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Nomenclature

a1, a2, a3	 Unit vectors of X, Y and Z axis of rotary 
table coordinates

A	 Coefficient matrix of first-order Taylor’s 
expansion

b1, b2, b3	 Unit vectors of XL, YL and ZL axis of laser 
tracer coordinates

eξ̂cθc	 Rigid body motion transformation matrix
EAC	 Tilt error motion of C axis around X axis/µrad

EBC	 Tilt error motion of C axis around Y axis/µrad
ECC	 Positioning error of C axis/µrad
EXC	 Journal runout of C axis in X direction/µm
EYC	 Journal runout of C axis in Y direction/µm
EZC	 Axial run-out of C axis in Z direction/µm
Fc	 Objective function
gCst(0)	 Initial pose of rotary table
ga

Cst(θ)	 Ideal pose of rotary table
ge

Cst(θ)	 Actual pose of rotary table
H	 Coordinate conversion matrix
li	 Dead-path length (i  =  1, 2, 3, 4)
lij	 Measured length of the laser tracer i
L	 Matrix of measured length
LTi(xL

pi, yL
pi, yL

pi)	 Coordinate of laser tracer (i  =  1, 2, 3, 4)
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Abstract
The geometric errors of numerical control (NC) rotary tables can be measured using a 
single instrument according to the conventional measurement method. This study presents 
an efficient method for this measurement using four-station laser tracers. A 3D coordinate 
measurement algorithm of the four-station laser tracer was established, the self-calibration 
of the laser tracer position and the spatial measuring point algorithm was realized, and 
the volumetric error of the measuring point on the rotary table was obtained. Then, the 
geometric errors of the NC rotary table were modeled using the screw theory, and a three-
point measurement method was proposed to realize the separation of these geometric errors. 
Using the geometric error measurement experiment, six geometric errors of the NC rotary 
table were obtained. Compared with the conventional standard ball and laser interferometer 
measurement methods, the radial and axial runout results obtained using the laser tracer show 
differences of 0.08 and 0.07 µm, respectively, and the result of positioning error measurement 
shows a difference of 2.2 µrad. In addition, the method proposed in this study demonstrates 
an efficiency improved by five times, under the premise of ensuring the measurement 
accuracy, which broadens the possibilities for applications of rotation axes’ geometric error 
measurement in machining centers.
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−−→
OOL	 Vector between two coordinate origins O and 

OL
Pi(xL

j , yL
j , zL

j )	 Coordinate of moving target point (j   =  1, 2,…, 
m)

R	 Rotational transfer matrix
Re	 Actual pose of rotary table
T	 Translational transfer matrix
Te	 Actual position of rotary table
V	 Residual error of equations
(xj , y j , zj )	 Spatial coordinate of the j th measured point
(x′j , y′j , z′j)	 Ideal coordinate of the j th measured point
(Xt, Yt, Zt)	 Position of the target retro-reflector on the 

rotary table
δX	 Variation of the measured unknowns
ΔRe	 Pose error of rotary table
ΔTe	 Position error of rotary table
(Δxj , Δy j , Δzj )	 Volumetric error of measured point
µ	 Relaxation factor

1.  Introduction

The manufacturing accuracy of large-aperture optical free-
form surfaces applied in cutting-edge fields—such as inertial 
confinement nuclear fusion, light detection and ranging, and 
extreme ultraviolet lithography—is completely dependent on 
numerical control (NC) machine tools with rotating axes of 
high geometric accuracy [1]. Precision and ultra-precision 
multi-axis NC machine tools for machining optical free-form 
surfaces are all subjected to a standard environment with con-
stant temperature and humidity, and isolation from vibration. 
Thus, the geometric accuracy of the rotating axis directly 
affects key performance indicators such as surface roughness 
and shape accuracy of the optical free-form surface. Therefore, 
it is particularly important to measure the geometric error of 
the rotating axis for the purpose of improving accuracy.

