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Abstract
Deep learning (DL) is applied to simulate non-adiabatic molecular dynamics of phenanthrene,
using the time-dependent density functional based tight binding (TD-DFTB) approach for excited
states combined with mixed quantum–classical propagation. Reference calculations rely on Tully’s
fewest-switches surface hopping (FSSH) algorithm coupled to TD-DFTB, which provides
electronic relaxation dynamics in fair agreement with various available experimental results.
Aiming at describing the coupled electron-nuclei dynamics in large molecular systems, we then
examine the combination of DL for excited-state potential energy surfaces (PESs) with a simplified
trajectory surface hopping propagation based on the Belyaev–Lebedev (BL) scheme. We start to
assess the accuracy of the TD-DFTB approach upon comparison of the optical spectrum with
experimental and higher-level theoretical results. Using the recently developed SchNetPack (Schütt
et al 2019 J. Chem. Theory Comput. 15 448–55) for DL applications, we train several models and
evaluate their performance in predicting excited-state energies and forces. Then, the main focus is
given to the analysis of the electronic population of low-lying excited states computed with the
aforementioned methods. We determine the relaxation timescales and compare them with
experimental data. Our results show that DL demonstrates its ability to describe the excited-state
PESs. When coupled to the simplified BL scheme considered in this study, it provides reliable
description of the electronic relaxation in phenanthrene as compared with either the experimental
data or the higher-level FSSH/TD-DFTB theoretical results. Furthermore, the DL performance
allows high-throughput analysis at a negligible cost.

1. Introduction

Modeling the properties and evolution of large molecular systems is a challenging task in chemical and
biological sciences, which usually requires solving the stationary or the time-dependent Schrödinger
equation. Recently, machine learning (ML) has appeared as a promising tool that can be used to fully or
partially avoid electronic structure calculations in atomistic simulations [1–6]. ML methodologies may differ
depending on the objective and can be categorized in three main branches: (i) supervised learning, (ii)
unsupervised learning and (iii) reinforcement learning. The major focus in reinforcement learning is given
to finding a balance between exploration (of uncharted areas) and exploitation (of current knowledge) [7].
The main objective of the unsupervised learning is to look for previously undetected patterns in a dataset.
The supervised learning aims to find optimal parameters for a function that maps an input to an output
based on a given set of input–output pairs (also called the training set). Ideally, the supervised ML model
should infer some knowledge from the training set in order to perform reasonably well on new data entries.
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For example, the global structure optimization can be enhanced by each of the aforementioned techniques
[8–12]. Artificial neural networks (NNs) have been actively studied and used in various fields of science, thus
forming a deep learning (DL) domain of ML [13]. In particular, it has been proven that multilayer
feed-forward NNs are ‘universal approximators’ [14, 15], i.e. they can approximate an unknown
multidimensional function with an arbitrary accuracy based on a set of known function values. The more
hidden layers and nodes are included, the more flexible functional form of the network is obtained. The
supervised ML models can be used to construct complex interatomic potentials [2, 16] that can in turn be
used to perform extensive molecular dynamics simulations [17–19]. Ideally, this would correspond to an
ab initio accuracy at the computational cost of a force field. Some supervised ML models include forces in the
training process, which drastically improves the quality of a machine-learned potential energy surface (PES)
[20–23]. Alternatively, NNs have also been used to correct density functional theory (DFT) [24] and density
functional based tight-binding (DFTB) [25] results based on a∆-ML [26] approach. Several software
packages are available for applications of supervised ML to atomistic simulations, e.g. MLatom [27],
DeePMD-kit [28] and SchNetPack [29].

Addressing electronically excited states and non-adiabatic dynamics in excited states obviously proves
both methodologically and computationally much more demanding than merely ground electronic state
properties and dynamics, which involves among other things complex shapes of PES and the occurrence of
conical intersections. Several theoretical approaches have been devised to incorporate non-adiabatic effects
in the dynamics. The most accurate type is fully ab initio and deals with quantum dynamics of nuclei, such as
the multi-configuration time-dependent Hartree (MCTDH) method [30, 31] propagating time-dependent
wavepackets. Alternatively, mixed quantum–classical schemes have been developed based on a classical
description of the nuclear motion, e.g. the mean-field propagation [32] or the trajectory surface hopping
(TSH) approach [33–35]. Within the generalized TSH picture, the nuclear wavepacket evolution is simulated
by an ensemble of independent classical trajectories and non-adiabatic effects are taken into account via a
probability to switch from the current electronic state to another one. Recently, a DL architecture SchNet
[23] has been interfaced with SHARC [36] code for non-adiabatic molecular dynamics [37]. Other studies
have also reported excited-state dynamics using supervised ML schemes [38–42]. Some of them require an
a priori knowledge about the location of conical intersections in order to include more training points in this
region [38, 39], while others attempt to include the non-adiabatic couplings in the ML model [40, 41], which
is another challenging and computationally demanding task. Alternatively, direct quantum dynamics can be
performed within the Bayesian framework [43] or using the MCTDH propagation on a machine-learned
PES [44]. Recent progress regarding ML applications to electronically excited states has been reviewed by
Westermayr et al [45].

The main motivation of the present work is to investigate the ability of DL schemes at describing
non-adiabatic dynamics in relatively large molecular systems with no a priori knowledge about the topology
of the excited-state PESs, based on on-the-fly blind propagation involving all nuclear degrees of freedom and
as many excited states as needed. Electronic structure calculations can become computationally extremely
demanding for medium and large polyatomic molecules even within the commonly used linear response
time-dependent density functional theory (TD-DFT) approach [46]. This has led us to choose the
approximate DFTB [47–50] scheme that can be applied to large systems, due to the use of parameterized
(precomputed) integrals and of a minimal valence basis set. The linear response time-dependent density
functional based tight binding (TD-DFTB) approach has been developed in order to access excited states
[51]. It has been coupled to nuclear dynamics via Tully’s fewest-switches surface hopping (FSSH) scheme and
has been applied to medium-sized systems (namely a few tens of atoms) by several groups [52–56]. Recently,
we showed that this combined FSSH/TD-DFTB approach satisfactorily describes the relaxation of highly
excited electronic states in polyacenes [55, 57]. Yet, achieving statistically meaningful sampling of the initial
conditions and/or propagating long-lasting trajectories beyond a few hundreds of femtoseconds proves to be
numerically involved. Moreover, for large systems beyond a few hundreds or a few thousands atoms, the
TD-DFTB scheme may no longer prove computationally feasible. In addition, the computational cost of
non-adiabatic coupling calculations scales as powers of the the number of involved states and the system size,
respectively. Thus, for large complexes, especially with high density of states [58], the generation of training
data for non-adiabatic couplings might be overly demanding. Also, ML potentials are not at present well
transferable from small to large systems and there may be a need to avoid the explicit use of non-adiabatic
couplings in the dynamics, so that consideration of simpler hopping algorithms is of particular interest.
Historically, the Landau–Zener (LZ) approximation [59, 60] has been proposed to evaluate the hopping
probability at diabatic state crossings. The LZ formulation has been adapted by Belayev and Lebedev [61] in
order to deal with adiabatic states. Alternatively, Zhu and Nakamura [62, 63] have proposed an improved LZ
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formula for the switching probability. In recent years, multidimensional extensions of the Zhu-Nakamura
(ZN) theory have appeared in the literature [64, 65].

