
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Deep learning via message passing algorithms
based on belief propagation
To cite this article: Carlo Lucibello et al 2022 Mach. Learn.: Sci. Technol. 3 035005

View the article online for updates and enhancements.

You may also like
Black phosphorus-based materials for
energy storage and electrocatalytic
applications
Xiong-Xiong Xue, Haiyu Meng, Zongyu
Huang et al.

-

Matrix completion based on Gaussian
parameterized belief propagation
Koki Okajima and Yoshiyuki Kabashima

-

Near-field radiative heat transfer between
black phosphorus and graphene sheet
Xiao-Jie Yi, Xiao-Juan Hong, Khurram
Shehzad et al.

-

This content was downloaded from IP address 106.213.28.225 on 06/07/2023 at 08:45

https://doi.org/10.1088/2632-2153/ac7d3b
/article/10.1088/2515-7655/abff6b
/article/10.1088/2515-7655/abff6b
/article/10.1088/2515-7655/abff6b
/article/10.1088/1742-5468/ac21c9
/article/10.1088/1742-5468/ac21c9
/article/10.1088/2053-1591/aaed94
/article/10.1088/2053-1591/aaed94

Mach. Learn.: Sci. Technol. 3 (2022) 035005 https://doi.org/10.1088/2632-2153/ac7d3b

OPEN ACCESS

RECEIVED

29 January 2022

REVISED

14 April 2022

ACCEPTED FOR PUBLICATION

29 June 2022

PUBLISHED

15 July 2022

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Deep learning via message passing algorithms based on belief
propagation
Carlo Lucibello1,∗, Fabrizio Pittorino1, Gabriele Perugini1,2 and Riccardo Zecchina1

1 Institute for Data Science and Analytics, Bocconi University, Milano, Italy
2 Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
∗ Author to whom any correspondence should be addressed.

E-mail: carlo.lucibello@unibocconi.it

Keywords: artificial neural networks, deep learning, approximate message passing, belief propagation, bayesian neural networks

Abstract
Message-passing algorithms based on the belief propagation (BP) equations constitute a
well-known distributed computational scheme. They yield exact marginals on tree-like graphical
models and have also proven to be effective in many problems defined on loopy graphs, from
inference to optimization, from signal processing to clustering. The BP-based schemes are
fundamentally different from stochastic gradient descent (SGD), on which the current success of
deep networks is based. In this paper, we present and adapt to mini-batch training on GPUs a
family of BP-based message-passing algorithms with a reinforcement term that biases distributions
towards locally entropic solutions. These algorithms are capable of training multi-layer neural
networks with performance comparable to SGD heuristics in a diverse set of experiments on
natural datasets including multi-class image classification and continual learning, while being
capable of yielding improved performances on sparse networks. Furthermore, they allow to make
approximate Bayesian predictions that have higher accuracy than point-wise ones.

1. Introduction

Belief Propagation is a method for computing marginals and entropies in probabilistic inference
problems (Bethe 1935, Peierls 1936, Gallager 1962, Pearl 1982). These include optimization problems as well
once they are written as zero temperature limit of a Gibbs distribution that uses the cost function as energy.
Learning is one particular case, in which one wants to minimize a cost which is a data dependent loss
function. These problems are generally intractable and message-passing techniques have been particularly
successful at providing principled approximations through efficient distributed computations.

A particularly compact representation of inference/optimization problems that is used to build
massage-passing algorithms is provided by factor graphs. A factor graph is a bipartite graph composed of
variables nodes and factor nodes expressing the interactions among variables. Belief Propagation is exact for
tree-like factor graphs (Yedidia et al 2003), where the Gibbs distribution is naturally factorized, whereas it is
approximate for graphs with loops. Still, loopy BP is routinely used with success in many real world
applications ranging from error correcting codes, vision, clustering, just to mention a few. In all these
problems, loops are indeed present in the factor graph and yet the variables are weakly correlated at long
range and BP gives good results. A field in which BP has a long history is the statistical physics of disordered
systems where it is known as Cavity Method (Mézard et al 1987) when also involves disorder averages. It has
been used to study the typical properties of spin glass models which represent binary variables interacting
through random interactions over a given graph. It is very well known that in spin glass models defined on
complete graphs and in locally tree-like random graphs, which are both loopy, the weak correlation
conditions between variables may hold and BP give asymptotic exact results (Mézard and Montanari 2009).
Here we will mostly focus on neural networks with±1 binary weights and sign activation functions, for
which the messages and the marginals can be described simply by the difference between the probabilities

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ac7d3b
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ac7d3b&domain=pdf&date_stamp=2022-7-15
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0837-9783
mailto:carlo.lucibello@unibocconi.it

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

associated with the+1 and−1 states, the so calledmagnetizations. The effectiveness of BP for deep learning
has never been numerically tested in a systematic way, however there is clear evidence that the weak
correlation decay condition does not hold and thus BP convergence and approximation quality is
unpredictable.

In this paper we explore the effectiveness of a variant of BP that has shown excellent convergence
properties in hard optimization problems and in non-convex shallow networks. It goes under the name of
focusing BP (fBP) and is based on a probability distribution, a likelihood, that focuses on highly entropic
wide minima, neglecting the contribution to marginals from narrow minima even when they are the
majority (and hence dominate the Gibbs distribution). This version of BP is thus expected to give good
results only in models that have such wide entropic minima as part of their energy landscape. As discussed
in Baldassi et al (2016a), a simple way to define fBP is to add a ‘reinforcement’ term to the BP equations: an
iteration-dependent local field is introduced for each variable, with an intensity proportional to its marginal
probability computed in the previous iteration step. This field is gradually increased until the entire system
becomes fully biased on a configuration. The first version of reinforced BP was introduced in Braunstein and
Zecchina (2006) as a heuristic algorithm to solve the learning problem in shallow binary networks. Baldassi
et al (2016a) showed that this version of BP is a limiting case of fBP, i.e. BP equations written for a likelihood
that uses the local entropy function instead of the error (energy) loss function. As discussed in depth in that
study, one way to introduce a likelihood that focuses on highly entropic regions is to create y coupled replicas
of the original system. fBP equations are obtained as BP equations for the replicated system. It turns out that
the fBP equations are identical to the BP equations for the original system with the only addition of a
self-reinforcing term in the message passing scheme. The fBP algorithm can be used as a solver by gradually
increasing the effect of the reinforcement: one can control the size of the regions over which the fBP equations
estimate the marginals by tuning the parameters that appear in the expression of the reinforcement, until the
high entropy regions reduce to a single configuration. Interestingly, by keeping the size of the high entropy
region fixed, the fBP fixed point allows one to estimate the marginals and entropy relative to the region.

In this work, we present and adapt to GPU computation a family of fBP inspired message passing
algorithms that are capable of training multi-layer neural networks on real data with generalization
performance and computational speed comparable to SGD. This is the first work that shows that learning by
message passing in deep neural networks 1) is possible and 2) is a viable alternative to SGD, showing
competitive performance with common gradient descent methods. Our version of fBP adds the
reinforcement term at each mini-batch step in what we call the Posterior-as-Prior (PasP) rule. Furthermore,
using the message-passing algorithm not as a solver but as an estimator of marginals allows us to make
locally Bayesian predictions, averaging the predictions over the approximate posterior. The resulting
generalization error is significantly better than those of the solver, showing that, although approximate, the
marginals of the weights estimated by message-passing retain useful information. Consistently with the
assumptions underlying fBP, we find that the solutions provided by the message passing algorithms belong to
flat entropic regions of the loss landscape and have good performance in continual learning tasks and on
sparse networks as well.

Being amenable to analytical description, message passing algorithms are used as powerful theoretical
tool in many problems of interest in inference, optimization, and machine learning. While our work aims at
extending the range of practical applications of message passing to deep networks, we believe one of its main
contributions is paving the way towards novel theoretical methods for the investigation of neural networks.
We also remark that our PasP update scheme is of independent interest and can be combined with different
posterior approximation techniques.

The paper is structured as follows: in section 2 we give a brief review of some related works. In section 3
we provide a detailed description of the message-passing equations and of the high level structure of the
algorithms. In section 4 we compare the performance of the message passing algorithms versus SGD based
approaches in different learning settings.

2. Related works

The literature on message passing algorithms is extensive, we refer to Mézard and Montanari (2009) and
Zdeborová and Krzakala (2016) for a general overview. More related to our work, multilayer message-passing
algorithms have been developed in inference contexts (Manoel et al 2017, Fletcher et al 2018), where they
have been shown to produce exact marginals under certain statistical assumptions on (unlearned) weight
matrices.

The properties of message-passing for learning shallow neural networks have been extensively studied
(see Baldassi et al 2020 and reference therein). Barbier et al (2019) rigorously show that message passing

2

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

algorithms in generalized linear models perform asymptotically exact inference under some statistical
assumptions. Dictionary learning and matrix factorization are harder problems closely related to deep
network learning problems, in particular to the modelling of a single intermediate layer. They have been
approached using message passing in Kabashima et al (2016) and Parker et al (2014), although the resulting
predictions are found to be asymptotically inexact (Maillard et al 2021). The same problem is faced by the
message passing algorithm recently proposed for a multi-layer matrix factorization scenario (Zou et al
2021a). Unfortunately, our framework as well does not yield asymptotic exact predictions. Nonetheless, it
gives a message passing heuristic that for the first time is able to train deep neural networks on natural
datasets, therefore sets a reference for the algorithmic applications of this research line.

Message passing schemes dealing with multi-layer problems and displaying similar equations have
appeared in the context of inference problems: (Manoel et al 2017, Fletcher et al 2018) deal with
reconstructing a signal from multi-layered non-linear measurements; (Gabrie et al 2019) models priors with
untrained networks. An online mini-batch approximate message passing algorithm has been introduced in
Manoel et al (2017) in the context of inference in generalized linear models. Kabashima et al (2016), Aubin
et al (2021)discuss dictionary learning and matrix factorization problems, which could be interesting
applications for variants of our algorithm where theoretical analysis can be pushed further. Parker et al
(2013), Zou et al (2021a)is the work that is most closely related to ours. It defines a message passing scheme
for solving multi-layer matrix factorization problems. Minor modifications of that algorithm accounting for
the supervised learning setting and its combination with our PasP update scheme across mini-batches would
lead to our proposed algorithm. None of these approaches aims at multi-layer learning settings and has been
shown to be able to optimize a multi-layer neural network with good generalization performance.