At present, commonly used methods such as the standard 
ball method aim to eliminate the eccentricity error in order 
to calculate the rotary accuracy; however, the installation 
and adjustment processes are time-consuming and present 
low measurement efficiency. Similar to the case of the ball 
bar instrument, installation should be carried out multiple 
times, and the eccentricity error should be eliminated while 
applying the measurement algorithm. The combination of 
geometric error measurements of the axial, radial, and tangen-
tial directions is realized through fixed trajectories to achieve 
the separation of geometric errors. Jiang et al [2, 3] achieved 
separation of the geometric errors of rotating axes based on a 
conical surface test of the ball bar instrument, using the geo-
metric error relationships between the two rotary axes. Xia 
et al [4] used a decoupled method based on a double ball bar 
and obtained four position-independent geometric errors as 
well as six position-dependent geometric errors of the rotary 
axis. However, the accuracy of geometric error measurement is 
still affected by installation errors and the testing range of the 
ball bar instrument. Other rotary error measurement methods, 
such as the circular ball plate method, require centering on the 

top of the rotary table [5]. A device comprising five capaci-
tance probes should be mounted on the table, and a double-
ball artifact should be attached to the rotor; this is difficult 
to assemble and the process is time-consuming [6]. Ibaraki 
et al [7] designed a workpiece processed by a five-axis NC 
machine tool, and the geometric errors of the rotation axis 
were identified using a touch-trigger probe. The machining 
workpiece can reflect the performance of the whole machine 
to some extent, but other errors such as dynamic and thermal 
errors exist which impact the process of obtaining accurate 
geometric errors of the turntable under quasi-static conditions. 
Guo et al [8] designed a continuous measurement method to 
identify the position-dependent geometric error of rotary axes 
on a five-axis machine tool with a laser displacement sensor, 
but it is difficult to ensure the alignment between the laser 
beam and the axis of spindle. Lee et al [9] designed a special 
fixture to realize the measurement and separation of geometric 
errors of the rotary axis of a five-axis machine tool. Feng et al 
[10] proposed a six-step measurement method for obtaining 
10 geometric errors of a five-axis NC turntable, and they also 
identified the geometric errors using different installation 
measurement methods.

The laser interferometer is also an important tool for geo-
metric error detection of NC machine tools. He et al [11] real-
ized the measurement of six geometric errors of a turntable by 
adopting the method of dual optical path measurement using 
a laser interferometer. However, laser interferometer installa-
tion and optical path debugging are cumbersome, and these 
are affected by the experience of the operator. Zheng et al [12] 
proposed a method for simultaneously measuring six degree-
of-freedom geometric motion errors of both linear and rotary 
axes directly, using laser interferometry and laser collima-
tion. However, this method also presents the disadvantages of 
alignment difficulty and being time-consuming.