The present study is dedicated to the application of DL through the use of the SchNet architecture, to
simplify quantum–classical dynamics in excited electronic states. The goals of the present study are to (i)
obtain accurate machine-learned energies and forces for excited states based on TD-DFTB reference data; (ii)
perform molecular dynamics and incorporate non-adiabatic effects via a simplified TSH approach without
any a priori knowledge about conical intersections or non-adiabatic couplings; (iii) benchmark the
simplified TSH scheme against the reference FSSH algorithm on the one hand and available experimental
data on the other hand. The paper is organized as follows. In the next section, we briefly outline the basics of
the TD-DFTB approach as well as some details regarding the SchNet architecture. Next, we present and
discuss the results required for the benchmark study on phenanthrene, first assessing the accuracy of
TD-DFTB and SchNet methods and then analyzing the electronic relaxation computed with different
hopping schemes. Complementary on-the-fly analysis, i.e. along some selected trajectories, has been
performed in order to shed light on the origin of the observed deviations between the simplified TSH and the
FSSH approaches. Finally, the conclusions and perspectives are given.

2. Methods

In this section, we present a brief outline of the TD-DFTB and DL methods to calculate excited state
properties and several TSH approaches to non-adiabatic dynamics, which are considered in this study.

2.1. Electronic structure calculations
The self-consistent charge DFTB was developed by Elstner et al [50] as an extension of the original DFTB
framework for the ground state [47, 48]. It is based on the second order expansion of the Kohn–Sham DFT
total energy around a reference electronic density, so the final expression for the DFTB total energy of a
system withM atoms reads

ESCC =

Nocc∑
i=1

ni

M∑
A=1

∑
µ∈A

M∑
B=1

∑
ν∈B

cµiH
0
µνcνi +

1

2

M∑
A=1

M∑
B=1

∆qAγAB∆qB + Erep, (1)

where ni is the occupation number of ith molecular orbital (MO), µ and ν are the Kohn–Sham atomic
orbital (AO) indices,∆qA is the Mulliken charge of atom A, Erep is the atomic repulsive contribution, cµi are
the Kohn–ShamMO coefficients and γAB describes the Coulomb interaction between spherically symmetric
charge distributions centered on atoms A and B with a short-range exchange-correlation contribution. The
total energy ESCC is further minimized following the self-consistent procedure as proposed in the original
work [50]. The remarkable computational efficiency of the DFTB approach comes from the fact that AO
overlap and Hamiltonian matrix elements as well as repulsive potentials can be calculated only once and
tabulated for a set of interatomic distances between different pairs of elements. In practice, they are actually
precomputed based on some reference electronic structure method (most often DFT) and stored in an
external file.

Linear response TD-DFTB was developed by Niehaus et al [51] as a DFTB analogue of the conventional
linear response TD-DFT [46]. Excitation energies are given as eigenvalues ΩI of the following matrix
equation: (

A B
B A

)(
X
Y

)
=ΩI

(
I 0
0 −I

)(
X
Y

)
, (2)

where I is the identity matrix, A and B are matrices with the elements given by

Aia,jb = (εa − εi)δijδab + 2KΣ
ia,jb; (3)

Bia,jb = 2KΣ
ia,jb; (4)

and indices i, j and a, b denoting the occupied and virtual MOs with energies εi and εa, respectively;
Σ= S(T) if singlet (triplet) excited states have to be computed. The coupling matrix elements KS

ia,jb for
singlet TD-DFTB transitions can be calculated using the generalized Mulliken approximation as follows [51]
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KS
ia,jb =

M∑
A=1

M∑
B=1

qiaAγABq
jb
B , (5)

where qiaA are Mulliken atomic transition charges. It is worth mentioning that the TD-DFTB absorption
spectrum neither involves doubly excited states, nor Rydberg states.

In order to perform molecular dynamics simulations coupled to TD-DFTB for electronic structure
calculations, excited state energy gradients have to be developed. Their derivation for linear response
TD-DFTB relies on the so-called Z-vector method, which was initially applied by Furche and Ahlrichs
[66, 67] to compute analytical forces within the TD-DFT approach. It was further adapted by Heringer et al
[68, 69] to compute the gradients of the TD-DFTB excitation energy ΩI . Alternatively, one can follow
derivations of TD-DFTB gradients with the long-range correction from [53].

Application of DL to molecular dynamics is essentially based on learning complex multidimensional
PES, which has been reported for ground [23] and excited [37] states. We rely on a recently developed DL
architecture called SchNet [23], which is implemented in the open-source Python package SchNetPack [29].
There are several reasons why this particular implementation has been chosen. First of all, SchNet is a
continuous-filter convolutional NN, which automatically generates filters that map one hidden layer to
another one based on pairwise interactions between a given atom and the surrounding ones [70]. It has been
shown to yield accurate molecular representations and energies, especially when forces are included in the
training [23]. Furthermore, it satisfies all the required symmetries and the resulting energies are rotationally
and translationally invariant, while forces are rotationally equivariant, thus providing energy-conserving
force models [29]. A shifted softplus is used as an activation function:

ssp(x) = ln

(
ex + 1

2

)
, (6)

due to an infinite order of continuity, which allows to obtain smooth PES, forces and derivative properties.
SchNet is trained by minimizing the cost function J, which is computed as follows

J
(
[E,F1, . . . ,FM], [Ẽ, F̃1, . . . , F̃M]

)
= ρ||E− Ẽ||2 + 1

M

M∑
A=1

∣∣∣∣∣
∣∣∣∣∣FA −

(
− ∂Ẽ

∂RA

)∣∣∣∣∣
∣∣∣∣∣
2

, (7)

if both energies E and atomic forces F are included in the training. In the equation above, ρ is the trade-off
between the energy and force loss [71], quantities with tilde denote the model (SchNet) predictions and plain
symbols denote reference data. The second term in equation (7) can be neglected if only energies are
provided. The initial dataset is split into training, validation and test sets. The training set is used to optimize
model parameters in order to minimize the aforementioned cost function. The validation set is used for an
early stopping in order to prevent overfitting, which is a common issue in ML applications when model
predictions are very accurate for the training data but significantly less accurate for new inputs [45, 72]. The
test set is used to evaluate the final model accuracy. More details about the SchNet architecture and practical
aspects can be found in [70].