A few papers advocate the success of SGD to the geometrical structure (smoothness and flatness) of the
loss landscape in neural networks (Baldassi et al 2015, Chaudhari et al 2017, Garipov et al 2018, Li et al 2018,
Feng and Tu 2021, Pittorino et al 2021). These considerations do not depend on the particular form of the
SGD dynamics and should extend also to other types of algorithms, although SGD is by far the most popular
choice among NNs practitioners due to its simplicity, flexibility, speed, and generalization performance.

While our work focuses on message passing schemes, some of the ideas presented here, such as the PasP
rule, can be combined with algorithms for Bayesian neural networks’ training (Hernández-Lobato and
Adams 2015, Wu et al 2018). Recent work extends BP by combining it with graph neural networks (Kuck
et al 2020, Satorras and Welling 2021). Finally, some work in computational neuroscience shows similarities
to our approach (Rao 2007).

3. Learning by message passing

3.1. Posterior-as-Prior updates
We consider a multi-layer perceptron with L hidden neuron layers, having weight and bias parameters
W = {Wℓ,bℓ}L

ℓ=0. We allow for stochastic activations Pℓ(xℓ+1|zℓ), where zℓ is the neuron’s pre-activation
vector for layer ℓ, and Pℓ is assumed to be factorized over the neurons. If no stochasticity is present, Pℓ just
encodes an element-wise activation function. The probability of output y given an input x is then given by:

P(y |x,W) =

ˆ
dx1:L

L∏
ℓ=0

Pℓ+1(xℓ+1 |Wℓxℓ + bℓ), (1)

where for convenience we defined x0 = x and xL+1 = y. In a Bayesian framework, given a training set
D= {(xn,yn)}n and a prior distribution over the weights qθ(W) in some parametric family, the posterior
distribution is given by:

P(W |D,θ)∝
∏
n

P(yn |xn,W)qθ(W), (2)

here the assignment∝ denotes equality up to a normalization factor. Using the posterior one can compute
the Bayesian prediction P(y |x,D,θ) =

´
dW P(y |x,W)P(W |D,θ) for a new data-point x. Unfortunately,

the posterior is generically intractable due to the hard-to-compute normalization factor. On the other hand,
we are mainly interested in training a distribution that covers wide minima of the loss landscape that
generalize well (Baldassi et al 2016a) and in recovering pointwise estimators within these regions. The
Bayesian modeling becomes an auxiliary tool to set the stage for the message passing algorithms seeking flat
minima. We also need a formalism that allows for mini-batch training to speed-up the computation and deal
with large datasets. Therefore, we devise an update scheme that we call Posterior-as-Prior (PasP), where we
evolve the parameters θt of a distribution qθt(W) computed as an approximate mini-batch posterior, in such

3

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

a way that the outcome of the previous iteration becomes the prior in the following step. In the PasP scheme,
θt retains the memory of past observations. We also add an exponential factor ρ, that we typically set close to
1, tuning the forgetting rate and playing a role similar to the learning rate in SGD. Given a mini-batch (Xt,yt)
sampled from the training set at time t and a scalar ρ> 0, the PasP update reads

qθt+1(W)≈ [P(W |yt,Xt,θt)]
ρ
, (3)

where≈ denotes approximate equality and up to a normalization factor. A first approximation may be
needed in the computation of the mini-batch posterior, a second to project the approximate posterior onto
the distribution manifold spanned by θ (Minka 2001). In practice, we will consider factorized approximate
posteriors, although equation (3) generically allows for more refined approximations.

Notice that setting ρ= 1, the batch-size to 1, and taking a single pass over the dataset, we recover the
Assumed Density Filtering algorithm (Minka 2001). For large enough ρ (including ρ= 1), the iterations of
qθt will concentrate on a pointwise estimator. This mechanism mimics the reinforcement heuristic
commonly used to turn Belief Propagation into a solver for constrained satisfaction problems (Braunstein
and Zecchina 2006). Most importantly, it is related to the flat-minima discovery heuristic known as focusing
BP (Baldassi et al 2016a) and discussed in the introduction. A different prior updating mechanism which can
be understood as empirical Bayes has been used in Baldassi et al (2016b) instead.

3.2. Inner message passing loop
While the PasP rule takes care of the reinforcement heuristic across mini-batches, we compute the
mini-batch posterior in equation (3) using message passing approaches derived from Belief Propagation. BP
is an iterative scheme for computing marginals and entropies of statistical models (Mézard and Montanari
2009). It is most conveniently expressed on factor graphs, that is bipartite graphs where the two sets of nodes
are called variable nodes and factor nodes. They respectively represent the variables involved in the statistical
model and their interactions. Message from factor nodes to variable nodes and viceversa are exchanged along
the edges of the factor graph for a certain number of BP iterations or until a fixed point is reached. Using
fixed points messages one is able to compute the variables marginals (see appendix A.2 for a more in depth
discussion on the relation between messages and marginals). The factor graph for P(W |Xt,yt,θt) can be
derived from equation (2), with the following additional specifications. For simplicity, we will ignore the bias
term in each layer. We assume factorized qθt(W), each factor parameterized by its first two moments. In what
follows, we drop the PasP iteration index t. For each example (xn,yn) in the mini-batch, we introduce the
auxiliary variables xℓn , ℓ= 1, . . . ,L, representing the layers’ activations. For each example, each neuron in the
network contributes a factor node to the factor graph. The scalar components of the weight matrices and the
activation vectors become variable nodes.

Given a mini-batch B = {(xn,yn)}n, the factor graph defined by equations (1)–(3) is explicitly written as:

P(W,x1:L |B,θ)∝
L∏

ℓ=0

∏
k,n

Pℓ+1

(
xℓ+1
kn

∣∣∣∣ ∑
i

Wℓ
kix

ℓ
in

)∏
k,i,ℓ

qθ(W
ℓ
ki), (4)

where x0n = xn, xL+1
n = yn. This construction is presented in appendix A, where we also derive the message

update rules on the factor graph. We give a pictorial representation of the factor graph in figure 1.
The factor graph thus defined is extremely loopy and straightforward iteration of BP has convergence

issues. Moreover, in presence of a homogeneous prior over the weights, the neuron permutation symmetry
in each hidden layer induces a strongly attractive symmetric fixed point that hinders learning. We work
around these issues by breaking the symmetry at time t= 0 with an inhomogeneous prior. In our
experiments a little initial heterogeneity is sufficient to obtain specialized neurons at each following time
step. Additionally, we do not require message passing convergence in the inner loop (see algorithm 1) but
perform one or a few iterations for each θ update. We also include an inertia term commonly called damping
factor in the message updates (see appendix B.2). As we shall discuss, these simple rules suffice to train deep
networks by message passing.

For the inner loop we adapt to deep neural networks four different message passing algorithms, all of
which are well known to the literature although derived in simpler settings: Belief Propagation (BP),
BP-Inspired (BPI) message passing, mean-field (MF), and approximate message passing (AMP). The last
three algorithms can be considered approximations of the first one. In the following paragraphs we will
discuss their common traits, present the BP updates as an example, and refer to appendix A for an in-depth
exposition. For all algorithms, message updates can be divided in a forward pass and backward pass, as also
done in Fletcher et al (2018) in a multi-layer inference setting. The BP algorithm is compactly reported in
algorithm 1.

4

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

Figure 1. Pictorial representation of the factor graph expressed by equation (4). Dark nodes represent factor nodes corresponding
to neurons’ activation function (we have such set for each example n) and to the weights’ priors qθ(W). Light-colored nodes
represent variable nodes corresponding to the activations’ outputs x and the weightsW. Messages are exchanged between
variables and factors in both directions along the lines connecting them (see appendix A.2 for a formal discussion).

Algorithm 1: BP for deep neural networks

// Message passing used in the PasP equation (3) to approximate.
// the mini-batch posterior.
// Here we specifically refer to BP updates.
// BPI, MF, and AMP updates take the same form but using
// the rules in appendix A.4, A.5, and A.7 respectively

1 Initialize messages.
2 for τ = 1, . . . τmax do

// Forward pass
3 for l= 0, . . . ,L do
4 compute x̂ℓ,∆ℓ using (7, 8)
5 computemℓ,σ ℓ using (9, 10)
6 compute Vℓ,ω ℓ using (11, 12)

// Backward pass
7 for l= L, . . . ,0 do
8 compute gℓ,Γℓ using (13, 14)
9 compute Aℓ,Bℓ using (15, 16)
10 compute Gℓ,Hℓ using (13, 18)

3.2.1. Meaning of messages
All the messages involved in the message passing can be understood in terms of marginals.

Of particular relevance aremℓ
ki and σ

ℓ
ki, denoting the mean and variance of the weightsWℓ

ki. The quantities
x̂ℓin and∆

ℓ
in instead denote the mean and variance of the ith neuron’s activation in layer ℓ for a given input xn.

3.2.2. Scalar free energies
All message passing schemes are conveniently expressed in terms of two functions that can be understood as
effective free energies (Zdeborová and Krzakala 2016), i.e. logarithms of normalization factors (partition
functions), corresponding to a single neuron and a single weight respectively :

φℓ(B,A,ω,V) = log

ˆ
dxdz e−

1
2Ax

2+BxPℓ (x|z)e−
(ω−z) 2

2V ℓ= 1, . . . ,L, (5)

ψ(H,G,θ) = log

ˆ
dw e−

1
2G

2w 2+Hw qθ(w). (6)

Notice that for common deterministic activations such as ReLU and sign, the function φ has analytic and
smooth expressions (see appendix A.8). The same holds for the function ψ when qθ(w) is Gaussian

5

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

(continuous weights) or a mixture of atoms (discrete weights). At the last layer we impose
PL+1(y|z) = I(y= sign(z)) in binary classification tasks and PL+1(y|z) = I(y= argmax(z)) in multi-class
classification (see appendix A.9). While in our experiments we use hard constraints for the final output,
therefore solving a constraint satisfaction problem, it would be interesting to also consider soft constraints
and introduce a temperature, but this is beyond the scope of our work.

3.2.3. Start and end of message passing
At the beginning of a new PasP iteration t, we reset the messages (see appendix A) and run message passing
for τmax iterations. We then compute the new prior’s parameters θt+1 from the posterior given by the message
passing.