The measurement method using a laser tracking interfer-
ometer enables rapid measurement and a variety of applica-
tions, which can be divided into the following measurement 
methods: (1) single base station measurement, (2) multi-sta-
tion and time-sharing measurement, and (3) multi-base station 
measurement. Schwenke et  al [13] achieved the geometric 
error separation and linear axis dynamic measurement of a 
five-axis NC machine tool using a single base station Etalon 
laser tracking interferometer. Acosta et  al [14] presented a 
verification procedure to identify the position-independent 
geometric error of a rotary indexing table, based on the use 
of a self-centering probe and a laser tracker. Zhang et al [15, 
16] developed a modified sequential multilateration scheme 
for measuring the geometric errors of the rotary axes of 
machine tools based on a single laser tracker and three targets 
fixed on the rotary axis. This enabled all six geometric error 
components to be obtained. Wang et al [17, 18] proposed a 
multi-station and time-sharing measurement principle, which 
employed a laser tracker to measure the target points succes-
sively at different positions based on the global positioning 
system principle, to identify the relative position relationship 
between the rotary and linear axes of a multi-axis NC machine 
tool. In addition, algorithms for a laser tracker and laser tracer 
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based on multilateration method were proposed respectively 
in [19]. It can be found from the above-mentioned studies that 
the single base station and multi-base station time-sharing 
measurement methods are currently widely used with respect 
to machine tools. The single base station measurement method 
is widely used in the calibration of positioning accuracy of 
turntables, but the single base station measurement method 
presents the measurement accuracy at the micron level, so 
it is not suitable for the measurement of geometric errors of 
precision and ultra-precision NC machine tools. Multi-station 
and time-sharing measurement methods employ a single base 
station placed at different positions for measurement. The 
measurement process in lengthy, and there exist large thermal 
deformation and transfer station errors at measurement points, 
resulting in distortion of measurement results. The multi-base 
station measurement method employs multiple base stations 
for simultaneous measurement, so there is no transfer sta-
tion error and the measurement time is reduced to effectively 
prevent the influence of thermal error. The multi-station and 
time-sharing and multi-base station measurement methods 
are based on the principle of multilateration, which, according 
to Ibaraki [20], estimates the 3D position of a retroreflector 
fixed on a rotary table  using the distances from (typically) 
four or more tracking interferometers. These methods do not 
employ the angular orientation of the laser beam for calcul
ation, resulting in lower measurement uncertainty. Regarding 
the multi-base station measurement method, the measurement 
accuracy can be ensured to reach the sub-micron level. At 
present, there are few applications of the multi-base station 
measurement method in the field of geometric error detection 
of NC machine tools, so there is good scope for development.

Therefore, this study puts forward a method to measure the 
geometric error of a NC rotary table using four-station laser 
tracers simultaneously, which broadens an alternative error 
measurement approach with high efficiency for rotation axes 
in machining centers. In section 2, the measurement algorithm 
of the four-station laser tracer is described, along with how 
the self-calibration of the laser tracer position and the spatial 
measuring point algorithm are realized. Geometric error mod-
eling using the screw theory and error separation based on a 
three-point measurement method is described in section 3. A 
comparison between the geometric error measurement results 
obtained from the laser tracer and conventional methods are 
presented in section 4, and section 5 presents the conclusion.

2.  Coordinate measurement algorithm of four-sta-
tion laser tracers

2.1.  Measurement principle

The measurement principle of the four-station laser tracer is 
based on the principle of the multilateration method, as shown 
in figure  1. Four non-coplanar laser tracers were employed 
simultaneously to measure the distance to the target point to 
obtain the calibration and determination of the laser tracer 
position, and to calculate the actual coordinate of the mea-
sured point. Upon comparison of the theoretical and actual 
coordinates of the targeted position, the volumetric error value 

was derived. Following this, six individual error items of the 
rotary table  were calculated by solving the geometric error 
separation model’s problem.

2.2.  Self-calibration algorithm of laser tracer

As shown in figure  1, the station LT1 (xL
p1, yL

p1, yL
p1) was set 

as the ordinate origin of the self-calibration coordinate 
system. Placing the LT2 (xL

p2, yL
p2, yL

p2) on the X-axis, the LT3 
(xL

p3, yL
p3, yL

p3) was located in the XY plane, and LT4 (xL
p4, yL

p4, yL
p4) 

was located at a position that is not coplanar with the plane 
of the first three stations. The distance between the four laser 

tracers and the moving target point P
(xL

j ,yL
j ,zL

j )

i ( j = 1, 2, · · · , m) 

can be expressed as



…Ä
xL

j − xL
p1

ä2
+
Ä

yL
j − yL

p1

ä2
+
Ä

zL
j − zL

p1

ä2
= l1 + l1j…Ä

xL
j − xL

p2

ä2
+
Ä

yL
j − yL

p2

ä2
+
Ä

zL
j − zL

p2

ä2
= l2 + l2j…Ä

xL
j − xL

p3

ä2
+
Ä

yL
j − yL

p3

ä2
+
Ä

zL
j − zL

p3

ä2
= l3 + l3j…Ä

xL
j − xL

p4

ä2
+
Ä

yL
j − yL

p4

ä2
+
Ä

zL
j − zL

p4

ä2
= l4 + l4j

� (1)
where li (i  =  1, 2, 3, 4) is the dead-path length and lij is the 
measured length of the laser tracer i. The variation of the rela-
tive distance between the base station i and the measuring 
point is defined as ‘dead-path length’. The distance between 
the base station i and initial measuring point j  is defined as 
‘measured length’.