2.2. Non-adiabatic molecular dynamics
We now briefly go through the details of the quantum–classical TSH method for incorporating the
non-adiabatic effects. In the TSH approach, the nuclear wavepacket motion is simulated by an ensemble of
independent classical trajectories. Each trajectory evolves on a single electronic state at a given time with a
probability to switch (hop) from the current state to another one.

In the Tully’s FSSH approach, the switching between excited states is controlled by the electron dynamics.
Substituting the electronic wavefunction expanded in a basis of adiabatic electronic states into the
time-dependent electronic Schrödinger equation, one derives the following equation for the propagation of
the complex expansion coefficients CJ(t) [33]:

iℏ
dCJ(t)

dt
= CJ(t)EJ(t)− iℏ

∑
K ̸=J

CK(t)DJK(t), (8)

where EJ is the adiabatic energy of state J, DJK is the non-adiabatic coupling between states J and K, which is
calculated using a finite difference method as follows [73]

4



Mach. Learn.: Sci. Technol. 2 (2021) 035039 E Posenitskiy et al

DJK(t+∆t/2)≈ 1

2∆t
[⟨ψJ(t)|ψK(t+∆t)⟩− ⟨ψJ(t+∆t)|ψK(t)⟩]. (9)

In the equation above and hereafter,∆t denotes the nuclear time step that is used to propagate a
trajectory. It is important to apply the decoherence correction on CJ since the propagation of equation (8) in
FSSH is overcoherent, which means that electronic coherences CIC

∗
J do not vanish after passing through the

region of strong coupling between states I and J. Decoherence corrections have been shown to be crucial in a
number of applications [74, 75], and we rely on the commonly used energy-based correction [74] of the CJ

coefficients.
The FSSH probability to switch from the active state I to another state K during the electronic time step

∆τ (used to propagate equation (8)) is estimated from the following equation [73]

PFS
IK (τ) =max

[
0;−2∆τ

Re(C∗
I (τ)CK(τ))

|CI|2
DIK(τ)

]
, (10)

where |CI|2 is the electronic population of a given excited state I. A uniform random number 0< ξ < 1 is
generated at each nuclear time step to determine whether the hop from the active state I to another state K is
allowed from the quantum point of view [73]. The hop is accepted if the following condition is fulfilled

K−1∑
J=1

PFS
IJ < ξ ⩽

K∑
J=1

PFS
IJ K ̸= 1; (11)

ξ ⩽ PFSI1 otherwise. (12)

More details regarding the implementation of the Tully’s FSSH scheme can be found in [52–54] for the
TD-DFTB approach in general and in [55] for the particular implementation in the deMon-Nano [76] code
that has been used in this study.

Even though the FSSH is a commonly used approach to non-adiabatic dynamics, it has a number of
limitations. For example, the wavefunctions overlap in equation (9) can be computed differently within
density-based methods like TD-DFT(B) [55, 77], decoherence corrections are somewhat ad hoc [74] and
there are numerical instabilities in non-adiabatic couplings that can require additional diabatization of
equation (8) [53, 78]. However, it is possible to avoid the aforementioned issues of the FSSH method if there
is no electronic equation to propagate and no non-adiabatic couplings to compute. This is one of the reasons
why results of simplified methods based on the LZ approximation still appear in the literature [38, 39, 58, 61,
64, 65, 79]. These schemes are essentially two-state models with one of the following switching probabilities:
(i) based on the Belyaev–Lebedev (BL) approach [61] or (ii) based on the ZN theory [62, 63]. The BL
hopping probability can be computed as follows

PBLIJ = exp

(
− π

2ℏ

√
Z3
IJ

Z̈IJ

)
, (13)

where ZIJ = |EI − EJ| is the adiabatic energy gap between states I and J and Z̈IJ is its second time derivative at
the crossing point tc, i.e. at the local minimum of ZIJ . It is worth mentioning that the equation above is
applicable only at the diabatic curve-crossing point.

One of the key differences between the simplified TSH and the FSSH is that the hopping probability PBLIJ
is evaluated only at the local minimum of the adiabatic energy gap ZIJ and only between neighboring states,
which is a prerequisite of the underlying LZ approximation. A switch from an active state I to state J is
performed if PBLIJ is larger than a random number 0< ξ < 1. Notably, the aforementioned simplified TSH
scheme naturally accounts for decoherence effects [58]. On the other hand, the electronic population |CI|2 of
excited state SI cannot be computed directly since coefficients CI are generally missing in the LZ approach.
However, the population can be approximated based on the fractional occupation that is a ratio NI/Ntraj,
where N I is the number of trajectories currently (at a given moment of time) running on a PES of SI and
Ntraj is the total number of trajectories.

To conserve the total energy after hopping, the nuclear velocities are rescaled uniformly by a factor β
following the energy conservation law

EI + Ekin = EJ +β2Ekin. (14)
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Thus, the switch of two states can be still rejected if the energy gap EJ − EI > Ekin. Such hops are called
‘frustrated’ or classically forbidden hops. Alternatively, one may perform a more accurate velocity rescaling
based on energy gradients in order to conserve the total angular momentum [64, 80].

2.3. Computational details
Dynamics in low-lying excited states of phenanthrene (C14H10) has been chosen as a test case due to both its
relatively large molecular size and the diversity of available experimental results, furthermore giving rise to
some ambiguity [81] in their interpretation. Also, phenanthrene is among the most abundant species
observed in meteorites [82].

The first part of the discussion in the next section is devoted to the comparison of TD-DFTB and
TD-DFT absorption spectra. The TD-DFT absorption spectrum was computed with Gaussian 09 package
[83] using BLYP functional and 6-31G(d,p) basis set.

All DFTB calculations presented in this study have been performed with the deMon-Nano [76] code
using the mio-1-1 [50] set of parameters. The ability to reproduce energies and geometries corresponding to
low-lying excited states of organic molecules has been critically assessed for different sets of DFTB
parameters in [84, 85].

Three TD-DFTB datasets have been generated independently for the S2, S3 and S4 adiabatic excited states
of phenanthrene. These particular states have been chosen for the reasons given in the next section. Each
generated dataset contains 10 000 points that have been sampled from a single NVT trajectory equilibrated at
T= 500 K in the corresponding excited state during 50 ps using a chain of five Nosé–Hoover thermostats
and∆t= 0.5 fs. This temperature allows to sample a wider region of the PES, which is desirable due to the
absence of any a priori knowledge about conical intersections between the states of interest. Excited state
forces have been included in all generated datasets in order to benefit from a relatively low computational
cost of reference TD-DFTB calculations and to enhance the training performance.