3.2.4. BP forward pass
After initialization of the messages at time τ = 0, for each following time we propagate a set of message from
the first to the last layer and then another set from the last to the first. For an intermediate layer ℓ the forward
pass reads:

x̂ℓ,τin→k = ∂Bφ
ℓ
(
Bℓ,τ−1
in→k ,A

ℓ,τ−1
in ,ω ℓ−1,τ

in ,Vℓ−1,τ
in

)
(7)

∆ℓ,τ
in = ∂ 2

Bφ
ℓ
(
Bℓ,τ−1
in ,Aℓ,τ−1

in ,ω ℓ−1,τ
in ,Vℓ−1,τ

in

)
(8)

mℓ,τ
ki→n = ∂Hψ(H

ℓ,τ−1
ki→n ,G

ℓ,τ−1
ki ,θ ℓki) (9)

σ ℓ,τ
ki = ∂ 2

Hψ(H
ℓ,τ−1
ki ,Gℓ,τ−1

ki ,θ ℓki) (10)

Vℓ,τ
kn =

∑
i

((
mℓ,τ

ki→n

)2
∆ℓ,τ

in +σ ℓ,τ
ki (x̂ℓ,τin→k)

2 +σ ℓ,τ
ki ∆ℓ,τ

in

)
(11)

ω ℓ,τ
kn→i =

∑
i ′ ̸=i

mℓ,τ
ki ′→nx̂

ℓ,τ
i ′n→k. (12)

The equations for the first layer differ slightly and in an intuitive way from the ones above (see appendix A.3).

3.2.5. BP backward pass
The backward pass updates a set of messages from the last to the first layer:

gℓ,τkn→i = ∂ωφ
ℓ+1
(
Bℓ+1,τ
kn ,Aℓ+1,τ

kn ,ω ℓ,τ
kn→i,V

ℓ,τ
kn

)
(13)

Γℓ,τ
kn =−∂ 2

ωφ
ℓ+1
(
Bℓ+1,τ
kn ,Aℓ+1,τ

kn ,ω ℓ,τ
kn ,V

ℓ,τ
kn

)
(14)

Aℓ,τ
in =

∑
k

((
mℓ,τ

ki→n

)2
+σ ℓ,τ

ki

)
Γℓ,τ
kn −σ ℓ,τ

ki

(
gℓ,τkn→i

)2
(15)

Bℓ,τ
in→k =

∑
k ′ ̸=k

mℓ,τ
k ′i→ng

ℓ,τ
k ′n→i (16)

Gℓ,τ
ki =

∑
n

((
x̂ℓ,τin→k

)2
+∆ℓ,τ

in

)
Γℓ,τ
kn −∆ℓ,τ

in

(
gℓ,τkn→i

)2
(17)

Hℓ,τ
ki→n =

∑
n ′ ̸=n

x̂ℓ,τin ′→kg
ℓ,τ
kn ′→i. (18)

As with the forward pass, we add the caveat that for the last layer the equations are slightly different from the
ones above.

6

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

3.2.6. Computational complexity
The message passing equations boil down to element-wise operations and tensor contractions that we easily
implement using the GPU friendly julia library Tullio.jl (Abbott et al 2021). For a layer of input and output
size N and considering a batch-size of B, the time complexity of a forth-and-back iteration is O(N2B) for all
message passing algorithms (BP, BPI, MF, and AMP), the same as SGD. The prefactor varies and it is
generally larger than SGD (see appendix B.8). Also, time complexity for message passing is proportional to
τmax (which we typically set to 1). We provide our implementation in the GitHub repo anonymous.

4. Numerical results

We implement our message passing algorithms on neural networks with continuous and binary weights and
with binary activations. In our experiments we fix τmax = 1. We typically do not observe an increase in
performance taking more steps, except for some specific cases and in particular for MF layers. We remark
that for τmax = 1 the BP and the BPI equations are identical, so in most of the subsequent numerical results
we will only investigate BP.

We compare our algorithms with a SGD-based algorithm adapted to binary architectures (Hubara et al
2016) which we call BinaryNet along the paper (see appendix B.5 for details). Comparison of Bayesian
predictions are with the gradient-based expectation backpropagation (EBP) algorithm (Soudry et al 2014),
also able to deal with discrete weights and activations. In all architectures we avoid the use of bias terms and
batch-normalization layers.

We find that message-passing algorithms are able to train generic MLP architectures with varying
numbers and sizes of hidden layers. As for the datasets, we are able to perform both binary classification and
multi-class classification on standard computer vision datasets such as MNIST, Fashion-MNIST, and
CIFAR-10. Since these datasets consist of 10 classes, for the binary classification task we divide each dataset in
two classes (even vs odd).

We report that message passing algorithms are able to solve these optimization problems with
generalization performance comparable to or better than SGD-based algorithms. Some of the message
passing algorithms (BP and AMP in particular) need fewer epochs to achieve low error than the ones
required by SGD-based algorithms, even if adaptive methods like Adam are considered. Timings of our GPU
implementations of message passing algorithms are competitive with SGD (see appendix B.8).

4.1. Experiments across architectures
We select a specific task, multi-class classification on Fashion-MNIST, and we compare the message passing
algorithms with BinaryNet for different choices of the architecture (i.e. we vary the number and the size of
the hidden layers). In figure 2 (left) we present the learning curves for a MLP with 3 hidden layers with 501
units with binary weights and activations. Similar results hold in our experiments with 2 or 3 hidden layers
of 101, 501 or 1001 units and with batch sizes from 1 to from 1024. The parameters used in our simulations
are reported in appendix B.3. Results on networks with continuous weights can be found in figure 3 (right).

4.2. Sparse layers
Since the BP algorithm has notoriously been successful on sparse graphs, we perform a straightforward
implementation of pruning at initialization, i.e. we impose a random boolean mask on the weights that we
keep fixed along the training. We call sparsity the fraction of zeroed weights. This kind of non-adaptive
pruning is known to largely hinder learning (Frankle et al 2021, Sung et al 2021). In the right panel of
figure 2, we report results on sparse binary networks in which we train a MLP with 2 hidden layers of 101
units on the MNIST dataset. For reference, results on pruning quantized/binary networks can be found in
Han et al (2016), Ardakani et al (2017), Tung and Mori (2018), Diffenderfer and Kailkhura (2021).
Experimenting with sparsity up to 90%, we observe that BP and MF perform better than BinaryNet. AMP
struggles behind BinaryNet instead.

4.3. Experiments across datasets
We now fix the architecture, a MLP with 2 hidden layers of 501 neurons each with binary weights and
activations. We vary the dataset, i.e. we test the BP-based algorithms on standard computer vision
benchmark datasets such as MNIST, Fashion-MNIST and CIFAR-10, in both the multi-class and binary
classification tasks. In table 1 we report the final test errors obtained by the message passing algorithms
compared to the BinaryNet baseline. See appendix B.4 for the corresponding training errors and the
parameters used in the simulations. We mention that while the test performance is mostly comparable, the
train error tends to be lower for the message passing algorithms.

7

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

Figure 2. (Left) Training curves of message passing algorithms compared with BinaryNet on the Fashion-MNIST dataset
(multi-class classification) with a binary MLP with 3 hidden layers of 501 units. (Right) Final test accuracy when varying the
layer’s sparsity in a binary MLP with 2 hidden layers of 101 units trained on the MNIST dataset (multi-class). In both panels the
batch-size is 128 and curves are averaged over 5 realizations of the initial conditions (and sparsity pattern in the right panel).

Table 1. Test error (%) on MNIST, Fashion-MNIST and CIFAR-10 (both binary and multiclass classification) of various algorithms on a
MLP with 2 hidden layers of 501 units, binary weights and activations. All algorithms are trained with batch-size 128 and for 100
epochs. Mean and standard deviations are calculated over 5 random initializations.

Dataset BinaryNet BP AMP MF

MNIST (2 classes) 1.3± 0.1 1.4± 0.2 1.4± 0.1 1.3± 0.2
Fashion-MNIST (2 classes) 2.4± 0.1 2.3± 0.1 2.4± 0.1 2.3± 0.1
CIFAR-10 (2 classes) 30.0± 0.3 31.4± 0.1 31.1± 0.3 31.1± 0.4
MNIST 2.2± 0.1 2.6± 0.1 2.6± 0.1 2.3± 0.1
Fashion-MNIST 12.0± 0.6 11.8± 0.3 11.9± 0.2 12.1± 0.2
CIFAR-10 59.0± 0.7 58.7± 0.3 58.5± 0.2 60.4± 1.1

Figure 3. (Left) Test error curves for Bayesian and point-wise predictions for a MLP with 2 hidden layers of 101 units on the
2-classes MNIST dataset. We report the results for (Left) binary and (Right) continuous weights. In both cases, we compare SGD,
BP (point-wise and Bayesian) and EBP (point-wise and Bayesian). See appendix B.3 for details.

4.4. Locally Bayesian error
The message passing framework used as an estimator of the mini-batch posterior marginals allows us to
perform approximate Bayesian prediction, i.e. averaging the pointwise predictions over the approximate
posterior. We observe better generalization error from Bayesian predictions compared to point-wise ones,
showing that the marginals retain useful information. However, we roughly estimate the marginals with the
PasP mini-batch procedure (the exact ones should be computed with a full-batch procedure, but this
converges with difficulty in our tests). Since BP-based algorithms tend to focus on dense states (as also
confirmed by the local energy measure performed in section 4.5), the Bayesian error we compute can be
considered as a local approximation of the full one. We report results for binary classification on the MNIST

8

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

Figure 4. Left panel: Local energy curve of the point-wise configuration found by the BP algorithm compared with BinaryNet on
a MLP with 2 hidden layers of 101 units on the 2-class MNIST dataset. Right panel: comparison of the weight distributions in the
first layer found by Bayesian BP and BinaryNet (continuous accumulated weights for BinaryNet, magnetizations in the BP case).

dataset in figure 3, and we observe the same performance increase on different datasets and architectures. We
obtain the Bayesian prediction from the output marginal given by a single forward pass of the message
passing. To obtain good Bayesian estimates it is important that the posterior distribution does not
concentrate too much, otherwise the Bayesian prediction will converge to the prediction of a single
configuration.

In figure 3. we also perform a comparison of BP (point-wise and Bayesian) with SGD and another
algorithm able to perform Bayesian predictions, Expectation Backpropagation (Soudry et al 2014) see
appendix B.6 for implementation details.