The above equations can be simplified as the matrix linear 
equations  using the first-order approximation of Taylor’s 
expansion:

V = A · δX − L� (2)

wherein V is the residual error of equations, A is the coeffi-
cient matrix of first-order Taylor’s expansion, δX is the varia-
tion of the measured unknown parameter, and L is the matrix 
of measured length.

Figure 1.  Schematic of four-station laser tracer measurement 
principle.
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Because sufficient target positions were measured, equa-
tion  (2) can be solved using the Levenberg–Marquardt 
method, and the iterative solution of each step can be written 
as follows:

δX =
(
ATA + µI

)−1 ·
(
ATL

)
� (3)

where the µ is the relaxation factor.
The calculated positions of laser tracers were among the 

rotary table  coordinates; hence, the coordinate conversion 
process was needed. The processes of conversion from rotary 
table to laser tracer coordinates was as follows. Mutual posi-
tional relationships of the laser tracer coordinates OLXLYLZL 
and the rotary table coordinate OXYZ was shown in figure 2. 
a1, a2, a3 are the unit vectors of the X, Y, and Z axes of the 
rotary table  coordinates, respectively, and b1, b2, b3 are the 
unit vectors of the XL, YL, and ZL axes of the laser tracer coor-
dinates, respectively. Therefore, the rotational transfer matrix 
R and the translational transfer matrix T can be written as

R =




r11 r12 r13
r21 r22 r23
r31 r32 r33


 , T =

[
t1 t2 t3

]T
=

−−→
OLO� (4)

wherein



r11 = b1 · a1 r12 = b1 · a2 r13 = b1 · a3
r21 = b2 · a1 r22 = b2 · a2 r23 = b2 · a3
r31 = b3 · a1 r32 = b3 · a2 r33 = b3 · a3

.

−−→
OOL is the vector between two coordinate origins O and OL.

Therefore, the coordinate conversion matrix can be given 
as

H =

ï
R−1 0

0 1

ò ï
1 T
0 1

ò
.� (5)

The expression of the laser tracer coordinate transform can 
be given as

LTL = H · LT .� (6)

2.3.  Measuring point solving algorithm

As the self-calibration process was completed, the positions 
(xpi, y pi, zpi) (i  =  1, 2, 3, 4) of the four laser tracer were located 
in the designated coordinate system; hence, only the coordi-
nates of the target points and the length of the dead-path were 
unknown. Upon building the objective function Fc based on a 
distance equation between the target position and laser tracer 
position for the measured point j , equations (7) and (8) could 
be obtained as follows:

FC = min
n∑

j=1

4∑
i=1

[»
(xj − xp1)

2
+ (yj − yp1)

2
+ (zj − zp1)

2 − (l1 + l1j)
]2

� (7)



»
(xj − xp1)

2
+ (yj − yp1)

2
+ (zj − zp1)

2
= l1 + l1j»

(xj − xp2)
2
+ (yj − yp2)

2
+ (zj − zp2)

2
= l2 + l2j»

(xj − xp3)
2
+ (yj − yp3)

2
+ (zj − zp3)

2
= l3 + l3j»

(xj − xp4)
2
+ (yj − yp4)

2
+ (zj − zp4)

2
= l4 + l4j

� (8)

where j  (j   =  1, 2, 3…, n) is one measured target position.
The above equations can be solved using the Levenberg–

Marquardt method, also, and the singular problems of the 
nonlinear equations can be avoided. As the positions of laser 
traces were known according to the algorithm, the existence 
of the solution could be ensured; hence, the selection of the 
initial value could be relaxed.