Next, each dataset is provided to SchNetPack with additional parameters that specify the network
topology, i.e. the number of interaction blocks and the number of features, which are specified in section 3.2.
In fact, SchNet consists of a representation network (containing interaction blocks) and a prediction network
[23]. We have only changed the topology of the former while the latter was kept fixed to the default
pyramidal configuration, namely three dense layers with 24 input nodes (equal to the number of atoms) and
one output node. Additionally, one may activate the graphical processing units (GPUs) and/or include forces
in the training. All SchNet models have been trained with a mini-batch stochastic gradient descent, using
ADAM optimizer [86] with mini-batches of 100 samples, 1000 training epochs and the trade-off ρ= 1 in
order to put more emphasis on the energy loss [23]. The trade-off parameter has not been fine-tuned since
the default value was found to produce relatively accurate models. The learning rate is initially set to 10−4

and can decay exponentially with a ratio 0.8 down to 10−6 with a patience of 25 steps. The maximum
number of epochs is set to 5000. The total number of model parameters varies between 238 465 and 886 529
depending on the SchNet topology for phenanthrene, thereby achieving a computational regime taking full
advantage of the use of GPUs.

It is worth mentioning that by default SchNet training and evaluation is performed in single precision for
floating point numbers. While this causes no issues during the training step, application of the resulting
models to TSH simulations with small time steps might be affected. In particular, the BL approach requires
smooth PES since hops are only possible at the local minima. We have performed TSH simulations with
SchNet models evaluated in single or double precision. Convergence issues and numerical artefacts
associated with the use of single-precision SchNet models are discussed in the supplementary information (is
available online at stacks.iop.org/MLST/2/035039/mmedia).

Initial conditions for the TSH simulations were sampled from the thermal distribution of the ground
state. A single trajectory was equilibrated at T= 300 K during 50 ps using a chain of five Nosé–Hoover
thermostats and∆t= 0.5 fs. Snapshots were taken every 50 fs to be further used as initial conditions.

Coupled FSSH/TD-DFTB simulations have been performed with the deMon-Nano code and serve as
reference calculations for the simplified TSH scheme. Each classical trajectory has been propagated using the
Velocity Verlet algorithm with∆t= 0.25 fs during 1 ps and the conical intersection threshold [55] set to
10 meV for excited singlet states. Equation (8) is integrated using a 4th order Runge-Kutta algorithm with an
electronic time step∆τ = 0.048 a.s. In order to be consistent, the same set of initial conditions has been used
for Tully’s FSSH and for simplified TSH scheme.

The SchNetPack is natively interfaced with the atomic simulation environment (ASE) [87]—an
open-source set of Python tools for atomistic simulations. This is why the coupled TSH/SchNet simulations
have been performed using the molecular dynamics driver of the ASE with the BL switching probability
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computed on the fly. The ASE driver calls the pre-trained SchNet model to compute adiabatic energies and
forces at each nuclear time step, which are further used to run the nuclear dynamics (using Velocity
Verlet algorithm) and to detect the local minimum of the energy gap. Due to the fact that the simplified TSH
scheme requires data from three consecutive steps (to detect the local minimum of ZIJ and to compute Z̈IJ

with finite differences), one has to actually come back to step tc and make the [tc]→ [tc +∆t] step again on a
new PES if the hop was accepted at tc. The second derivative of the energy gap Z̈IJ at the crossing point tc is
computed using finite differences as follows

Z̈IJ|t=tc ≈
ZIJ(tc +∆t)− 2ZIJ(tc)+ZIJ(tc −∆t)

∆t2
. (15)

We have benchmarked our implementation of the BL scheme for a one-dimensional model problem,
namely Tully’s simple avoided crossing model from [33]. The computed transition probabilities (see figure
S2 in the supplementary information) are in good agreement with the work of Hanasaki et al [65] and the
observed deviations are associated with the use of different particle mass.

Finally, experimental results for phenanthrene have been extracted from [82, 88–91]. We consider more
specifically the full width at half maximum (FWHM) assessed from early studies performed in supersonic
jets [82, 88, 89] and the relaxation time from pump-probe experiments of Blanchet et al [90]. The
approximate decay time τapp can be derived from the FWHM as follows [81]

τapp =
1

2πcΓ
, (16)

where Γ is the FWHM in cm−1 and c is the velocity of light.

3. Results

This section is dedicated to the results of several TSH models applied to the electronic relaxation in
phenanthrene. It includes: (i) the validation of the TD-DFTB excited states upon comparison of the
computed absorption spectrum versus TD-DFT, CASPT2 and experimental results; (ii) the application of the
SchNet model to learn energies and forces based on the TD-DFTB reference datasets; (iii) the analysis of the
results of the FSSH/TD-DFTB simulations and their comparison with experimental findings; and finally (iv)
the comparison of the simplified TSH simulations based on the BL scheme, with the FSSH/TD-DFTB results,
in order to assess the relevance and performance of non-adiabatic dynamics based upon machine-learned
PESs with no a priori knowledge about couplings and conical intersections.

3.1. Absorption spectra of phenanthrene
First, the positions of several low-lying singlet states of neutral phenanthrene together with the
corresponding FWHMs and decay times (where available) are deduced from the various experimental UV
spectra and summarized in table 1.

We have computed the absorption spectrum of neutral phenanthrene at both the TD-DFTB and the
TD-DFT levels of theory. These results together with selected experimental values are compiled in figure 1.
The agreement between TD-DFTB and TD-DFT spectra is reasonably good and both methods predict
positions of two experimentally observed bright states around 284 and 266 nm with remarkable accuracy. It
is important to note that the band at 284 nm (4.37 eV) corresponds to the S0 → S3 transition within both
TD-DFT and TD-DFTB, whereas the available experimental studies attribute it to the S0 → S2 excitation.
However, this might be due to the relatively low oscillator strength (≈10−3) of S1 compared to S2
(0.06–0.07). For more details, see table S1 in supplementary information. Moreover, the TD-DFTB ratio κ of
oscillator strengths for S3/S2 and S3/S1 amounts to 1.5 and 79.4, respectively, the latter value being in very
good agreement with κ= 84 reported by Amirav et al [88]. As for TD-DFT, κ for S3/S2 and S3/S1 is 1.4 and
113.7, respectively. The TD-DFTB results can also be compared with the ab initio CASPT2 calculations
performed for neutral phenanthrene by González-Luque et al [93]. The first bright state in CASPT2 is S3
with an excitation energy equal to 4.37 eV, which means that the TD-DFTB ordering is actually reasonable,
while dark S1 and S2 states can be found at 3.42 and 4.26 eV, respectively. More recently, Nazari et al [94]
have performed a detailed analysis of the PESs and of the ultrafast dynamics of monomeric phenanthrene
and of some of its derivatives. Whereas both the TD-DFT and CASPT2 absorption spectra are in reasonably
good agreement with previous studies, the ordering of the states in [94] can be somewhat misleading since
the higher-lying excited states (S3 and above) have been discarded.
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Table 1. Selected results from the experiments with neutral phenanthrene in different environments.