4.5. Local energy
We adapt the notion of flatness used in Jiang et al (2020), Pittorino et al (2021), that we call local energy, to
configurations with binary weights. Given a weight configuration w ∈ {±1}N, we define the local energy
δEtrain(w,p) as the average difference in training error Etrain(w) when perturbing w by flipping a random
fraction p of its elements:

δEtrain(w,p) = EzEtrain(w⊙ z)− Etrain(w), (19)

where⊙ denotes the Hadamard (element-wise) product and the expectation is over i.i.d. entries for z equal
to−1 with probability p and to+1 with probability 1− p. We report the resulting local energy profiles (in a
range [0,pmax]) in figure 4 left panel for BP and BinaryNet. The relative error grows slowly when perturbing
the trained configurations (notice the convexity of the curves). This shows that both BP-based and
SGD-based algorithms find configurations that lie in relatively flat minima in the energy landscape. The
same qualitative phenomenon holds for different architectures and datasets.

In addition to the comparison through the local energy, we have also provided a comparison of the
different weight distributions found by SGD and Bayesian BP, in order to add insight into the type of
solutions that the two algorithms find, see the right panel of figure 4. Analogously to Liu et al (2021) (that
compares vanilla SGD with Adam) we find that the weight histogram of BP solutions develops more latent
real-valued weights with larger absolute values compared to SGD.

4.6. Continual learning
Given the high local entropy (i.e. the flatness) of the solutions found by the BP-based algorithms (see 4.5), we
perform additional tests in a classic setting, continual learning, where the possibility of locally rearranging
the solutions while keeping low training error can be an advantage. When a deep network is trained
sequentially on different tasks, it tends to forget exponentially fast previously seen tasks while learning new
ones (McCloskey and Cohen 1989, Robins 1995, Fusi et al 2005). Recent work (Feng and Tu 2021) has shown
that searching for a flat region in the loss landscape can indeed help to prevent catastrophic forgetting.
Several heuristics have been proposed to mitigate the problem (Kirkpatrick et al 2017, Zenke et al 2017,
Aljundi et al 2018, Laborieux et al 2021) but all require specialized adjustments to the loss or the dynamics.

Here we show instead that our message passing schemes are naturally prone to learn multiple tasks
sequentially, mitigating the characteristic memory issues of the gradient-based schemes without the need for

9

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

Figure 5. Performance of BP and BinaryNet on the permuted MNIST task (see text) for a two hidden layer network with 2001
units on each layer and binary weights and activations. The model is trained sequentially on 6 different versions of the MNIST
dataset (the tasks), where the pixels have been permuted. (Left) Test accuracy on each task after the network has been trained on
all the tasks. (Right) Test accuracy on the first task as a function of the number of epochs. Points are averages over 5 independent
runs, shaded areas are errors on the mean.

explicit modifications. As a prototypical experiment, we sequentially trained a multi-layer neural network on
6 different versions of the MNIST dataset, where the pixels of the images have been randomly permuted
(Goodfellow et al 2013), giving a fixed budget of 40 epochs on each task. We present the results for a two
hidden layer neural network with 2001 units on each layer (see appendix B.3 for details). As can be seen in
figure 5, at the end of the training the BP algorithm is able to reach good generalization performances on all
the tasks. We compared the BP performance with BinaryNet, which already performs better than SGD with
continuous weights (see the discussion in Laborieux et al 2021). While our BP implementation is not
competitive with ad-hoc techniques specifically designed for this problem, it beats non-specialized heuristics.
Moreover, we believe that specialized approaches like the one of Laborieux et al (2021) can be adapted to
message passing as well.

5. Discussion and conclusions

While successful in many fields, message passing algorithms, have notoriously struggled to scale to deep
neural networks training problems. Here we have developed a class of fBP-based message passing algorithms
and used them within an update scheme, Posterior-as-Prior (PasP), that makes it possible to train deep and
wide multilayer perceptrons by message passing.

We performed experiments binary activations and either binary or continuous weights. Future work
should try to include different activations, biases, batch-normalization, and convolutional layers as well.
Another interesting direction is the algorithmic computation of the (local) entropy of the model from the
messages.

Further theoretical work is needed for a more complete understanding of the robustness of our methods.
Recent developments in message passing algorithms (Rangan et al 2019) and related theoretical analysis
(Goldt et al 2020) could provide fruitful inspirations. While our algorithms can be used for approximate
Bayesian inference, exact posterior calculation is still out of reach for message passing approaches and much
technical work is needed in that direction. Another relevant line of investigation is to derive state evolution
equations (Donoho et al 2009) in order to obtain a concise statistical description of the iterations of our
algorithm in terms of a few scalar quantities.

Data availability statement

The data that support the findings of this study will be openly available following an embargo at the following
URL/DOI: https://github.com/ArtLabBocconi/DeepMP.jl. Data will be available from 28 April 2022.

Appendix A. BP-based message passing algorithms

A.1. Preliminary considerations
Given a mini-batch B = {(xn,yn)}n, the factor graph defined by equations (1)–(3) is explicitly written as:

P(W,x1:L |B,θ)∝
L∏

ℓ=0

∏
k,n

Pℓ+1

(
xℓ+1
kn

∣∣∣∣ ∑
i

Wℓ
kix

ℓ
in

)∏
k,i,ℓ

qθ(W
ℓ
ki), (20)

10

https://github.com/ArtLabBocconi/DeepMP.jl

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

where x0n = xn, xL+1
n = yn. The derivation of the BP equations for this model is straightforward albeit lengthy

and involved. It is obtained following the steps presented in multiple papers, books, and reviews, see for
instance (Mézard and Montanari 2009, Zdeborová and Krzakala 2016, Mézard 2017), although it has not
been attempted before in deep neural networks. It should be noted that a (common) approximation that we
take here with respect to the standard BP scheme, is that messages are assumed to be Gaussian distributed
and therefore parameterized by their mean and variance. This goes by the name of relaxed belied
propagation (rBP), just referred to as BP throughout the paper.

We derive the BP equations in A.2 and present them all together in A.3. From BP, we derive other 3
message passing algorithms useful for the deep network training setting, all of which are well known to the
literature: BP-Inspired (BPI) message passing A.4, mean-field (MF) A.5, and approximate message passing
(AMP) A.7. The AMP derivation is the more involved and given in A.6. In all these cases, message updates
can be divided in a forward pass and a backward pass, as also done in Fletcher et al (2018) in a multi-layer
inference setting. The BP algorithm is compactly reported in algorithm 1.

In our notation, ℓ denotes the layer index, τ the BP iteration index, k an output neuron index, i an input
neuron index, and n a sample index.

We report below, for convenience, some of the considerations also present in the main text.

A.1.1. Meaning of messages
All the messages involved in the message passing equations can be understood in terms of cavity marginals or
full marginals (as mentioned in the introduction BP is also known as the Cavity Method, see Mézard and
Montanari 2009). Of particular relevance are the quantitiesmℓ

ki and σ
ℓ
ki, denoting the mean and variance of

the weightsWℓ
ki. The quantities x̂

ℓ
in and∆ℓ

in instead denote mean and variance of the i-th neuron’s activation
in layer ℓ in correspondence of an input xn.

A.1.2. Scalar free energies
All message passing schemes can be expressed using the following scalar functions, corresponding to single
neuron and single weight effective free-energies respectively:

φℓ(B,A,ω,V) = log

ˆ
dxdz e−

1
2Ax

2+BxPℓ (x |z)e−
(ω−z) 2

2V , (21)

ψ(H,G,θ) = log

ˆ
dw e−

1
2G

2w 2+Hw qθ(w). (22)

These free energies will naturally arise in the derivation of the BP equations in appendix A.2. For the last
layer, the neuron function has to be slightly modified:

φL+1(y,ω,V) = log

ˆ
dz PL+1 (y |z)e−

(ω−z) 2

2V . (23)

Notice that for common deterministic activations such as ReLU and sign, the function φ has analytic and
smooth expressions that we give in appendix A.8. Same goes for ψ when qθ(w) is Gaussian (continuous
weights) or a mixture of atoms (discrete weights). At the last layer we impose PL+1(y|z) = I(y= sign(z)) in
binary classification tasks. For multi-class classification instead, we have to adapt the formalism to vectorial
pre-activations z and assume PL+1(y|z) = I(y= argmax(z)) (see appendix A.9). While in our experiments
we use hard constraints for the final output, therefore solving a constraint satisfaction problem, it would be
interesting to also consider generic loss functions. That would require minimal changes to our formalism,
but this is beyond the scope of our work.

A.1.3. Binary weights
In our experiments we use±1 weights in each layer. Therefore each marginal can be parameterized by a
single number and our prior/posterior takes the form:

qθ(W
ℓ
ki)∝ eθ

ℓ
kiW

ℓ
ki . (24)

The effective free energy function equation (22) becomes:

ψ(H,G,θ ℓki) = log2cosh(H+ θ ℓki), (25)

and the messages G can be dropped from the message passing.

11

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

A.1.4. Start and end of message passing
At the beginning of a new PasP iteration t, we reset the messages to zero and run message passing for τmax

iterations. We then compute the new prior qθt+1(W) from the posterior given by the message passing
iterations.

A.2. Derivation of the BP equations
In order to derive the BP equations, we start with the following portion of the factor graph reported in
equation (20) in the main text, describing the contribution of a single data example in the inner loop of the
PasP updates:

L∏
ℓ=0

∏
k

Pℓ+1

(
xℓ+1
kn

∣∣∣∣ ∑
i

Wℓ
kix

ℓ
in

)
where x0n = xn, x

L+1
n = yn. (26)

where we recall that the quantity xℓkn corresponds to the activation of neuron k in layer ℓ in correspondence of
the input example n.

Let us start by analyzing the single factor:

Pℓ+1

(
xℓ+1
kn

∣∣∣∣ ∑
i

Wℓ
kix

ℓ
in

)
. (27)

We refer to messages that travel from input to output in the factor graph as upgoing or upwardsmessages,
while to the ones that travel from output to input as downgoing or backwardsmessages.