The volumetric error of the measured point (Δxj , Δy j , Δzj ) 
could be obtained after the theoretical value was calculated, 
and it can be expressed as



∆xj

∆yj

∆zj


 =




xj − x′j
yj − y′j
zj − z′j




� (9)
where (xj , y j , zj ) is the actual spatial coordinate of the j th mea-
sured point, and (x′j , y′j , z′j) is the ideal coordinate.

The ideal coordinate of the measured point should be 
known before performing the calculation of volumetric error 
of the target point. In the process of geometric error measure-
ment of the rotary table, the measured point was fitted as the 
theoretical measured radius, and the theoretical point coordi-
nates were drawn in accordance with equation (5).

3.  Geometric error modeling and separation of 
rotary table

There are six geometric errors related to the position of the 
NC rotary table. Considering axis C as an example, ECC is the 
angular positioning error of axis C, EBC is the tilt error motion 
of axis C around the Y axis, EAC is the tilt error motion of axis 
C around the X axis, EZC is the axial error motion along the Z 
direction of axis C, EXC is the radial error motion of axis C in 
the X direction, and EYC is the radial error motion of axis C in 
the Y direction.

Figure 2.  Conversion between self-calibration and rotary 
table coordinate system.
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According to the screw theory, the ideal position of the 
rotary table is established as follows:

ga
Cst(θ) = êξcθc gCst(0)� (10)

where ga
Cst(0) is the ideal orientation of the rotary table, êξcθc 

is the rigid body motion transformation matrix, and gCst(0) is 
the initial orientation of the rotary table.

The actual position of the rotary table can be obtained con-
sidering the six geometric errors related to the positions of the 
rotary table:

ge
Cst(θ) = eξ̂EXC

θEXC eξ̂EYC
θEYC eξ̂EZC

θEZC eξ̂EAC
θEAC eξ̂EBC

θEBC eξ̂ECC
θECC ga

Cst(θ).
� (11)

It can also be represented by

ge
Cst(θ) =

ï
Re Te

0 1

ò
� (12)

where the Re is the actual pose and Te is the actual position of 
rotary table.

The geometric error of the rotary table is equal to the dif-
ference between the ideal and actual orientations of the rotary 
table. Using the product exponentials formula, the orientation 
and position error of the rotary table can be obtained as

∆Re =




−ECC sin θ −ECC cos θ EBC

ECC cos θ −ECC sin θ −EAC

−EBC cos θ + EAC sin θ EBC sin θ + EAC cos θ 0




� (13)

Figure 3.  Schematic of geometric error measurement.

∆Te =



∆X
∆Y
∆Z


 =




−XtECC sin θ − YtECC cos θ + ZtEBC + EXC

−XtECC cos θ − YtECC sin θ − ZtEAC + EYC

Xt(−EBC cos θ + EAC sin θ) + Yt(EBC sin θ + EAC cos θ) + EZC




� (14)

where (Xt, Yt, Zt,) is the position of the target retro-reflector 
(cat’s eye) on the rotary table.

The separation of the six geometric errors on the rotary 
table can be achieved using the spatial position error at three 
points on the rotary table without collinearity. The measure-
ment schematic is shown in figure 3. Three initial points, Q, 
M, and K, were selected, and the corresponding volumetric 

errors were captured during the rotation of the table. Then, the 
six geometric error items on a specific angle could be calcu-
lated by solving the simultaneous equations at the three points. 
The geometric error formula of each point can be obtained as 
follows:



1 0 0 0 ZQ −YQ

0 1 0 −ZQ 0 XQ

0 0 1 YQ −XQ 0
1 0 0 0 ZM −YM

0 1 0 −ZM 0 XM

0 0 1 YM −XM 0
1 0 0 0 ZK −YK

0 1 0 −ZK 0 XK

0 0 1 YK −XK 0




·




EXC

EYC

EZC

EAC

EBC

ECC



=




∆XQ

∆YQ

∆ZQ

∆XM

∆YM

∆ZM

∆XK

∆YK

∆ZK




.

