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Abstract
Despite the tremendous success of deep neural networks in machine learning, the underlying
reason for their superior learning capability remains unclear. Here, we present a framework based
on statistical physics to study the dynamics of stochastic gradient descent (SGD), which drives
learning in neural networks. Using the minibatch gradient ensemble, we construct order
parameters to characterize the dynamics of weight updates in SGD. In the case without mislabeled
data, we find that the SGD learning dynamics transitions from a fast learning phase to a slow
exploration phase, which is associated with large changes in the order parameters that characterize
the alignment of SGD gradients and their mean amplitude. In a more complex case, with randomly
mislabeled samples, the SGD learning dynamics falls into four distinct phases. First, the system
finds solutions for the correctly labeled samples in phase I; it then wanders around these solutions
in phase II until it finds a direction that enables it to learn the mislabeled samples during phase III,
after which, it finds solutions that satisfy all training samples during phase IV. Correspondingly, the
test error decreases during phase I and remains low during phase II; however, it increases during
phase III and reaches a high plateau during phase IV. The transitions between different phases can
be understood by examining changes in the order parameters that characterize the alignment of the
mean gradients for the two datasets (correctly and incorrectly labeled samples) and their (relative)
strengths during learning. We find that individual sample losses for the two datasets are separated
the most during phase II, leading to a data cleansing process that eliminates mislabeled samples
and improves generalization. Overall, we believe that an approach based on statistical physics and
stochastic dynamic systems theory provides a promising framework for describing and
understanding learning dynamics in neural networks, which may also lead to more efficient
learning algorithms.

1. Introduction: learning as a stochastic dynamical system

Modern artificial neural network (ANN)-based algorithms, in particular, deep-learning neural networks
(DLNNs) [1, 2] have enjoyed a long string of tremendous successes, achieving human-level performance in
image recognition [3], machine translation [4], games [5], and even solving long-standing grand-challenge
scientific problems, such as protein folding [6]. However, despite DLNNs’ successes, the underlying
mechanism of how they work remains unclear. For example, one key ingredient in powerful DLNNs is a
relatively simple iterative method called stochastic gradient descent (SGD) [7, 8]. However, the reason why
SGD is so effective at finding highly generalizable solutions in high-dimensional nonconvex loss-function
landscapes remains unclear. Random elements due to subsampling in SGD seem to be key for learning, yet
the inherent noise in SGD also makes it difficult to understand.

© 2021 The Author(s). Published by IOP Publishing Ltd
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From thermodynamics and statistical physics, we know that physical systems with many degrees of
freedom are subject to stochastic fluctuations, e.g., thermal noise that drives Brownian motion, and powerful
tools have been developed to understand collective behaviors in stochastic processes [9]. In this paper, we
propose to consider the SGD-based learning process as a stochastic dynamic system and to investigate
SGD-based learning dynamics using concepts and methods from statistical physics.

In an ANN, the model is parameterized by its weights, represented as an Np-dimensional vector:
w= (w1,w2, ...,wNp), where Np is the number of parameters (weights). The dynamics of learning in ANN
can thus be described by the motion of a “learner” particle (with coordinates w) in the weight space.
Supervised learning uses a set of N training samples, each with an input vector Xk and a correct output
vector Zk for k= 1, 2, ...,N. For each input Xk, the learning system predicts an output vector Yk = G(Xk,w),
where the output function G depends on the architecture of the NN as well as its weights, w. The goal of
learning is to discover the weight parameters that minimize the difference between the predicted and correct
output characterized by an overall loss function (or energy function):

L(w) = N−1
N∑

k=1

lk, (1)

where lk = d(Yk,Zk) is the loss for sample k that measures the distance between Yk and Zk. A popular choice
for d is the cross-entropy loss, which is what we use in this paper.