Environment Attributed transition Position, nm FWHM, cm−1 Decay time, ps

Supersonic jeta S0 → S1 340.9 5.8 0.92
S0 → S2 282.6 11.1 0.48

Supersonic jetb S0 → S1 340.9 — —
S0 → S2 282.6 12.6 0.42

Isopentane glass at 4 Kc S0 → S2 — 67± 7 0.08
Supersonic jetd S0 → S2 — 12.0 0.44
Ne matrix at 4 Ke S0 → S1 341.1 — —

S0 → S2 284.3 — —
S0 → S3 273.4 — —
S0 → S4 262.4 — —
S0 → S5 243.0 — —
S0 → S6 229.0 — —

Gas phasef S0 → S1 341.6 — —
S0 → S2 283.7 — 0.52

a Amirav et al [88].
b Ohta and Baba [89].
c Dick and Nickel [91].
d Brechignac and Hermine [82].
e Salama et al [92].
f Blanchet et al [90].

Figure 1. Absorption spectra (sticks in the left panel, convoluted in the right panel) of neutral phenanthrene computed with
TD-DFT (orange) and TD-DFTB (blue) at the equilibrium geometry. All spectra have been truncated to 6.0 eV. Green and red
vertical dashed lines indicate positions of some excited states from the experiments in Ne matrix [92] and in the supersonic jet
[88, 89], respectively (see table 1). Inset in the left panel is the balls and sticks representation of phenanthrene (C14H10) where
black and cyan balls correspond to carbon and hydrogen atoms, respectively. Adapted from Ref. [95].

3.2. SchNet training
The performance of several SchNet models is summarized in table 2. Notably, all of them achieve chemical
accuracy (errors smaller than 1 kcal mol−1 or 0.043 eV) on the TD-DFTB energies of phenanthrene. This is
not surprising, taking into account the outstanding performance of SchNet for prediction of both ground
state [23] and excited state [37] properties. It is worth mentioning that the real accuracy of the
machine-learned quantities may vary depending on the underlying electronic structure method that has been
used for training. For example, SchNet errors have exceeded 1 kcal mol−1 for wavefunction-based CASSCF
data [37]. However and more generally, errors are larger for the SchNet model #6, trained without forces,
compared to model #3, which is consistent with previous studies [23, 96]. Furthermore, including forces in
the SchNet training allows to optimize the model much faster due to a significant amount of information
provided by 3M energy gradients. The error does not vary significantly between models with three and six
interactions, which has already been pointed out by Schütt et al [23] for the QM9 [97–99] dataset. Yet, the
difference in accuracy of SchNets with 1, 2 and 3 interactions can be more pronounced [1]. Notably, using
3000 training and 1000 validation points, model #5 with 256 features achieves similar accuracy as model #4
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Table 2. Parameters of the considered SchNet models and the corresponding training times and errors. All models have used forces
(except #6) and one NVIDIA® V100 GPU in the training. The MAEs (RMSEs) for energies and forces are given in eV and eV Å−1,
respectively. The MAE and RMSE have been computed for a test set (2000 structures for all models except #5 and #7 where the
remaining 6000 and 3000 structures, respectively, have been used).

Model parameters Dataset sizes

# State Features Interactions Training set Validation set Runtime, h Property MAE (RMSE)

1 S2 128 6 6000 2000 14 Energy 0.014 (0.018)
Force 0.075 (0.126)

2 S2 128 3 6000 2000 15 Energy 0.018 (0.023)
Force 0.084 (0.138)

3 S3 128 6 6000 2000 13 Energy 0.016 (0.022)
Force 0.068 (0.113)

4 S3 256 3 6000 2000 15 Energy 0.014 (0.018)
Force 0.062 (0.106)

5 S3 256 3 3000 1000 5 Energy 0.017 (0.022)
Force 0.075 (0.124)

6 S3 128 6 6000 2000 40 Energy 0.029 (0.038)
Force —

7 S4 128 6 6000 1000 13 Energy 0.023 (0.030)
Force 0.137 (0.239)

that has been trained with twice as much data. Overall, 128 features and three interactions seem to be a
reasonable choice for the SchNet architecture. All the aforementioned conclusions indicate an importance of
the hyperparameter tuning for practical applications of NNs. In fact, thoroughly crafted NNs can achieve
remarkable accuracy even on relatively small training sets [70]. For all SchNet-based calculations presented
below (sections 3.4 and 3.5), we have used models #1, #3 and #7 for S2, S3 and S4 excited states, respectively.

3.3. FSSH/TD-DFTB simulations
In this subsection we assess the validity of the reference FSSH/TD-DFTB approach in the study of the
radiationless electronic relaxation from the S3 state of phenanthrene, by comparing the computed decay
times with the experimental results from table 1. An ensemble of 250 trajectories has been launched and
analyzed, which can be viewed in figure 2. Notably, the shapes of the average population curves change
slightly as the number of trajectories is increased from 100 to 250. Also, the computed decay times are 745
and 860 fs for 100 and 250 trajectories, respectively. Hence, convergence might not be fully achieved with
respect to ensemble size but should at least be good enough. The S3 population curve can be roughly divided
into two parts. The first one is located in the time window [0;400] fs and corresponds to a relatively rapid
decay of the initial population from S3 toward higher- and lower-lying states. It can be approximated by an
exponential decay rate of 550–600 fs. The population transfer after 400 fs appears to be slower than the initial
one. These results are in qualitative agreement with the complex multichannel relaxation, which is expected
for phenanthrene according to [94]. As pointed out by Nazari et al [94], an internal conversion from the first
bright singlet state consists of fast (100 fs) and slow (600 fs) contributions. The same group has also
performed FSSH/TD-DFT simulations in the two lowest excited singlet states of a phenanthrene derivative.
Their results are in qualitatively good agreement with experimental observations, despite neglecting the
transitions toward higher-lying excited states. However, the major fraction (80%) of the population is rapidly
(within less than 200 fs) transferred to the lowest excited state, in contrast with our FSSH/TD-DFTB
simulations. Furthermore, the TD-DFT energy gaps (computed with ωB97XD and BHandHLYP functionals)
[94] between the two lowest excited states are smaller than the ones in the CASPT2 [93, 94] or TD-DFTB
(this work) spectra. This is consistent with faster and more complete (compared to the aforementioned
FSSH/TD-DFTB results) relaxation reported by Nazari et al in [94].