� (15)
Equation (15) can also be represented by

A · PC = ∆.� (16)

Six geometric errors of a NC rotary table can be obtained 
by using a linear least squares method:

PC =
(
AT

CAC
)−1 ·

(
AT

C∆
)

.� (17)

4.  Geometric error measurement experiment of NC 
rotary table

The geometric errors of a hydrostatic NC rotary table were 
measured using the four-station laser tracers, and the six 
geometric errors of the NC rotary table were obtained. The 
experimental results were compared with the radial and axial 
runouts obtained from the standard ball measurement method 
and the positioning error measured by the laser interferometer.

4.1.  Self-calibration experiment

The four-station laser tracers were used to detect the geo-
metric errors of the horizontal hydrostatic rotary table under 
an environment of 20  ±  2°. The hydrostatic rotary table has a 
maximum machining diameter of 240 mm. There was no posi-
tioning error compensation for the rotary table. During the 
measurement process, the laser tracer was first self-calibrated, 
while the target retro-reflector was placed on the end face of 
the rotary table and the beam of the interferometer of the laser 

tracer was moved to the target retro-reflector. Then, the target 
measurement points were determined at intervals of 10°, 
and the table was rotated once for measurement, employing 
a standstill of 3 s at each point. After the measurement was 
completed, the beam was kept between the laser tracer and 
the target retro-reflector without interruption, and the target 
retro-reflector was placed at distances of 80, 160, and 240 mm 
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from the end face of the rotary table, using a processed steel 
rod. The above steps were repeated to record a rotation mea-
surement, paying special attention to lock the constant beam 
between the laser tracer and the cat’s eye during the whole 
measurement, as shown in figure  4. After the measurement 
was obtained, the unknown parameters of the laser tracer were 
calculated using the calibration method, as shown in table 1. A 
step-by-step approach for self-calibration experiment is given 
in figure 5.

4.2.  Experiment for measuring six geometric errors

After the calibration was completed, the four-station laser 
tracers were kept stationary, and the target retro-reflector 
(cat’s eye) was placed 80 mm away from the end face of the 
rotary table. The target positions could be measured, and the 
geometric errors of the rotary table were separated according 
to the three-point measurement method. While obtaining the 
measurement, the target retro-reflector was placed on the 
rotary table with three non-collinear points representing the 
initial position, and it was assumed that the angular interval 
between each set of two target retro-reflectors was 120°, 
which was achieved by rotating the table so as to ensure that 
the three initial points were on the same circle. According to 
the established measurement procedure, the rotary table was 
to rotate counterclockwise at a speed of 1 rpm, and the angular 
interval between each two determined target measurement 
points was to be 10°, with 36 points per circle (0–350°) and a 
standstill of 3 s employed at each measurement position. The 
coordinates of the initial three points Q, M, and K were mea-
sured as shown in table 2, and the results of the measurement 
process are shown in figures 6 and 7.

4.3.  Geometric error comparison experiment

Under the same experimental conditions, a standard ball and 
micro-displacement sensor were used to measure the axial and 
radial runouts of the rotary table, as shown in figures 8 and 9. 
A Tesatronic TT80 Inductance micrometer and a high-preci-
sion inductive gauge head (GT21; repeatability 0.01 µm) were 
used to measure the two runout errors. The standard sphere 

has a diameter 45 mm and peak-valley value of 40 nm. The 
comparison between the measurement results obtained using 
the laser tracer and standard ball is shown in figures 10 and 11.  
A Renishaw laser interferometer (XL 80) and a rotary axis 
calibrator were used to measure the positioning error of the 
rotary table. The experimental setup and the measurement 
comparison results are shown in figures 12 and 13.

A comparison between the measurement results obtained 
using the laser tracer and conventional method is shown in 
table 3.