A.2.1. Factor-to-variable-Wmessages
The factor-to-variable-W messages read:

ν̂ ℓ+1
kn→ki(W

ℓ
ki)∝

ˆ ∏
i ′ ̸=i

dν ℓ
ki ′→n(W

ℓ
ki ′)
∏
i ′

dν ℓ
i ′n→k(x

ℓ
i ′n) dν↓(x

ℓ+1
kn) Pℓ+1

(
xℓ+1
kn

∣∣∣∣ ∑
i ′

Wℓ
ki ′x

ℓ
i ′n

)
, (28)

where ν↓ denotes the messages travelling downwards (from output to input) in the factor graph.
We denote the means and variances of the incoming messages respectively withmℓ

ki→n, x̂
ℓ
in→k and

σ ℓ
ki→n,∆

ℓ
in→k:

mℓ
ki→n =

ˆ
dν ℓ

ki→n(W
ℓ
ki)W

ℓ
ki (29)

σ ℓ
ki→n =

ˆ
dν ℓ

ki→n(W
ℓ
ki)
(
Wℓ

ki −mℓ
ki→n

)2
(30)

x̂ℓin→k =

ˆ
dν ℓ

in→k(x
ℓ
in) x

ℓ
in (31)

∆ℓ
in→k =

ˆ
dν ℓ

in→k(x
ℓ
in)
(
xℓin − x̂ℓin→k

)2
. (32)

We now use the central limit theorem to observe that with respect to the incoming messages
distributions—assuming independence of these messages—in the large input limit the preactivation is a
Gaussian random variable: ∑

i ′ ̸=i

Wℓ
ki ′x

ℓ
i ′n ∼N (ω ℓ

kn→i,V
ℓ
kn→i), (33)

where:

ω ℓ
kn→i = Eν

∑
i ′ ̸=i

Wℓ
ki ′x

ℓ
i ′n

=
∑
i ′ ̸=i

mℓ
ki ′→n x̂

ℓ
i ′n→k (34)

12

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

Vℓ
kn→i = Varν

∑
i ′ ̸=i

Wℓ
ki ′x

ℓ
i ′n


=
∑
i ′ ̸=i

(
σ ℓ
ki ′→n∆

ℓ
i ′n→k +

(
mℓ

ki ′→n

)2
∆ℓ

i ′n→k +σ ℓ
ki ′→n

(
x̂ℓi ′n→k

)2)
. (35)

Therefore we can rewrite the outgoing messages as:

ν̂ ℓ+1
kn→i(W

ℓ
ki)∝

ˆ
dzdν ℓ

in→k(x
ℓ
in) dν↓(x

ℓ+1
kn) e

− (z−ωkn→i−Wℓ
ki x

ℓ
in)

2

2Vkn→i Pℓ+1

(
xℓ+1
kn

∣∣∣∣ z) . (36)

We now assumeWℓ
kix

ℓ
in to be small compared to the other terms. With a second order Taylor expansion we

obtain:

ν̂ ℓ
kn→i(W

ℓ
ki)∝

ˆ
dz dν↓(x

ℓ+1
kn) e

− (z−ωkn→i)
2

2Vkn→i Pℓ+1

(
xℓ+1
kn

∣∣∣∣ z)
×

(
1+

z−ωkn→i

Vkn→i
x̂ℓin→kW

ℓ
ki +

(z−ωkn→i)
2 −Vkn→i

2Vkn→i

(
∆+

(
x̂ℓin→k

)2)(
Wℓ

ki

)2)
. (37)

Introducing now the function:

φℓ(B,A,ω,V) = log

ˆ
dxdz e−

1
2Ax

2+BxPℓ (x|z)e−
(ω−z) 2

2V , (38)

and defining:

gℓkn→i = ∂ωφ
ℓ+1(Bℓ+1,Aℓ+1,ω ℓ

kn→i,V
ℓ
kn→i), (39)

Γℓ
kn→i =−∂ 2

ωφ
ℓ+1(Bℓ+1,Aℓ+1,ω ℓ

kn→i,V
ℓ
kn→i), (40)

the expansion for the log-message reads:

log ν̂ ℓ
kn→i(W

ℓ
ki)≈ const+ x̂ℓin→k g

ℓ
kn→iW

ℓ
ki

− 1

2

((
∆ℓ

in→k +
(
x̂ℓin→k

)2)
Γℓ
kn→i −∆ℓ

in→k

(
gℓkn→i

)2)(
Wℓ

ki

)2
. (41)

A.2.2. Factor-to-variable-xmessages
The derivation of these messages is analogous to the factor-to-variable-W ones in equation (28) just
reported. The final result for the log-message is:

log ν̂ ℓ
kn→i(x

ℓ
in)≈ const+mℓ

ki→n g
ℓ
kn→ix

ℓ
in

− 1

2

((
σ ℓ
ki→n +

(
mℓ

ki→n

)2)
Γℓ
kn→i −σ ℓ

ki→n

(
gℓkn→i

)2)(
xℓin
)2
. (42)

A.2.3. Variable-W-to-output-factor messages
The message from variableWℓ

ki to the output factor kn reads:

ν ℓ
ki→n(W

ℓ
ki)∝ Pℓ

θki
(Wℓ

ki)e
∑

n ′ ̸=n log ν̂
ℓ
kn ′→i(W

ℓ
ki)

≈ Pℓ
θki
(Wℓ

ki)e
Hℓ

ki→nW
ℓ
ki− 1

2G
ℓ
ki→n(W

ℓ
ki)

2

, (43)

where we have defined:

Hℓ
ki→n =

∑
n ′ ̸=n

x̂ℓin ′→k g
ℓ
kn ′→i (44)

Gℓ
ki→n =

∑
n ′ ̸=n

((
∆ℓ

in ′→k +
(
x̂ℓin ′→k

)2)
Γℓ
kn ′→i −∆ℓ

in ′→k

(
gℓkn ′→i

)2)
. (45)

13

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

Introducing now the effective free energy:

ψ(H,G,θ) = log

ˆ
dW Pℓ

θ (W)eHW− 1
2GW

2

, (46)

we can express the first two cumulants of the message ν ℓ
ki→n(W

ℓ
ki) as:

mℓ
ki→n = ∂Hψ(H

ℓ
ki→n,G

ℓ
ki→n,θki), (47)

σ ℓ
ki→n = ∂ 2

Hψ(H
ℓ
ki→n,G

ℓ
ki→n,θki). (48)

A.2.4. Variable-x-to-input-factor messages
We can write the downgoing message as:

ν↓(x
ℓ
in)∝ e

∑
k log ν̂

ℓ
kn→i(x

ℓ
in)

≈ eB
ℓ
inx− 1

2A
ℓ
inx

2

, (49)

where:

Bℓ
in =

∑
n

mℓ
ki→n g

ℓ
kn→i (50)

Aℓ
in =

∑
n

((
σ ℓ
ki→n +

(
mℓ

ki→n

)2)
Γℓ
kn→i −σ ℓ

ki→n

(
gℓ+1
kn→i

)2)
. (51)

A.2.5. Variable-x-to-output-factor messages
By defining the following cavity quantities:

Bℓ
in→k = Bℓ

in→k −mℓ
ki→n g

ℓ
kn→i (52)

Aℓ
in→k = Aℓ

in→k −
((
σ ℓ
ki→n +

(
mℓ

ki→n

)2)
Γℓ
kn→i −σ ℓ

ki→n

(
gℓkn→i

)2)
, (53)

and the following non-cavity ones:

ω ℓ
kn =

∑
i

mℓ
ki→n x̂

ℓ
in→k (54)

Vℓ
kn =

∑
i

(
σ ℓ
ki→n∆

ℓ
in→k +

(
mℓ

ki→n

)2
∆ℓ

in→k +σ ℓ
ki→n

(
x̂ℓi ′n→k

)2)
, (55)

we can express the first 2 cumulants of the upgoing messages as:

x̂ℓin→k = ∂Bφ
ℓ(Bℓ

in→k,A
ℓ
in→k,ω

ℓ−1
in ,Vℓ−1

in) (56)

∆ℓ
in→k = ∂ 2

Bφ
ℓ(Bℓ

in→k,A
ℓ
in→k,ω

ℓ−1
in ,Vℓ−1

in). (57)

A.2.6. Wrapping it up
Additional but straightforward considerations are required for the final input and output layers (ℓ= 0 and
ℓ= L respectively), since they do not receive messages from below and above respectively. In the end, thanks
to independence assumptions and the central limit theorem that we used throughout the derivations, we
arrive to a closed set of equations involving the means and the variances (or otherwise the corresponding
natural parameters) of the messages. Within the same approximation assumption, we also replace the cavity
quantities corresponding to variances with the non-cavity counterparts. Dividing the update equations in a
forward and backward pass, and ordering them using time indexes in such a way that we have an efficient
flow of information, we obtain the set of BP equations presented in the main text equations (7)–(18) and in
the appendix equations (62)–(73).

14

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

A.3. BP equations
We report here the end result of the derivation in last section, the complete set of BP equations also presented
in the main text as equations (7)–(18).

A.3.1. Initialization
At τ = 0:

Bℓ,0
in→k = 0, (58)

Aℓ,0
in = 0, (59)

Hℓ,0
ki→n = 0, (60)

Gℓ,0
ki = 0. (61)

A.3.2. Forward pass
At each τ = 1, . . . , τmax, for ℓ= 0, . . . ,L:

x̂ℓ,τin→k = ∂Bφ
ℓ
(
Bℓ,τ−1
in→k ,A

ℓ,τ−1
in ,ω ℓ−1,τ

in ,Vℓ−1,τ
in

)
, (62)

∆ℓ,τ
in = ∂ 2

Bφ
ℓ
(
Bℓ,τ−1
in ,Aℓ,τ−1

in ,ω ℓ−1,τ
in ,Vℓ−1,τ

in

)
, (63)

mℓ,τ
ki→n = ∂Hψ

(
Hℓ,τ−1

ki→n ,G
ℓ,τ−1
ki ,θ ℓki

)
, (64)

σ ℓ,τ
ki = ∂ 2

Hψ
(
Hℓ,τ−1

ki ,Gℓ,τ−1
ki ,θ ℓki

)
, (65)

Vℓ,τ
kn =

∑
i

((
mℓ,τ

ki

)2
∆ℓ,τ

in +σ ℓ,τ−1
ki

(
x̂ℓ,τi ′n

)2
+σ ℓ,τ−1

ki ∆ℓ,τ
in

)
, (66)

ω ℓ,τ
kn→i =

∑
i ′ ̸=i

mℓ,τ
ki ′→n x̂

ℓ,τ
i ′n→k. (67)

In these equations for simplicity we abused the notation, in fact for the first layer x̂ℓ=0,τ
n is fixed and

given by the input xn while∆
ℓ=0,τ
n = 0 instead.