Overall, the FSSH/TD-DFTB approach applied to the electronic relaxation of neutral phenanthrene is in
reasonably good agreement with the available experimental data. It is worth mentioning that comparison of
dynamical simulations with experiments must be carried out with caution. Indeed, experimental access to
excited-state dynamics is most often not direct, depending on the experimental probes and setups, involving
either transient spectroscopy or time-resolved photo-electron spectroscopy. In the latter case, the probe
signal stems from the ionization and realistic comparison with experiment may require additional
ingredients in the simulation such as ionization probabilities from excited states [100, 101].
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Figure 2. Populations of the low-lying singlet excited states in phenanthrene averaged over an ensemble of 100 (left panel) or 250
(right panel) FSSH/TD-DFTB trajectories. The initial state is S3. Reproduced from Ref. [95].

Figure 3. Occupations of the low-lying singlet excited states in phenanthrene averaged over an ensemble of 500 trajectories. The
initial state is S3. Each trajectory has been propagated with an indicated time step∆t on machine-learned PESs coupled to the BL
hopping probability.

3.4. TSH/SchNet simulations
We start with the analysis of the TSH simulations with the BL hopping probability coupled to the
SchNet-learned quantities (energies and forces) for two propagation steps, such as depicted in figure 3.
Clearly, there are no significant differences in the calculated electronic relaxation. The computed decay time
is about 416 and 421 fs with∆t= 0.25 and∆t= 0.05 fs, respectively, which means that the TSH dynamics is
converged with time step∆t= 0.25 fs. The population transfer simulated with the BL/SchNet approach is
slower than the one observed in the reference FSSH/TD-DFTB calculation, which is related to the fact that
the number of BL-induced surface hops is significantly larger compared to that of FSSH [79]. It is worth
mentioning another pitfall of the simplified TSH schemes that has been pointed out by Smith and Akimov
[58], namely that BL-based approaches are well suited to study the dynamics in manifolds of states with
energy gaps below 0.1–0.2 eV, but may fail for states separated by gaps⩾0.5 eV. Nonetheless in the present
case, the BL/Schnet decay time seems to be in even closer agreement with the four experimental values in the
range [0.42–0.52] ps (see table 1), with respect to the reference FSSH calculation. Yet, a direct comparison
with our theoretical results may be only semi-quantitative, depending on the experimental probe mechanism
(see discussion in the last paragraph of section 3.3).

Additional TSH calculations have been performed with the TD-DFTB energies and forces instead of the
machine-learned ones. The goal was to assess whether the aforementioned results are a direct consequence of
using ML-based quantities or is due to the particular TSH implementation presented in this work.
Figure 4(b) shows the occupation dynamics for an ensemble of 100 trajectories propagated using TD-DFTB
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Figure 4. Occupations of the low-lying singlet excited states in phenanthrene averaged over an ensemble of 100 trajectories. Each
trajectory has been propagated with the time step∆t= 0.25 fs on PES provided by (a) SchNet or (b) TD-DFTB coupled to the BL
hopping probability.

energies and forces coupled to the BL hopping probability. The results are qualitatively similar to those
obtained with the machine-learned quantities (see figure 4(a)), yet with more rapid population transfer from
S3 to S2.

3.5. Discussion
To gain further insight into the performance of the TSH algorithms, we evaluated the dependence of the
number of successful surface switches on the instantaneous adiabatic energy gap at the hopping event, which
is compiled in figure 5. The number of hops peaks at small energy gaps of about 0.02 eV and about 0.01 eV
for BL and FSSH methods, respectively. Notably, the BL-induced switches are more frequent than the FSSH
ones, despite the constraint that switches are only possible at the local minimum of the adiabatic energy gap.
This is also consistent with the previous study on excited-state dynamics of a phenol molecule [79].

We have performed additional analysis for one selected trajectory (see figure 6) in order to demonstrate
the numerical issues associated with the use of single-precision SchNet models. This trajectory has been
propagated in S3 with∆t= 0.05 fs, coupled to TD-DFTB or SchNet (evaluated in single or double precision)
for electronic structure calculations starting from the same set of initial conditions and with surface switches
disabled. The adiabatic energy gap Z23 between the S3 and S2 states and its second time derivative Z̈23 at each
local minimum has been computed on the fly. As expected, the global energy gap evolution is not affected by
the change of the SchNet precision. On the other hand, the distribution of Z̈23 values is very different for
trajectory runs based on SchNet. In particular, the number of SchNet-visited local minima (each point in the
bottom row corresponds to the finite difference calculation at the detected local minimum) is significantly
larger for the single precision case compared to either TD-DFTB or double precision propagation. As can be
seen from the inset in figure 6, SchNet predicts several local minima when using single precision and zero
minimum using double precision within the short considered period of time between 1.5 and 2.5 fs. Thus,
we conclude that the TSH simulations should be performed with double-precision SchNet (see
supplementary information for a more detailed discussion).

Finally, the computational costs are compared for the approaches considered in this study. A single
FSSH-trajectory propagation with∆t= 0.25 fs (4000 steps) takes approximately 33 h when four states are
included and 13 h with three states (mean values averaged over 200 trajectories). Notably, the ML-based
propagation of three states takes only about 25–30 min with∆t= 0.25 fs (4000 steps) and about 65–70 min
with∆t= 0.1 fs (10 000 steps), which is already remarkable gain of the CPU time. However, one should also
take into account the time consumed for the training step of DL (SchNet) models, which varied between 4
and 15 h depending on both the number of training points and SchNet hyperparameters (see table 2). On the
other hand, the training has to be done only once and the resulting SchNet model can be used in principal
for an arbitrary number of trajectories. Thus, the TSH/SchNet simulations can be at least one
order-of-magnitude faster than the FSSH/TD-DFTB ones while avoiding exponential scaling with respect to
the number of excited states included in the propagation.
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Figure 5. Distribution of the number of successful surface hops computed with the BL (blue) and Tully’s FSSH (red) approaches
versus the corresponding adiabatic energy gap. Data collected from 200 trajectories.

Figure 6. Adiabatic energy gap Z23 between the S3 and S2 states (top row) and its second time derivative at the local minima
(bottom row) along the selected trajectory propagated with∆t= 0.05 fs computed with TD-DFTB (red), single-precision (SP)
or double-precision (DP) SchNet models (green or blue, respectively). The inset corresponds to adiabatic energy gaps in the time
window [1.5:2.5] fs computed with DP (solid blue line) or SP (green dashed line) SchNet models, see main text for discussion.
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4. Conclusion

A detailed theoretical study dedicated to the application of DL to the non-adiabatic molecular dynamics of
neutral phenanthrene, based on TD-DFTB calculations and simplified TSH switching probability has been
presented. The results of the BL approach coupled to machine-learned PESs have been compared with those
from Tully’s FSSH/TD-DFTB approach and with available experimental data.