One learning strategy is to update the weights by following the gradient of L directly. However, this direct
gradient descent (GD) scheme is computationally prohibitive for large datasets and it also has the obvious
shortfall of being trapped by local minima or saddle points. SGD was first introduced to circumvent the large
dataset problem by updating the weights according to a subset (minibatch) of samples randomly chosen at
each iteration [7]. Specifically, the change of weight wi (i= 1, 2,…,Np) for iteration t in SGD is given by

∆wi(t) =−α
∂Lµ(t)(w)

∂wi
, (2)

where α is the learning rate and µ(t) represents the random minibatch used for iteration t. The mini loss
function for a minibatch µ of size B is defined as follows:

Lµ(w) = B−1
B∑

l=1

d(Yµl ,Zµl), (3)

where µl (l= 1, 2,…,B) labels the B randomly chosen training samples.
In addition to the computational advantage of SGD, the inherent noise due to random subsampling in

SGD allows the system to escape local traps. In SGD, noise originates from the difference between the
minibatch loss function Lµ and the whole-batch loss function, L: δLµ ≡ Lµ − L. Using the continuous time
approximation of equation (2), the SGD learning dynamics can be described by a Langevin equation:

dw

dt
=−α∇wL+ η, (4)

where the first term on the right-hand side (RHS) of equation (4) is the usual deterministic GD term, and
the second term corresponds to SGD noise, defined as: η ≡−α∇δLµ. The SGD noise has a zero mean
⟨η⟩µ = 0, and its strength is characterized by the noise matrix∆ij ≡ ⟨ηiηj⟩= α2Cij, where the covariance
matrix C can be written as follows:

Cij ≡
〈
∂δLµ

∂wi

∂δLµ

∂wj

〉
µ

=

〈
∂Lµ

∂wi

∂Lµ

∂wj

〉
µ

− ∂L

∂wi
· ∂L
∂wj

. (5)

According to equation (4), the SGD-based learning dynamics can be considered as the stochastic motion
of the learner particle in the high-dimensional weight space. The stochastic dynamics of physical systems that
are in thermal equilibrium can also be described by Langevin equations with the same deterministic term as
in equation (4), but with a much simpler noise term that describes the isotropic and homogeneous thermal
fluctuations. Indeed, as first pointed out by Chaudhari and Soatto [10], SGD noise is neither isotropic nor
homogeneous in the weight space. In this sense, SGD noise is highly nonequilibrium. As a result of
nonequilibrium SGD noise, the steady-state distribution of weights is not the Boltzmann distribution seen in
equilibrium systems, and the SGD dynamics exhibits much richer behavior than simply minimizing a global
loss function (free energy).
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How can we understand SGD-based learning in ANN? Here, we propose to bring useful concepts and
tools from statistical physics [11] and stochastic processes [9] to bear on characterizing and investigating the
SGD learning process/dynamics. In the rest of this paper, we describe a systematic way to characterize SGD
dynamics based on order parameters that are defined over the minibatch gradient ensemble. We show how
this approach allows us to identify and understand various phases of the learning process with and without
labeling noise, which may lead to useful algorithms that improve generalization in the presence of mislabeled
data. Throughout our study, we use realistic but simple datasets to demonstrate the principles of our
approach, and pay less attention to absolute performance.

2. Characterizing SGD learning dynamics: the minibatch gradient ensemble and order
parameters

To characterize the stochastic learning dynamics in SGD, we introduce the concept of a minibatch ensemble
{µ}, where each member of the ensemble is a minibatch with B samples chosen randomly from the whole
training dataset (of size N). Based on the minibatch ensemble, we can define an ensemble of minibatch loss
functions Lµ or, equivalently, an ensemble of gradients {gµ(≡−∇Lµ(w))} at each weight vector w.