A.3.3. Backward pass
For τ = 1, . . . , τmax, for ℓ= L, . . . ,0 :

gℓ,τkn→i = ∂ωφ
ℓ+1
(
Bℓ+1,τ
kn ,Aℓ+1,τ

kn ,ω ℓ,τ
kn→i,V

ℓ,τ
kn

)
, (68)

Γℓ,τ
kn =−∂ 2

ωφ
ℓ+1
(
Bℓ+1,τ
kn ,Aℓ+1,τ

kn ,ω ℓ,τ
kn ,V

ℓ,τ
kn

)
, (69)

Aℓ,τ
in =

∑
k

(((
mℓ,τ

ki

)2
+σ ℓ,τ

ki

)
Γℓ,τ
kn −σ ℓ,τ

ki

(
gℓ,τkn

)2
)
, (70)

Bℓ,τ
in→k =

∑
k ′ ̸=k

mℓ,τ
k ′i→n g

ℓ,τ
k ′n→i, (71)

Gℓ,τ
ki =

∑
n

(((
x̂ℓ,τin

)2
+∆ℓ,τ

in

)
Γℓ,τ
kn −∆ℓ,τ

in

(
gℓ,τkn

)2
)
, (72)

15

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

Hℓ,τ
ki→n =

∑
n ′ ̸=n

x̂ℓ,τin ′→k g
ℓ,τ
kn ′→i. (73)

In these equations as well we abused the notation: calling L the number of hidden neuron layers, when
ℓ= L one should use φL+1(y,ω,V) from equation (23) instead of φL+1(B,A,ω,V).

A.4. BPI equations
The BP-Inspired algorithm (BPI) is obtained as an approximation of BP replacing some cavity quantities
with their non-cavity counterparts. What we obtain is a generalization of the single layer algorithm of
Baldassi et al (2007).

A.4.1. Forward pass

x̂ℓ,τin = ∂Bφ
ℓ
(
Bℓ,τ−1
in ,Aℓ,τ−1

in ,ω ℓ−1,τ
in ,Vℓ−1,τ

in

)
, (74)

∆ℓ,τ
in = ∂ 2

Bφ
ℓ
(
Bℓ,τ−1
in ,Aℓ,τ−1

in ,ω ℓ−1,τ
in ,Vℓ−1,τ

in

)
, (75)

mℓ,τ
ki = ∂Hψ

(
Hℓ,τ−1

ki ,Gℓ,τ−1
ki ,θ ℓki

)
, (76)

σ ℓ,τ
ki = ∂ 2

Hψ
(
Hℓ,τ−1

ki ,Gℓ,τ−1
ki ,θ ℓki

)
, (77)

Vℓ,τ
kn =

∑
i

((
mℓ,τ

ki

)2
∆ℓ,τ

in +σ ℓ,τ
ki

(
x̂ℓ,τin

)2
+σ ℓ,τ

ki ∆ℓ,τ
in

)
, (78)

ω ℓ,τ
kn =

∑
i

mℓ,τ
ki x̂ℓ,τin . (79)

A.4.2. Backward pass

gℓ,τkn→i = ∂ωφ
ℓ+1
(
Bℓ+1,τ
kn ,Aℓ+1,τ

kn ,ω ℓ,τ
kn −mℓ,τ

ki x̂ℓ,τai ,V
ℓ,τ
kn

)
, (80)

Γℓ,τ
kn =−∂ 2

ωφ
ℓ+1
(
Bℓ+1,τ
kn ,Aℓ+1,τ

kn ,ω ℓ,τ
kn ,V

ℓ,τ
kn

)
, (81)

Aℓ,τ
in =

∑
k

((
mℓ,τ

ki

)2
+σ ℓ,τ

ki

)
Γℓ,τ
kn −σ ℓ,τ

ki

(
gℓ,τkn

)2
, (82)

Bℓ,τ
in =

∑
k

mℓ,τ
ki gℓ,τkn→i, (83)

Gℓ,τ
ki =

∑
n

((
x̂ℓ,τin

)2
+∆ℓ,τ

in

)
Γℓ,τ
kn −∆ℓ,τ

in

(
gℓ,τkn

)2
, (84)

Hℓ,τ
ki =

∑
n

x̂ℓ,τin gℓ,τkn→i. (85)

A.5. MF equations
The mean-field (MF) equations are obtained as a further simplification of BPI, using only non-cavity
quantities. Although the simplification appears minimal at this point, we empirically observe a
non-negligible discrepancy between the two algorithms in terms of generalization performance and
computational time.

16

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

A.5.1. Forward pass

x̂ℓ,τin = ∂Bφ
ℓ
(
Bℓ,τ−1
in ,Aℓ,τ−1

in ,ω ℓ−1,τ
in ,Vℓ−1,τ

in

)
, (86)

∆ℓ,τ
in = ∂ 2

Bφ
ℓ
(
Bℓ,τ−1
in ,Aℓ,τ−1

in ,ω ℓ−1,τ
in ,Vℓ−1,τ

in

)
, (87)

mℓ,τ
ki = ∂Hψ

(
Hℓ,τ−1

ki ,Gℓ,τ−1
ki ,θ ℓki

)
, (88)

σ ℓ,τ
ki = ∂ 2

Hψ
(
Hℓ,τ−1

ki ,Gℓ,τ−1
ki ,θ ℓki

)
, (89)

Vℓ,τ
kn =

∑
i

((
mℓ,τ

ki

)2
∆ℓ,τ

in +σ ℓ,τ
ki (x̂ℓ,τin)2 +σ ℓ,τ

ki ∆ℓ,τ
in

)
, (90)

ω ℓ,τ
kn =

∑
i

mℓ,τ
ki x̂ℓ,τin . (91)

A.5.2. Backward pass

gℓ,τkn = ∂ωφ
ℓ+1
(
Bℓ+1,τ
kn ,Aℓ+1,τ

kn ,ω ℓ,τ
kn ,V

ℓ,τ
kn

)
, (92)

Γℓ,τ
kn =−∂ 2

ωφ
ℓ+1
(
Bℓ+1,τ
kn ,Aℓ+1,τ

kn ,ω ℓ,τ
kn ,V

ℓ,τ
kn

)
, (93)

Aℓ,τ
in =

∑
k

((
mℓ,τ

ki

)2
+σ ℓ,τ

ki

)
Γℓ,τ
kn −σ ℓ,τ

ki

(
gℓ,τkn

)2
, (94)

Bℓ,τ
in =

∑
k

mℓ,τ
ki gℓ,τkn , (95)

Gℓ,τ
ki =

∑
n

((
x̂ℓ,τin

)2
+∆ℓ,τ

in

)
Γℓ,τ
kn −∆ℓ,τ

in

(
gℓ,τkn

)2
, (96)

Hℓ,τ
ki =

∑
n

x̂ℓ,τin gℓ,τkn . (97)

A.6. Derivation of the AMP equations
In order to obtain the AMP equations, we approximate cavity quantities with non-cavity ones in the BP
equations equations (62)–(73) using a first order expansion. We start with the mean activation:

x̂ℓ,τin→k = ∂Bφ
ℓ
(
Bℓ,τ−1
in −mℓ,τ−1

ki→n gℓ,τ−1
kn→i ,A

ℓ,τ−1
in ,ω ℓ−1,τ

in ,Vℓ−1,τ
in

)
≈ ∂Bφ

ℓ
(
Bℓ,τ−1
in ,Aℓ,τ−1

in ,ω ℓ−1,τ
in ,Vℓ−1,τ

in

)
−mℓ,τ−1

ki→n gℓ,τ−1
kn→i ∂

2
Bφ

ℓ
(
Bℓ,τ−1
in ,Aℓ,τ−1

in ,ω ℓ−1,τ
in ,Vℓ−1,τ

in

)
≈ x̂ℓ,τin −mℓ,τ−1

ki gℓ,τ−1
kn ∆ℓ,τ

in . (98)

Analogously, for the weight’s mean we have:

mℓ,τ
ki→n = ∂Hψ

(
Hℓ,τ−1

ki − x̂ℓ,τ−1
in→k gℓ,τ−1

kn→i ,G
ℓ,τ−1
ki ,θ ℓki

)
≈ ∂Hψ

(
Hℓ,τ−1

ki ,Gℓ,τ−1
ki ,θ ℓki

)
− x̂ℓ,τ−1

in→k gℓ,τ−1
kn→i ∂

2
Hψ
(
Hℓ,τ−1

ki ,Gℓ,τ−1
ki ,θ ℓki

)
≈mℓ,τ

ki − x̂ℓ,τ−1
in gℓ,τ−1

kn σ ℓ,τ
ki . (99)

17

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

This brings us to:

ω ℓ,τ
kn =

∑
i

mℓ,τ
ki→n x̂

ℓ,τ
in→k

≈
∑
i

mℓ,τ
ki x̂ℓ,τin − gℓ,τ−1

kn

∑
i

σ ℓ,τ
ki x̂ℓ,τin x̂ℓ,τ−1

in − gℓ,τ−1
kn

∑
i

mℓ,τ
ki mℓ,τ−1

ki ∆ℓ,τ
in

+
(
gℓ,τ−1
kn

)2∑
i

σ ℓ,τ
ki mℓ,τ−1

ki x̂ℓ,τ−1
in ∆ℓ,τ

in . (100)

Let us now apply the same procedure to the other set of cavity messages:

gℓ,τkn→i = ∂ωφ
ℓ+1
(
Bℓ+1,τ
kn ,Aℓ+1,τ

kn ,ω ℓ,τ
kn −mℓ,τ

ki→n x̂
ℓ,τ
in→k,V

ℓ,τ
kn

)
≈ ∂ωφ

ℓ+1
(
Bℓ+1,τ
kn ,Aℓ+1,τ

kn ,ω ℓ,τ
kn ,V

ℓ,τ
kn

)
−mℓ,τ

ki→n x̂
ℓ,τ
in→k∂

2
ωφ

ℓ+1
(
Bℓ+1,τ
kn ,Aℓ+1,τ

kn ,ω ℓ,τ
kn ,V

ℓ,τ
kn

)
≈ gℓ,τkn +mℓ,τ

ki x̂ℓ,τin Γℓ,τ
kn , (101)

Bℓ,τ
in =

∑
k

mℓ,τ
ki→n g

ℓ,τ
kn→i

≈
∑
k

mℓ,τ
ki gℓ,τkn − x̂in

∑
k

(
gℓ,τkn

)2
σ ℓ,τ
ki + x̂ℓ,τin

∑
k

(
mℓ,τ

ki

)2
Γℓ,τ
kn

−
(
x̂ℓ,τin

)2∑
k

σ ℓ,τ
ki mℓ,τ

ki gℓ,τkn Γℓ,τ
kn , (102)

Hℓ,τ
ki =

∑
n

x̂ℓ,τin→k g
ℓ,τ
kn→i

≈
∑
n

x̂ℓ,τin gℓ,τkn +mℓ,τ
ki

∑
n

(
x̂ℓ,τin

)2
Γℓ,τ
kn −mℓ,τ

ki

∑
n

(
gℓ,τkn

)2
∆ℓ,τ

in

−
(
mℓ,τ

ki

)2∑
n

gℓ,τkn Γℓ,τ
kn ∆ℓ,τ

in x̂ℓ,τin . (103)

We are now able to write down the full AMP equations, that we present in the next section.