First of all, the accuracy of the TD-DFTB method has been assessed by calculating the absorption
spectrum of neutral phenanthrene and upon comparison with higher-level electronic structure and available
experimental data. The agreement for the low-lying excited singlet states is reasonably good. In a second step,
the electronic relaxation from the bright S3 state via the cascade of radiationless transitions has been
investigated. The detailed analysis reveals good agreement between the simulated decay and the experimental
results. Notably, the computed electronic relaxation in phenanthrene is significantly slower than what has
been reported in our previous studies on polyacenes [55, 57], which is well correlated with the large energy
gap between the initially excited S3 state and the one below in energy in the TD-DFTB spectrum. This study
brings some insight in the photophysics of phenanthrene and has been considered as a reference for the
evaluation of simplified approaches to non-adiabatic molecular dynamics. The present results are of interest
for astrochemistry and laboratory experiments concerned with atto- or femto-second laser spectroscopy of
carbonaceous molecules. Consequently and due to the diversity of available experimental and theoretical
results, phenanthrene can be viewed as a benchmark system to either study photophysical processes or test
advanced theoretical tools.

The performance of several DL (SchNet) models trained on the TD-DFTB datasets has been evaluated.
Overall, the SchNet architecture has been found able to accurately reproduce the complex multidimensional
PESs of phenanthrene, especially when forces are included in the training. Notably, all of them achieve
chemical accuracy (errors smaller than 1 kcal mol−1 or 0.043 eV) on the TD-DFTB energies of
phenanthrene. The mean absolute errors could be lowered to less than 0.02 eV for the energy and 0.08 eV
Å−1 for the forces. One should precise the limits of the present conclusions. The real accuracy of the
supervised ML methods is determined by the training data. Thus, the aforementioned SchNet models
naturally inherit all advantages and disadvantages of the underlying TD-DFTB approach. The main
drawback of some supervised ML algorithms is that there is no confidence in the predictions for inputs that
lie beyond the space of training points. Nevertheless, this should not be an issue in this study since there is no
fragmentation or isomerization involved.

Finally, a major focus has been given to the results computed with a simplified TSH scheme on
SchNet-learned PESs. The convergence of the BL approach has been investigated. This TSH scheme coupled
to SchNet for electronic structure calculations provides reliable results when SchNet is evaluated in double
precision whereas the TSH dynamics propagated with small time steps fails to converge when the default
single precision is used. The computed decay time for the S3 state of phenanthrene is about 0.42 ps that is
somewhat shorter than the decay in the reference FSSH calculations (0.55–0.60 ps). Nevertheless, both
calculated decay times are in reasonably good agreement with the four experimental values in the range
(0.42–0.52) ps (see table 1). Indeed, a direct comparison with our theoretical results may be only
semi-quantitative, depending on the experimental probe mechanism. As far as we know, this study is the first
to investigate the electronic relaxation in excited states based on machine-learned quantities derived for a
system with more than 20 atoms.

The extreme acceleration provided by DL will prove invaluable for investigating larger systems with
numerous excited states and/or to allow for longer lasting trajectories or a much denser sampling of the
initial conditions. There is no doubt that simple hopping schemes can be of valuable interest in parallel with
the alternative route consisting in the application of supervised ML models to fit the non-adiabatic couplings
thus enabling the use of the Tully’s FSSH approach [37, 40].

Data availability statement

Codes developed in this work are available on github.com/q-posev/ml-tsh. All TD-DFTB datasets,
pre-trained SchNet models (#1, #3, #7 from table 2) and initial conditions used in this work are openly
available in Ref. [102].

The data that support the findings of this study are openly available at the following URL/DOI: 10.5281/
zenodo.4266393.
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[2] Deringer V L, Caro M A and Gábor C 2019 Machine learning interatomic potentials as emerging tools for materials science Adv.
Mater. 31 1902765

[3] Westermayr J and Marquetand P 2020 Machine learning and excited-state molecular dynamicsMach. Learn.: Sci. Technol.
1 043001

[4] Dral P O 2020 Quantum chemistry in the age of machine learning J. Phys. Chem. Lett. 11 2336–47
[5] Unke O T and Meuwly M 2019 Physnet: A neural network for predicting energies, forces, dipole moments and partial charges

J. Chem. Theory Comput. 15 3678–93
[6] Meuwly M Transformative applications of machine learning for chemical reactions (arXiv:2101.03530)
[7] Kaelbling L P, Littman M L, and Moore A W 1996 Reinforcement learning: a survey CoRR cs.AI/9605103
[8] Sørensen K H, Jørgensen M S, Bruix A and Hammer B 2018 Accelerating atomic structure search with cluster regularization

J. Chem. Phys. 148 241734
[9] Jørgensen M S, Groves M N and Hammer B 2017 Combining evolutionary algorithms with clustering toward rational global

structure optimization at the atomic scale J. Chem. Theory Comput. 13 1486–93
[10] Jacobsen T L, Jørgensen M S and Hammer B 2018 On-the-fly machine learning of atomic potential in density functional theory

structure optimization Phys. Rev. Lett. 120 026102
[11] Bisbo M K and Hammer B 2020 Efficient global structure optimization with a machine-learned surrogate model Phys. Rev. Lett.

124 086102
[12] Jørgensen M S, Mortensen H L, Meldgaard S A, Kolsbjerg E L, Jacobsen T L, Sorensen K H and Hammer B 2019 Atomistic

structure learning J. Chem. Phys. 151 054111
[13] Gasteiger J and Zupan J 1993 Neural networks in chemistry Angewandte Chemie Int. Edn English 32 503–27
[14] Cybenko G 1989 Approximation by superpositions of a sigmoidal functionMath. Control Signals Syst. 2 303–14
[15] Hornik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal approximators Neural Netw.

2 359–66
[16] Behler J and Parrinello M 2007 Generalized neural-network representation of high-dimensional potential-energy surfaces Phys.