The SGD learning dynamics is fully characterized by the statistical properties of the gradient ensemble in
weight space {gµ(w)}. At each point in the weight space, the ensemble average of the minibatch gradients is
the gradient over the whole dataset: g(w)≡ ⟨gµ(w)⟩µ(=∇L(w)), and fluctuations of the gradients around
their mean give rise to the noise matrix (equation (5)). To measure the alignment between the minibatch
gradients, we define an alignment parameter R:

R(w)≡ ⟨ĝµ(w) · ĝν(w)⟩µ,ν , (6)

where ĝµ = gµ/∥gµ∥ is the unit vector in the gradient direction gµ. The alignment parameter is the cosine of
the relative angle between the two gradients averaged over all pairs of minibatches (µ, ν) in the ensemble.

To analyze the gradient fluctuations in different directions, we can project the minibatch gradient gµ

onto the mean, g, and write it as follows:

gµ = gµ⊥ +λµg, (7)

where λµ = (gµ · g)/∥g∥2 is the projection constant and gµ⊥ is the residue gradient perpendicular to g:
gµ⊥ · g= 0. Analogously to kinetic energy, we use the square of the gradient to measure the learning activity.
The ensemble averaged activity (A) can be split into two parts:

A≡ ⟨∥gµ∥2⟩µ = ⟨∥gµ⊥∥
2⟩µ + ⟨λ2

µ⟩µ∥g∥2 ≡ A⊥ +A∥, (8)

where A∥ and A⊥ represent activities along the mean gradient and orthogonal to it, respectively.
The total variance, D, of fluctuations in all directions is the trace of the covariance matrix C:

D≡ Tr(C) =
∑
i

Cii = A⊥ +D∥, (9)

where D∥ = σ2
λ∥g∥2 is the variance along the direction of the batch gradient g and σ2

λ ≡ ⟨λ2
µ⟩µ − 1 is the

variance of λµ (Note that ⟨λµ⟩µ = 1 by definition); A⊥ is the total variance in the orthogonal directions. The
mean learning activity can be written as: A= A0 +A⊥ +D∥, where A0 ≡ ∥g∥2 represents the directed activity
in the direction of the mean gradient; A⊥ and D∥ represent the diffusive search activities in the directions
orthogonal and parallel to the mean gradient, respectively.

All these quantities (A, A0, R, σ2
λ) depend on the weights (w). Along an SGD learning trajectory in weight

space, we can evaluate these order parameters and their relative values at any given time t to characterize
different phases of the SGD learning dynamics. For example, we use A and A0 to measure the total learning
activity and the activity in the mean gradient direction, respectively. The alignment between different
minibatch gradients is measured by R, which is related to the fractionally aligned activity A0/A. The
fluctuations of the minibatch gradients projected onto the mean gradient are measured by σ2

λ. In our
previous work [12], we used time averaging to approximate some of these order parameters for
computational convenience. However, the properties of the SGD dynamics at any given point in weight space
are precisely defined by these ensemble-averaged order parameters, and are used hereafter.

As previously mentioned, SGD noise is anisotropic and varies in weight space. The positive-definite
eigenvalue el of the symmetric covariance matrix C is the noise strength in the corresponding eigen-direction
(l= 1, 2,…,Np, where Np is the number of weights or the dimensions of the weight space). The overall noise

strength D= Tr(C) =
∑Np

l=1 el describes the total search activity, and the eigenvalue spectrum

3
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Figure 1. Two phases of learning without labeling noise. (A) Training loss L, training error ϵtr , and order parameters A, R, and σ2
λ

versus (training) time. The fast learning phase corresponds to a directed (finite R> 0, σ2
λ ∼ 1) and fast (large A) motion in

weight space; the exploration phase corresponds to a diffusive (R≈ 0, σ2
λ ≫ 1) and slow (small A) motion in weight space. The

dotted line shows R= 0. The green bar highlights the transition region. The MNIST data and a fully connected network with two
hidden layers (30× 30) are used here. (B) Illustration of the normalized minibatch gradient ensemble (blue dotted arrows) and
their means (black solid arrows) in the two learning phases.

{el, l= 1,2, ...,Np} tells us how much of the total search activity is spent in each eigen-direction. From the
noise spectrum, we can define the effective dimension of the search activity Ds(w) as the number of
dimensions wherein the variance in the subspace of parameters accounts for a certain large percentage
(e.g. 90%) of the total variance D.