A.7. AMP equations
In summary, in the last section we derived the AMP algorithm as a closure of the BP messages passing over
non-cavity quantities, relying on some statistical assumptions on messages and interactions. With respect to
the MF message passing, we find some additional terms that go under the name of Onsager corrections.
In-depth overviews of the AMP (also known as Thouless-Anderson-Palmer (TAP)) approach can be found
in Zdeborová and Krzakala (2016), Mézard (2017), Gabrié (2020). The final form of the AMP equations for
the multi-layer perceptron is given below.

A.7.1. Initialization
At τ = 0:

Bℓ,0
in = 0, (104)

Aℓ,0
in = 0, (105)

Hℓ,0
ki = 0 or some values, (106)

Gℓ,0
ki = 0 or some values, (107)

gℓ,0kn = 0. (108)

18

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

A.7.2. Forward pass
At each τ = 1, . . . , τmax, for ℓ= 0, . . . ,L:

x̂ℓ,τin = ∂Bφ
ℓ
(
Bℓ,τ−1
in ,Aℓ,τ−1

in ,ω ℓ−1,τ
in ,Vℓ−1,τ

in

)
, (109)

∆ℓ,τ
in = ∂ 2

Bφ
ℓ
(
Bℓ,τ−1
in ,Aℓ,τ−1

in ,ω ℓ−1,τ
in ,Vℓ−1,τ

in

)
, (110)

mℓ,τ
ki = ∂Hψ

(
Hℓ,τ−1

ki ,Gℓ,τ−1
ki ,θ ℓki

)
, (111)

σ ℓ,τ
ki = ∂ 2

Hψ
(
Hℓ,τ−1

ki ,Gℓ,τ−1
ki ,θ ℓki

)
, (112)

Vℓ,τ
kn =

∑
i

((
mℓ,τ

ki

)2
∆ℓ,τ

in +σ ℓ,τ
ki

(
x̂ℓ,τi ′n

)2
+σ ℓ,τ

ki ∆ℓ,τ
in

)
, (113)

ω ℓ,τ
kn =

∑
i

mℓ,τ
ki x̂ℓ,τin − gℓ,τ−1

kn

∑
i

σ ℓ,τ
ki x̂ℓ,τin x̂ℓ,τ−1

in − gℓ,τ−1
kn

∑
i

mℓ,τ
ki mℓ,τ−1

ki ∆ℓ,τ
in

+
(
gℓ,τ−1
kn

)2∑
i

σ ℓ,τ
ki mℓ,τ−1

ki x̂ℓ,τ−1
in ∆ℓ,τ

in . (114)

A.7.3. Backward pass

gℓ,τkn = ∂ωφ
ℓ+1
(
Bℓ+1,τ
kn ,Aℓ+1,τ

kn ,ω ℓ,τ
kn→i,V

ℓ,τ
kn

)
, (115)

Γℓ,τ
kn =−∂ 2

ωφ
ℓ+1
(
Bℓ+1,τ
kn ,Aℓ+1,τ

kn ,ω ℓ,τ
kn ,V

ℓ,τ
kn

)
, (116)

Aℓ,τ
in =

∑
k

(((
mℓ,τ

ki

)2
+σ ℓ,τ

ki

)
Γℓ,τ
kn −σ ℓ,τ

ki

(
gℓ,τkn

)2
)
, (117)

Bℓ,τ
in =

∑
k

mℓ,τ
ki gℓ,τkn − x̂in

∑
k

(
gℓ,τkn

)2
σ ℓ,τ
ki + x̂ℓ,τin

∑
k

(
mℓ,τ

ki

)2
Γℓ,τ
kn

−
(
x̂ℓ,τin

)2∑
k

σ ℓ,τ
ki mℓ,τ

ki gℓ,τkn Γℓ,τ
kn , (118)

Gℓ,τ
ki =

∑
n

(((
x̂ℓ,τin

)2
+∆ℓ,τ

in

)
Γℓ,τ
kn −∆ℓ,τ

in

(
gℓ,τkn

)2
)
, (119)

Hℓ,τ
ki =

∑
n

x̂ℓ,τin gℓ,τkn +mℓ,τ
ki

∑
n

(
x̂ℓ,τin

)2
Γℓ,τ
kn −mℓ,τ

ki

∑
n

(
gℓ,τkn

)2
∆ℓ,τ

in

−
(
mℓ,τ

ki

)2∑
n

gℓ,τkn Γℓ,τ
kn ∆ℓ,τ

in x̂ℓ,τin . (120)

A.8. Activation functions
A.8.1. Sign
In most of our experiments we use sign activations in each layer. With this choice, the neuron’s free energy
(21) takes the form:

φ(B,A,ω,V) = log

1

2

∑
x∈{−1,+1}

eBxH
(
− xω√

V

)+
1

2
log(2πV), (121)

19

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

where

H=
1

2
erfc

(
x√
2

)
. (122)

Notice that for sign activations the messages A can be dropped.

A.8.2. ReLU
For ReLU(x) =max(0,x) activations the free energy (21) becomes:

φ(B,A,ω,V) =

ˆ
dxdz e−

1
2Ax

2+Bx δ(x−max(0,z)) e−
(ω−z) 2

2V (123)

= log

(
H

(
ω√
V

)
+

N (ω;B/A,V+ 1
A)

AN (B;0,A)
H

(
− BV+ω√

V+AV2

))
+

1

2
log(2πV), (124)

where

N (x;µ,Σ) =
1√
2πΣ

e−
(x−µ)2

2Σ . (125)

A.9. The ArgMax layer
In order to perform multi-class classification, we have to perform an argmax operation on the last layer of
the neural network. Call zk, for k= 1, . . . ,K, the Gaussian random variables output of the last layer of the
network in correspondence of some input x. Assuming the correct label is class k∗, the effective partition
function Zk∗ corresponding to the output constraint reads:

Zk∗ =

ˆ ∏
k

dzkN (zk;ωk,Vk)
∏
k ̸=k∗

Θ(zk∗ − zk), (126)

=

ˆ
dzk∗ N (zk∗ ;ωk∗ ,Vk∗)

∏
k ̸=k∗

H
(
− zk∗ −ωk√

Vk

)
, (127)

hereΘ(x) is the Heaviside indicator function and we used the definition ofH from equation (122). The
integral on the last line cannot be expressed analytically, therefore we have to resort to approximations.

A.9.1. Approach 1: Jensen inequality
Using the Jensen inequality we obtain:

ϕk∗ = logZk∗ = logEz∼N (ωk∗ ,Vk∗)

∏
k ̸=k∗

H
(
− z−ωk√

Vk

)
, (128)

⩾
∑
k̸=k∗

Ez∼N (ωk∗ ,Vk∗) logH
(
− z−ωk√

Vk

)
. (129)

Reparameterizing the expectation we have:

ϕ̃k∗ =
∑
k ̸=k∗

Eϵ∼N (0,1) logH
(
−ωk∗ + ϵ

√
Vk∗ −ωk√
Vk

)
. (130)

The derivative ∂ωk ϕ̃k∗ and ∂
2
ωk
ϕ̃k∗ that we need can then be estimated by sampling (once) ϵ:

∂ωk ϕ̃k∗ =


− 1√

Vk
Eϵ∼N (0,1)K

(
−ωk∗+ϵ

√
Vk∗−ωk√
Vk

)
k ̸= k∗∑

k ′ ̸=k∗
1√
Vk ′

Eϵ∼N (0,1)K
(
−ωk∗+ϵ

√
Vk∗−ωk ′√
Vk ′

)
k= k∗,

(131)

where we have defined:

K(x) =
N (x)

H(x)
=

√
2/π

erfcx(x/2)
. (132)

20

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

Figure 6.MLP with 2 hidden layers with 101 hidden units each, batch-size 128 on the Fashion-MNIST dataset. In the first two
layers we use the BP equations, while in the last layer the ArgMax ones. (Left) ArgMax layer first version; (Right) ArgMax layer
second version. Even if it is possible to reach similar accuracies with the two versions, we decide to use the first one as it is simpler
to use.

A.9.2. Approach 2: Jensen again
A further simplification is obtained by applying Jensen inequality again to (130) but in the opposite
direction, therefore we renounce to having a bound and look only for an approximation. We have the new
effective free energy:

ϕ̃k∗ =
∑
k ̸=k∗

logEϵ∼N (0,1)H
(
−ωk∗ + ϵ

√
Vk∗ −ωk√
Vk

)
, (133)

=
∑
k̸=k∗

logH
(
− ωk∗ −ωk√

Vk +Vk∗

)
. (134)

This gives, for k ̸= k∗:

∂ωk ϕ̃k∗ =


− 1√

Vk+Vk∗
K
(
− ωk∗−ωk√

Vk+Vk∗

)
k ̸= k∗∑

k ′ ̸=k∗
1√

Vk ′+Vk∗
K
(
− ωk∗−ωk ′√

Vk ′+Vk∗

)
k= k∗

. (135)

Notice that ∂ωk∗ ϕ̃k∗ =−
∑

k̸=k∗ ∂ωk ϕ̃k∗ . In last formulas we used the definition of K in equation (132).
We show in figure 6 the negligible difference between the two ArgMax versions when using BP on the

layers before the last one (which performs only the ArgMax).