Rev. Lett. 98 146401
[17] Gastegger M, Behler J and Marquetand P 2017 Machine learning molecular dynamics for the simulation of infrared spectra

Chem. Sci. 8 6924–35
[18] Shakouri K, Behler J, Meyer J and Kroes G-J 2017 Accurate neural network description of surface phonons in reactive gas–surface

dynamics: N2+ ru(0001) J. Phys. Chem. Lett. 8 2131–6
[19] Zhang Y, Zhou X and Jiang B 2019 Bridging the gap between direct dynamics and globally accurate reactive potential energy

surfaces using neural networks J. Phys. Chem. Lett. 10 1185–91
[20] Chiriki S, Jindal S and Bulusu S S 2017 Neural network potentials for dynamics and thermodynamics of gold nanoparticles

J. Chem. Phys. 146 084314
[21] Zhenwei Li, Kermode J R and Alessandro D V 2015 Molecular dynamics with on-the-fly machine learning of

quantum-mechanical forces Phys. Rev. Lett. 114 096405
[22] Zhang L, Han J, Wang H, Car R and Weinan E 2018 Deep potential molecular dynamics: a scalable model with the accuracy of

quantum mechanics Phys. Rev. Lett. 120 143001
[23] Schütt K T, Sauceda H E, Kindermans P-J, Tkatchenko A and Müller K-R 2018 SchNet—a deep learning architecture for

molecules and materials J. Chem. Phys. 148 241722
[24] Ramakrishnan R, Hartmann M, Tapavicza E and von Lilienfeld O A 2015 Electronic spectra from TDDFT and machine learning

in chemical space J. Chem. Phys. 143 084111
[25] Zhu J, Vuong V Q, Sumpter B G and Irle S 2019 Artificial neural network correction for density-functional tight-binding

molecular dynamics simulationsMRS Commun. 9 867–73
[26] Ramakrishnan R, Dral P O, Rupp M and von Lilienfeld O A 2015 Big data meets quantum chemistry approximations: the

δ-machine learning approach J. Chem. Theory Comput. 11 2087–96
[27] Dral P O 2019 MLatom: a program package for quantum chemical research assisted by machine learning J. Comput. Chem.

40 2339–47

14

https://orcid.org/0000-0002-1623-0594
https://orcid.org/0000-0002-1623-0594
https://orcid.org/0000-0001-9412-2866
https://orcid.org/0000-0001-9412-2866
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1002/adma.201902765
https://doi.org/10.1002/adma.201902765
https://doi.org/10.1088/2632-2153/ab9c3e
https://doi.org/10.1088/2632-2153/ab9c3e
https://doi.org/10.1021/acs.jpclett.9b03664
https://doi.org/10.1021/acs.jpclett.9b03664
https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1021/acs.jctc.9b00181
https://arxiv.org/abs/2101.03530
https://doi.org/10.1063/1.5023671
https://doi.org/10.1063/1.5023671
https://doi.org/10.1021/acs.jctc.6b01119
https://doi.org/10.1021/acs.jctc.6b01119
https://doi.org/10.1103/PhysRevLett.120.026102
https://doi.org/10.1103/PhysRevLett.120.026102
https://doi.org/10.1103/PhysRevLett.124.086102
https://doi.org/10.1103/PhysRevLett.124.086102
https://doi.org/10.1063/1.5108871
https://doi.org/10.1063/1.5108871
https://doi.org/10.1002/anie.199305031
https://doi.org/10.1002/anie.199305031
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1039/C7SC02267K
https://doi.org/10.1039/C7SC02267K
https://doi.org/10.1021/acs.jpclett.7b00784
https://doi.org/10.1021/acs.jpclett.7b00784
https://doi.org/10.1021/acs.jpclett.9b00085
https://doi.org/10.1021/acs.jpclett.9b00085
https://doi.org/10.1063/1.4977050
https://doi.org/10.1063/1.4977050
https://doi.org/10.1103/PhysRevLett.114.096405
https://doi.org/10.1103/PhysRevLett.114.096405
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1063/1.5019779
https://doi.org/10.1063/1.5019779
https://doi.org/10.1063/1.4928757
https://doi.org/10.1063/1.4928757
https://doi.org/10.1557/mrc.2019.80
https://doi.org/10.1557/mrc.2019.80
https://doi.org/10.1021/acs.jctc.5b00099
https://doi.org/10.1021/acs.jctc.5b00099
https://doi.org/10.1002/jcc.26004
https://doi.org/10.1002/jcc.26004


Mach. Learn.: Sci. Technol. 2 (2021) 035039 E Posenitskiy et al

[28] Wang H, Zhang L, Han J and Weinan E 2018 Deepmd-kit: a deep learning package for many-body potential energy
representation and molecular dynamics Comput. Phys. Commun. 228 178–84

[29] Schütt K T, Kessel P, Gastegger M, Nicoli K A, Tkatchenko A and Müller K-R 2019 SchNetPack: a deep learning toolbox for
atomistic systems J. Chem. Theory Comput. 15 448–55

[30] Meyer H-D, Manthe U and Cederbaum L S 1990 The multi-configurational time-dependent Hartree approach Chem. Phys. Lett.
165 73–8

[31] Beck M H, Jäckle A, Worth G A and Meyer H-D 2000 The multiconfiguration time-dependent Hartree (MCTDH) method: a
highly efficient algorithm for propagating wavepackets Phys. Rep. 324 1–105

[32] Ehrenfest P 1927 Bemerkung über die angenäherte gültigkeit der klassischen mechanik innerhalb der quantenmechanik Z. Phys.
45 455–7

[33] Tully J C 1990 Molecular dynamics with electronic transitions J. Chem. Phys. 93 1061–71
[34] Fabiano E, Keal T W and Thiel W 2008 Implementation of surface hopping molecular dynamics using semiempirical methods

Chem. Phys. 349 334–47
[35] Crespo-Otero R and Barbatti M 2018 Recent advances and perspectives on nonadiabatic mixed quantum–classical dynamics

Chem. Rev. 118 7026–68
[36] Mai S, Marquetand P and Leticia G 2018 Nonadiabatic dynamics: the SHARC approachWIREs Comput. Mol. Sci. 8 e1370
[37] Westermayr J, Gastegger M and Marquetand P 2020 Combining SchNet and SHARC: the SchNarc machine learning approach for

excited-state dynamics J. Phys. Chem. Lett. 11 3828–34
[38] Chen W-K, Liu X-Y, Fang W-H, Dral P O and Cui G 2018 Deep learning for nonadiabatic excited-state dynamics J. Phys. Chem.

Lett. 9 6702–8
[39] Hu D, Xie Y, Li X, Li L and Lan Z 2018 Inclusion of machine learning kernel ridge regression potential energy surfaces in

on-the-fly nonadiabatic molecular dynamics simulation J. Phys. Chem. Lett. 9 2725–32
[40] Dral P O, Barbatti M and Thiel W 2018 Nonadiabatic excited-state dynamics with machine learning J. Phys. Chem. Lett. 9 5660–3
[41] Westermayr J, Michael Gastegger M F Menger S J, Mai S, González L and Marquetand P 2019 Machine learning enables long time
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