3. Phases of SGD learning dynamics in the absence of mislabeled data

We first study the learning dynamics without mislabeled data, e.g., the original MNIST dataset (details of all
numerical experiments can be found in the supplemental material (available online at stacks.iop.org/MLST/
2/043001/mmedia)). As shown in figure 1, the dynamics of the overall loss function L suggests that there are
two phases in learning. There is an initial fast learning phase, where L decreases quickly, followed by an
exploration phase where the training error ϵtr reaches zero (or nearly zero), while L still decreases, but much
more slowly. These two learning phases exist independently of hyperparameters (e.g. α and B) and network
architectures (all connected networks or CNNs) used for different datasets (e.g., MNIST and CIFAR). The
weights reached in the exploration phase can be considered as solutions to the problem, given that the
training error vanishes.

The dynamics of the order parameters A(t), R(t), and σ2
λ along the trajectory can be used to characterize

and understand the two phases. As shown in figure 1(A), at the beginning of the learning process, the
learning activity A is relatively large, and the alignment parameter R is finite. In this initial phase of learning,
the minibatch gradients have a high degree of alignment, resulting in a strongly directed motion of the
learner particle and a rapid decrease of L toward a solution region in the weight space with low L and zero
training error ϵtr . In the exploration phase, the average learning activity A becomes much smaller, while the
average alignment parameter R approaches zero. This means that the motion of the weighted particle
becomes mostly diffusive (weakly directed) and the decrease of L slows. This diffusive motion of the weights
allows the system to explore the solution space. The transition from a directed motion to a diffusive motion
is also reflected in the large increase in the variance σ2

λ at the transition. Due to the finite size of the system,
the transition is not infinitely sharp, like the phase transitions that occur in physical systems in the

4
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Figure 2. The noise spectra, i.e. rank-ordered eigenvalues {el, l= 1,2...,Np} in the fast learning phase (black) and the

exploration phase (red). The inset shows the normalized accumulated variance D−1
∑l

i=1 ei. The two spectra are similar, except
for their total variance, D. The effective dimension Ds∼ 110, which is much smaller than the number of parameters (Np = 900), is
roughly the same in both phases. The data and network used here are the same as in figure 1.

thermodynamic limit (infinite system limit). As shown in figure 1(A), the training error ϵtr becomes zero
during the transition regime and it stays at zero during the exploration phase. These results confirm the
results of our previous study, which used time-averaged ordered parameters [12]. The key differences
between the two phases in terms of the alignment of minibatch gradients and the mean gradient strength are
illustrated in figure 1(B). These two phases are independent of the network size, and they also appear in
other neural network architectures, such as convolutional neural networks and residual networks. See
figure S1 in the supplementary material for details.

We have also studied the noise spectra in the two phases. As shown in figure 2, unlike isotropic thermal
noise, SGD noise has a highly anisotropic structure with most of its variance (strength) concentrated in a
relatively small number of directions. The normalized noise spectra are similar in both phases and the total
noise strength (variance) D is much higher in the fast learning phase. The effective dimension, defined as the
number of directions that contains 90% of the total variance, is Ds ∼ 110, which is much smaller than the
number of weights (parameters), and remains roughly constant as the number of parameters increases.

4. Phases of SGD learning dynamics in the presence of mislabeled data

There has been much interest in deep learning in the presence of mislabeled data. This was triggered by a
recent study [13], in which the authors showed that random labels can easily be fitted by deep networks in
the over-parameterized regime and that such overfitting destroys generalization. Here, we report some new
results using the dynamic systems approach developed in the previous sections to study SGD learning
dynamics with labeling noise.