From the comparison diagram of radial and axial runouts 
shown in figures 10 and 11 and the comparison diagram of 
positioning error in figure 13, it can be concluded that the geo-
metric error measurement method of the rotary table proposed 
in this study shows a small difference from the results of the 
conventional rotary precision measurement method, and its 
trend is very similar. Compared with the standard ball-based 
method, the radial and axial runout results obtained using the 

Figure 4.  Schematic of self-calibration experiment of laser tracer.

Figure 5.  Flow for self-calibration experiment.
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laser tracer show differences of 0.08 and 0.07 µm, respec-
tively. Compared with the results obtained using the laser 
interferometer, the results of positioning error measurement 
shows a difference of 2.2 µrad. Because both the standard 
ball test and the laser interferometer measurement method 
are affected by installation eccentricity, the centers of the ball 
rotary axis do not coincide, which leads to deviation of the 
measurement results. However, the measurement results are 
similar, which can verify the accuracy of the geometric error 

measurement method proposed in this study. The laser tracer 
measurement method is also biased by the influence of the 
laser tracer layout and its length measurement uncertainty. In 
addition, it can be seen that the measurement time required by 
the laser tracer is 0.5 h, which is much less than that required 
in the standard ball test (2 h) and laser interferometer test (1 h) 
under the premise of ensuring the measurement accuracy. It is 

Table 1.  Laser tracer position system parameters after self-calibration.

Parameter calibration xL
p2 xL

p3 yL
p3 xL

p4 yL
p4 zL

p4

Calibrated value (mm) 300.3517 511.6718 −398.9578 250.4172 −633.7587 141.6295

Table 2.  Measured coordinates of Q, M, and K.

Measured points

Coordinate

xL
Q (mm) yL

Q (mm) zL
Q (mm)

Q −300.1417 −692.2255 −66.9348
M −344.1159 −637.0642 10.0001
K −280.4153 −716.5912 32.6319

Figure 6.  Rotary table linear geometric error.

Figure 7.  Rotary table angle error.

Figure 9.  Axis runout measurement of standard ball and micro-
displacement sensor.

Figure 10.  Comparison of radial runout measurement results.

Figure 8.  Radial runout measurement of standard ball and micro-
displacement sensor.
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demonstrated that the efficiency improved by five times. The 
efficiency was defined as the sum of spending time engaged in 
runout error and positioning error measurement by different 

methods. Thus, this method demonstrates greater practical 
and engineering significance.

5.  Conclusions

This study proposed a method for the measurement and sepa-
ration of geometric errors of an NC rotary table, using four-
station laser tracers. Self-calibration algorithms for the laser 
tracers and measuring point solving algorithms were realized 
for obtaining the volumetric error of the targeted point. Upon 
integration of the screw theory with the NC rotary table geo-
metric error method, separation of the six item errors was real-
ized via the proposed three-point measurement method.

Compared to the efficiency of the conventional NC rotary 
table  geometric error measurement method, that using the 
Etalon laser tracer is greatly improved under the premise 
of ensuring measurement accuracy. The radial and axial 
runouts show the same trends, and only a small difference by 
employing two different measurement methods is obtained, 
which indicates the accuracy and effectiveness of the pro-
posed method. Future work will be conducted on some other 
rotation axes geometric error measurement, such as a spindle 
or swing milling head in machining centers.
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Figure 12.  Positioning error measurement by laser interferometer.

Figure 13.  Comparison of positioning error measurement results.

Table 3.  Comparison results between laser tracer and conventional 
test methods.

Particulars
Results  
(laser tracer)

Results  
(standard ball)

Results (laser 
interferometer)

Journal runout 
(µm)

0.70 0.62 —

Axial runout 
(µm)

0.37 0.30 —

Positioning  
error (µrad)

57.2 — 59.4

Measurement 
time (h)

0.5 2 1

Figure 11.  Comparison of axial runout measurement results.
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