcing term  f x  for  =1000, 
500 respectively. Table 2 compares the approximate and 
exact values of Example 2. 

N

Example 3. Consider the generalized Abel integral 
equation with  and     1a x b x 
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(18) 

This has the exact solution .    tt e 
Figure 7 illustrates the effect of the absolute errors 

without noise for different values of  , whereas Fig- 
res 8 and 9 show the absolute errors with noise term u 
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Figure 3. Comparison of absolute errors with noise 1  for , Example 1. = 500N

 

 

0 0.2 0.4 0.6 0.8 1
0

1.5 10
5

3 10
5

4.5 10
5

6 10
5

E1 t( )

E2 t( )

E3 t( )

E4 t( )

t

6×10–5

4.5×10–5

3×10–5

1.5×10–5

 
Figure 4. Comparison of absolute errors, Example 2. 
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Figure 5. Comparison of absolute errors with noise 1  for , Example 2. = 1000N
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Figure 6. Comparison of absolute errors with noise 1  for , Example 2. = 500N
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Figure 7. Comparison of absolute errors, Example 3. 
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Figure 8. Comparison of absolute errors with noise 1  for , Example 3. = 1000N
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Figure 9. Comparison of absolute errors with noise 1  for , Example 3. = 500N
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1  added to the forcing term  f x  for  = 1000, 
500 respectively. Similarly, Table 3 compares the ap-
proximate and exact values of Example 3. 

N Figure 10 illustrates the effect of the absolute errors 
without noise for different values of  , whereas Figures 
11 and 12 show the absolute errors with noise term 1  
added to the forcing term  f x  for  =1000, 500 
respectively. Table 4 compares the approximate and exact 
values of Example 4. 

NExample 4. Now we consider, the following generalized 
Abel integral equation with  and (see Equa- 
tion (19). This has the exact solution 

    1a x b x 
  log 1t t   . 
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Figure 10. Comparison of absolute errors, Example 4. 
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Figure 11. Comparison of absolute errors with noise 1  for , Example 4. = 1000N
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Figure 12. Comparison of absolute errors with noise 1  for , Example 4. = 500N
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Figure 13. Comparison of approximate solutions, Example 5. 
 

Example 5. Next we consider, the following general-
ized Abel integral equation with  and     1a x b x 
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(20) 

where  is incomplete beta function, defined by   ,xB a b
1x a    1

0
, 1

b

xB a b u u u
  . 

Figure 13 shows two approximate solutions obtained 
by applying the operational matrix of integration of order 

 (dotted blue) and the operational matrix of inte-
gration of order  (solid red). Both the approximate 
solutions obtained by the two different matrices have 
similar and almost overlapping evolutions except at the 
boundary points 0 and 1. So, we may conclude that the 
exact solution will have similar evolution. 

4 4
7 7

6. Conclusions 

We have introduced an almost Bernstein operational ma-
trices of integration to propose a new and stable algo-
rithm for numerical solution of generalized Abel integral 
equation. It is found that the method is accurate and sta-
ble as shown by the numerical examples. Moreover, the 
algorithm is easy to use since this is a direct method and 
the solution is obtained by applying the operational ma-
trix of integration directly to the algorithm. 
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