In a dataset with Nc correctly labeled training samples and Nw incorrectly (randomly) labeled samples,
the overall loss function L consists of two parts, Lc and Lw, which originate from the correctly labeled samples
and the randomly labeled samples, respectively:

L= (1− ρ)Lc + ρLw = N−1

[
Nc∑
k=1

lk +
Nw∑
k=1

l̃k

]
, (10)

where N= Nc +Nw is the total number of training samples and ρ=Nw/N is the fraction of mislabeled
samples. The loss function for a correctly labeled sample is the cross-entropy l between the output Yk(Xk,w)
of the network with weight vector w and the correct label vector Zk: lk = l(Yk,Zk), while the loss function for
a mislabeled sample is: l̃k = l(Yk,Zr

k), where Z
r
k is a random label vector.

We conducted experiments using MNIST and CIFAR10 with different fractions of mislabeled data (ρ). As
shown in figure 3(A) for MNIST, the whole learning process can be divided into four phases (the study of the
CIFAR10 dataset showed similar results):

• Phase I: During this initial fast learning phase (0–10 epochs in figure 3(A)), the test error ϵte decreases quickly
as the system learns the correctly labeled data. The error ϵc from the correctly labeled training data follows

5
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Figure 3. Learning dynamics in the presence of labeling noise. (A) The training error ϵtr , the test error ϵte, the training error for
correctly labeled data ϵc , and the training error for mislabeled data ϵw are shown for a subset of MNIST data with 400 samples per
digit and a fully connected network with two hidden layers (50 hidden units per layer). SGD hyper-parameters: B= 25, α= 0.01.
(B) ϵte dynamics for different values of ρ. (C) The dependence of the time scales (tm and tf ) on ρ. (D) The dependence of the
minimum and final test errors (ϵm and ϵf ) on ρ.

the exact same trend as ϵte, and the error ϵw from the mislabeled training data actually increases slightly,
indicating that the learning in phase I is dominated by the correctly labeled training data.

• Phase II: After the initial fast learning phase, the test error ϵte stays roughly the same during phase II (10–
70 epochs in figure 3(A)). Both ϵw and ϵc remain flat, indicating that learning activities for the correct and
incorrect samples are balanced during phase II. This can also be seen in the plateau in the total training error
ϵtr = (1− ρ)ϵc + ρϵw.

• Phase III: At the end of phase II (∼70 epochs), the test error ϵte starts to increase quickly, while the training
errors for both the correct and the incorrect training data (ϵc, ϵw) decrease to zero during phase III (70–200
epochs). During phase III, the system finally manages to find (learn) a solution that satisfies both the correct
and incorrect training data.

• Phase IV: Phase IV corresponds to the slow exploration phase after the system reaches the solution space for
the whole dataset. The test error reaches a high plateau in phase IV.

The four distinct phases in the presence of labeling noise, and the corresponding ‘U’-shaped behavior of
the test error, are general for a wide range of noise levels (ρ), see figure 3(B). Quantitatively, the dynamics of
the test error ϵte(t) during these four phases can be characterized by two timescales: tm—the time when the
test error reaches its minimum and tf—the time when the training loss function reaches its minimum, and
the two corresponding test errors: ϵm and ϵf . All four parameters depend on ρ. As shown in figure 3(C),
tm is almost independent of ρ, which means that learning the correctly labeled data is independent of the
data size, as long as the data size is large enough. However, tf increases with ρ, which means that the network
needs more time to memorize the incorrectly labeled data as the number of mislabeled samples increases. As
shown in figure 3(D), the final test error ϵf increases almost linearly with ρ, which is caused by the increased
fraction of mislabeled data. The minimum error ϵm remains roughly the same when ρ is small, but increases
sharply after a threshold and approaches ϵf when ρ > 0.85. This also makes sense, because when ρ is large,
learning is dominated by mislabeled data and the correctly labeled data no longer drives the learning
dynamics.

Here, we try to understand the different phases and the transitions between them by using order
parameters that are modified for the case with labeling noise. In particular, each minibatch µ now consists of
two smaller minibatches, µc and µw, for correctly and incorrectly labeled data (µ= µc +µw) with average

6
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Figure 4. Dynamics of the order parameters during phases of learning with mislabeled data. (A) Total activities (A, Aw , Ac).
(B) Directed activities (A0, A0,w , A0,c), the inset shows the ratio A0,c/A0,w. (C) Alignment parameters (Rcw , Rac,Raw). The dotted
line shows R= 0. (D) Illustration of the four different phases in terms of the relative strength and direction of the two mean
gradients (gc and gw). ρ= 0.5 is used for (A)–(C).

sizes of Bc = (1− ρ)B and Bw = ρB, respectively. The minbatch loss function can be decomposed into two
minibatch loss functions, Lµc and Lµw , defined separatelyfor µc and µw : Lµ = Lµc + Lµw . At a given point in
weight space, the ensemble-averaged gradient and activity for the correctly and incorrectly labeled data can
be defined separately:

gc ≡
〈
∂Lµc

∂w

〉
µc

=
∂Lc
∂w

, Ac ≡

〈∥∥∥∥∂Lµc

∂w

∥∥∥∥2
〉

µc

, (11)

gw ≡
〈
∂Lµw

∂w

〉
µw

=
∂Lw
∂w

, Aw ≡

〈∥∥∥∥∂Lµw

∂w

∥∥∥∥2
〉

µw

. (12)

The alignment of the two gradients gc and gw can be characterized by the cosine of their relative angle:

Rcw ≡ gc · gw
∥gc∥∥gw∥

, (13)

from which we obtain the ensemble-averaged gradient and activity for the whole dataset:

g ≡
〈
∂Lµ

∂w

〉
µ

= (1− ρ)gc + ρgw, (14)

A ≡

〈∥∥∥∥∂Lµ∂w

∥∥∥∥2
〉

µ

= (1− ρ)2Ac + ρ2Aw + 2ρ(1− ρ)∥gc∥∥gw∥Ccw. (15)

From the basic ordered parameters defined above, we can define the directed activity A0,c ≡ (1− ρ)2∥gc∥2,
A0,w ≡ ρ2∥gw∥2, and A0 ≡ ∥g∥2 = A0,c +A0,w + 2[A0,wA0,c]

1
2Ccw; and the alignments between g and gc, and

between g and gw are: Raw ≡ g·gw
∥g∥∥gw∥ , Rac ≡ g·gc

∥g∥∥gc∥ . We can also define alignment order parameters among
members within the different gradient ensembles ({µc}, {µw}, and {µ}).

We studied three groups of order parameters: the total activities (A, Ac, Aw); the directed activities
(A0, A0,c, A0,w) and their alignments (Rcw, Raw, Rac) to understand the learning dynamics in the presence of
labeling noise. In figure 4, we show how these order parameters change during training for the case with

7
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Figure 5. The noise spectra, i.e. rank-ordered eigenvalues {el, l= 1,2...,Np} in different phases of learning with labeling noise

(using the tsame settings as in figure 4). The inset shows the normalized accumulated variance D−1
∑l

i=1 ei. The spectra are
similar, except for their total variance D. In the different phases, the effective dimension Ds varies in the range of 50–150, which is
much smaller than the number of parameters (Np = 2500).

ρ= 50%. As shown in figures 4(A) and (B), all the learning activity order parameters (A’s and A0’s) show a
consistent trend of increasing during phases I, II, and III before decreasing during phase IV. This is in
contrast to the behavior of learning activity A in the absence of labeling noise, which shows a relatively flat or
slightly decreasing trend during the fast learning phase (see figure 1). This continuously elevated learning
activity in phases I–III suggests an increasing frustration between the two separate learning tasks (of learning
the correctly and incorrectly labeled datasets) before a consistent solution is found in phase IV.

The difference between the learning phases I, II, and III can be understood by studying the relation
between the two mean gradients gw and gc characterized by the alignment order parameter Rcw

(see figure 4(C)) and the relative strength of the two directed activities A0,c and A0,w.

• Phase I: A0,c ≫ A0,w, Rcw < 0. In phase I, the directed activity from the correctly labeled data is much larger
than that from the incorrectly labeled data (see inset in figure 4(B)). This is due to the fact that samples from
the correctly labeled dataset are consistent with each other in terms of their labels, which leads to a much
larger mean gradient toward learning a solution for the correctly labeled data. In phase I, gc and gw are not
aligned (Rcw < 0). Due to the fact that A0,c ≫ A0,w, we have Raw < 0, which means that there is an increase
of Lw during phase I, as observed in figure 3(A).

• Phase II: A0,w ≈ A0,c, Rcw < 0. As the system approaches a solution for the correctly labeled data during the
late stage of phase I, the directed learning activity from themislabeled data (A0,w) increases sharply, and A0,w

becomes comparable with A0,c in phase II (see the inset of the middle panel in figure 4). In addition, the two
mean gradients (gc and gw) are opposite to each other, with Rcw ≈− 1. As a result of the balanced gradients
between the two datasets, the overall directed activity is small A0 ≪ A0,c(w) and the loss functions (Lc, Lw,
and L) remain relatively flat during phase II (see figure 3(A)).

• Phase III: A0,w ≈ A0,c, Rcw > 0. The system enters phase III when it finally finds a direction that decreases
both loss functions (Lw and Lc) as evidenced by the alignment of gc and gw, which only happens during phase
III. This alignment (Rcw > 0) means that the system can finally learn a solution for all the training data.

• Phase IV: A0,w ≈ A0,c, Rcw < 0. Once the system finds a solution for all data, learning slows down to explore
other solutions nearby. Phase IV is similar to the exploration phase without mislabeled data, where learning
activity is much reduced compared to that of phases I–III.

The key differences between the four phases, in terms of the strength and relative direction of the two
mean gradients (gc and gw), are illustrated in figure 4(D).

We have also analyzed the noise spectra in the different learning phases in the presence of labeling noise.
As shown in figure 5, the normalized spectra remain roughly the same in different learning phases and the
effective dimensions are DI,II,III,IV ≈ 43, 58, 140, 95, which are much smaller than the number of parameters.
We note that both the noise spectra and the effective noise dimensions are similar to those without labeling
noise (figure 2).
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Figure 6. The individual loss distribution and the cleansing method. (A) The loss distributions of correctly labeled samples (red)
and mislabeled samples (blue) in different learning phases. (B) The bimodal distribution in phase II can be fitted by a Gaussian
mixture model (red line), which is used to determine a threshold lc for cleansing. (C) The mean losses (symbols) predicted by the
Gaussian mixture model agree with their true values from experiments (lines). A cleansing time tc can be determined when
∆L(≡ mw −mc) reaches its maximum. (D) The test accuracy without cleansing (an), with cleansing (ac), and with only the
correctly labeled training data (ap) versus training time. The labeling noise level ρ= 50% for (A)–(D). (E) an, ac , and ap versus ρ.
The slight decrease in ap as ρ increases is due to the decreasing size of the correctly labeled dataset. The MNIST dataset and
network used here are the same as those in figure 3.

5. Identifying and cleansing the mislabeled samples in phase II

Our study so far has used various ensemble-averaged properties to demonstrate the different phases of
learning dynamics. We now investigate the distribution of losses for individual samples and how the
individual loss distribution evolves with time. In figure 6(A), we show the probability distribution functions
(PDFs)—Pc(l, t) and Pw(l, t)—for the individual losses of the correctly and incorrectly labeled samples at
different times during training. Starting with an identical distribution at time zero, the two distributions
quickly separate during phase I as Pc(l, t) moves to smaller losses while Pw(l, t) moves to slightly higher
losses. The separation between the two distributions increases during phase I and reaches its maximum
during phase II. After the system enters phase III, the gap between the two distributions closes quickly as the
system learns the mislabeled data and Pw(l, t) catches up with Pc(l, t) at small losses. In phase IV, these two
distributions become indistinguishable again as they both become highly concentrated at near-zero losses.

As a result of the different dynamics of the two distributions, the overall individual loss distribution
P(l) = (1− ρ)Pc(l)+ ρPw(l) exhibits a bimodal behavior, which is most pronounced during phase II. We can
fit the overall distribution using a Gaussian mixture model: l∼ (1− r)N (mc, s2c )+ rN (mw, s2w), with the
following fitting parameters: fraction r, meansmc,w, and variances s2c,w. As shown in figure 6(B), the Gaussian
mixture model fits P(l) well, and furthermore, the fitted meansmc andmw agree with the mean losses
(Lc, and Lw) obtained from experiments.

The separation of individual loss distribution functions has recently been used to devise sophisticated
methods to improve generalization, such as those reported in [14, 15]. Here, we demonstrate the basic idea
by presenting a simple method to identify and clean the mislabeled samples based on the understanding of
different learning phases. In particular, according to our analysis, such a cleansing process can be best done
during phase II. For simplicity, we set the time tc for cleansing to be when the difference∆L(≡mw −mc)
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reaches its maximum. At t= tc, we can set a threshold lc, which best separates the two distributions. For
example, we can set lc as the loss when the two PDFs are equal or simply as the average ofmc andmw

(we do not observe significant differences between the two choices). We can then remove all the data that
have a loss larger than lc and continue training with the cleansed dataset. Alternatively, we can stop the
training altogether at t= tc, i.e. early stopping. In our experiments, we did not observe significant differences
between these two choices. In figure 6(D), the test accuracies an (without cleansing), ac (with cleansing), and
ap (with only the correctly labeled data) are shown for MNIST data with ρ= 50% labeling noise. The
performance of the cleansing algorithm can be measured by Q= ac−an

ap−an
, which depends on the noise level ρ.

As shown in figure 6(E), the cleansing method can achieve a significant improvement in generalization
(Q> 50%) for noise levels of up to ρ= 80% noise level. The details of the data cleansing procedure are
described in the supplementary materials.

6. Summary

DLNNs have demonstrated tremendous capability for learning and problem solving in diverse domains.
However, the mechanism underlying this seemingly magical learning ability is not well understood. For
example, modern DNNs often contain more parameters than training samples, which allow them to
interpolate (memorize) all the training samples, even if their labels are replaced by pure noise [16, 17].
Remarkably, despite their huge capacity, DNNs can achieve small generalization errors on real data
(this phenomenon has been formalized as the so-called ‘double descent’ curve [18–23]). The learning
system/model seems to be able to self-tune its complexity in accordance with the data to find the simplest
possible solution in a highly over-parameterized weight space. However, the way in which the system adjusts
its complexity dynamically, and how SGD seeks out simple and more generalizable solutions for realistic
learning tasks remain poorly understood.

In this paper, we demonstrate that our approach based on statistical physics and stochastic dynamical
systems provides a useful theoretical framework (an alternative to the traditional theorem-proving
approach) for studying SGD-based machine learning by applying it to the identification and characterization
of the different phases of SGD-based learning, with and without labeling noise. In an earlier work [12],
we used this approach to study the relation between SGD dynamics and the loss function landscape, and
discovered an inverse relation between weight variance and the loss landscape flatness that is the opposite of
the fluctuation–dissipation relation (akin to the Einstein relation) in equilibrium systems. We believe this
framework may pave the way for a deeper understanding of deep learning by bringing powerful ideas (e.g.,
phase transitions in critical phenomena) and tools (e.g., renormalization group theory and replica methods)
from statistical physics to bear on understanding ANN. It would be interesting to use this general framework
to address other fundamental questions in machine learning, such as generalization [24–26] (in particular,
the mechanism for the double descent behavior in learning as described above), the relation between task
complexity and network architecture, and information flow in DNNs [27, 28], as well as building a solid
theoretical foundation for important applications, such as transfer learning [29], curriculum learning [30],
and continuous learning [31–33].
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