Appendix B. Experimental details

B.1. Hyper-parameters of the BP-based scheme
We include here a complete list of the hyper-parameters present in the BP-based algorithms. Notice that, like
in the SGD type of algorithms, many of them can be fixed or it is possible to find a prescription for their
value that works in most cases. However, we expect future research to find even more effective values of the
hyper-parameters, in the same way it has been done for SGD. These hyper-parameters are: the mini-batch
size bs; the parameter ρ (that has to be tuned similarly to the learning rate in SGD); the damping parameter
α (that performs a running smoothing on the BP fields along the dynamics by adding a fraction of the field
at the previous iteration, see equations (136) and (137)); the initialization coefficient ϵ that we use to to
sample the parameters of our prior distribution qθ(W) according to θ ℓ,t=0

ki ∼ ϵN (0,1). Different choices of ϵ
correspond to different initial distribution of the weights’ magnetizationmℓ

ki = tanh(θ ℓki), as is shown in
figure 7); the number of internal steps of reinforcement τmax and the associated intensity of the internal
reinforcement r. The performances of the BP-based algorithms are robust in a reasonable range of these
hyper-parameters. A more principled choice of a good initialization condition could be made by adapting
the technique from Stamatescu et al (2020).

Notice that among these parameters, the BP dynamics at each layer is mostly sensitive to ρ and α, so that
in general we consider them layer-dependent. See appendix B.7 for details on the effect of these parameters

21

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

Figure 7. Initial distribution of the magnetizations varying the parameter ϵ. The initial distribution is more concentrated around
±1 as ϵ increases (i.e. it is more bimodal and the initial configuration is more polarized).

on the learning dynamics and on layer polarization (i.e. how the BP dynamics tends to bias the weights
towards a single point-wise configuration with high probability). Unless otherwise stated we fix some of the
hyper-parameters, in particular: bs= 128 (results are consistent with other values of the batch-size, from
bs= 1 up to bs= 1024 in our experiments), ϵ= 1.0, τmax = 1, r= 0.

B.2. Damping scheme for the message passing
We use a damping parameter α ∈ (0,1) to stabilize the training, changing the updated rule for the weights’
means as follows:

m̃ℓ,τ
ki = ∂Hψ

(
Hℓ,τ−1

ki ,Gℓ,τ−1
ki ,θ ℓki

)
, (136)

mℓ,τ
ki = αmℓ,τ−1

ki +(1−α)m̃ℓ,τ
ki . (137)

B.3. Architectures
In the experiments in which we vary the architecture (see section 4.1), all simulations of the BP-based
algorithms use a number of internal reinforcement iterations τmax = 1. Learning is performed on the totality
of the training dataset, the batch-size is bs= 128, the initialization coefficient is ϵ= 1.0.

For all architectures and all BP approximations, we use α= 0.8 for each layer, apart for the 501-501-501
MLP in which we use α= (0.1,0.1,0.1,0.9). Concerning the parameter ρ, we use ρ= 0.9 on the last layer for
all architectures and BP approximations. On the other layers we use: for the 101-101 and the 501-501 MLPs,
ρ= 1.0001 for all BP approximations; for the 101-101-101 MLP, ρ= 1.0 for BP and AMP while ρ= 1.001 for
MF; for the 501-501-501 MLP ρ= 1.0001 for all BP approximations. For the BinaryNet simulations, the
learning rate is lr= 10.0 for all MLP architectures, giving the better performance among the learning rates we
have tested, lr= 100,10,1,0.1,0.001.

We notice that while we need some tuning of the hyper-parameters to reach the performances of
BinaryNet, it is possible to fix them across datasets and architectures (e.g. ρ= 1 and α= 0.8 on each layer)
without in general losing more than 20% (relative) of the generalization performances, demonstrating that
the BP-based algorithms are effective for learning also with minimal hyper-parameter tuning.

The experiments on the Bayesian error are performed on a MLP with 2 hidden layers of 101 units on the
MNIST dataset (binary classification). Learning is performed on the totality of the training dataset, the
batch-size is bs= 128, the initialization coefficient is ϵ= 1.0. In order to find the pointwise configurations we
use α= 0.8 on each layer and ρ= (1.0001,1.0001,0.9), while to find the Bayesian ones we use α= 0.8 on
each layer and ρ= (0.9999,0.9999,0.9) (these value prevent an excessive polarization of the network towards
a particular pointwise configurations).

For the continual learning task (see section 4.6) we fixed ρ= 1 and α= 0.8 on each layer as we
empirically observed that polarizing the last layer helps mitigating the forgetting while leaving the single-task
performances almost unchanged.

In figure 8 we report training curves on architectures different from the ones reported in the main paper.

22

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

Figure 8. Training curves of message passing algorithms compared with BinaryNet on the Fashion-MNIST dataset (multi-class
classification). (Left) Binary MLP with 2 hidden layers of 101 units. (Right) Binary MLP with 4 hidden layers of 501 units. The
batch-size is 128 and curves are averaged over 5 realizations of the initial conditions.

Table 2. Train error (%) on Fashion-MNIST of a multilayer perceptron with two hidden layers of 501 units each for BinaryNet
(baseline), BP, AMP and MF. All algorithms are trained with batch-size 128 and for 100 epochs. Mean and standard deviations are
calculated over five random initializations.

Dataset BinaryNet BP AMP MF

MNIST (2 classes) 0.05± 0.05 0.0± 0.0 0.0± 0.0 0.0± 0.0
FashionMNIST (2 classes) 0.3± 0.1 0.06± 0.01 0.06± 0.01 0.09± 0.01
CIFAR10 (2 classes) 1.2± 0.5 0.37± 0.01 0.4± 0.1 0.9± 0.2
MNIST 0.09± 0.01 0.12± 0.01 0.12± 0.01 0.03± 0.01
FashionMNIST 4.0± 0.5 3.4± 0.1 3.7± 0.1 2.5± 0.2
CIFAR10 13.0± 0.9 4.7± 0.1 4.7± 0.2 9.2± 0.5

B.4. Varying the dataset
When varying the dataset (see section 4.3), all simulation of the BP-based algorithms use a number of
internal reinforcement iterations τmax = 1. Learning is performed on the totality of the training dataset, the
batch-size is bs= 128, the initialization coefficient is ϵ= 1.0. For all datasets (MNIST (2 classes),
FashionMNIST (2 classes), CIFAR-10 (2 classes), MNIST, FashionMNIST, CIFAR-10) and all algorithms (BP,
AMP, MF) we use ρ= (1.0001,1.0001,0.9) and α= 0.8 for each layer. Using in the first layers values of
ρ= 1+ ϵ with ϵ⩾ 0 and sufficiently small typically leads to good results.

For the BinaryNet simulations, the learning rate is lr= 10.0 (both for binary classification and
multi-class classification), giving the better performance among the learning rates we have tested,
lr= 100,10,1,0.1,0.001. In table 2 we report the final train errors obtained on the different datasets.

B.5. SGD implementation (BinaryNet)
We compare the BP-based algorithms with SGD training for neural networks with binary weights and
activations as introduced in BinaryNet (Hubara et al 2016). This procedure consists in keeping a continuous
version of the parameters w which is updated with the SGD rule, with the gradient calculated on the
binarized configuration wb = sign(w). At inference time the forward pass is calculated with the parameters
wb. The backward pass with binary activations is performed with the so called straight-through estimator.

Our implementation presents some differences with respect to the original proposal of the algorithm in
Hubara et al (2016), in order to keep the comparison as fair as possible with the BP-based algorithms, in
particular for what concerns the number of parameters. We do not use biases nor batch normalization layers,
therefore in order to keep the pre-activations of each hidden layer normalized we rescale them by 1√

N
where

N is the size of the previous layer (or the input size in the case of the pre-activations afferent to the first
hidden layer). The standard SGD update rule is applied (instead of Adam), and we use the binary
cross-entropy loss. Clipping of the continuous configuration w in [−1,1] is applied. We use Xavier
initialization (Glorot and Bengio 2010) for the continuous weights. In figure 3. of the main paper, we apply
the Adam optimization rule, noticing that it performs slightly better in train and test generalization
performance compared to the pure SGD one.

23

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

Figure 9. (Right panels) Polarizations qdiag and overlaps qoff on each layer of a MLP with 2 hidden layers of 501 units on the
Fashion-MNIST dataset (multi-class), the batch-size is bs= 128. (Right) Corresponding train and test error curves.

B.6. EBP implementation
Expectation back propagation (EBP) (Soudry et al 2014b) is parameter-free Bayesian algorithm that uses a
mean-field (MF) approximation (fully factorized form for the posterior) in an online environment to
estimate the Bayesian posterior distribution after the arrival of a new data point. The main differences
between EBP and our approach relies in the approximation for the posterior distribution. Moreover we
explicitly base the estimation of the marginals on the local high entropy structure. The fact that EBP works
has no clear explanation: certainly it cannot be that the MF assumption holds for multi-layer neural
networks. Still, it is certainly very interesting that it works. We argue that it might work precisely by virtue of
the existence of high local entropy minima and expect it to give similar performance to the MF case of our
algorithm. The online iteration could in fact be seen as way of implementing a reinforcement.

We implemented the EBP code along the lines of the original matlab implementation
(https://github.com/ExpectationBackpropagation/EBP_Matlab_Code). In order to perform a fair
comparison we removed the biases both in the binary and continuous weights versions. It is worth noticing
that we faced numerical issues in training with a moderate to big batchsize All the experiments were
consequently limited to a batchsize of 10 patterns.

B.7. Unit polarization and overlaps
We define the self-overlap or polarization of a given hidden unit k as qk =

1
N

∑
i⟨wki⟩2, where N is the

number of parameters of the unit, {wki}Ni=1 its binary weights, and the ⟨wki⟩ the mean according to the
posterior. It quantifies how much the unit is polarized towards a unique point-wise binary configuration
(qk = 1 corresponding to full polarization). The overlap between two units k and k

′
in the same layer is

qkk ′ = 1
N

∑
⟨wki⟩⟨wk ′i⟩. We denote by qdiag =

1
Nout

∑Nout

k=1 qk and qoff =
2

Nout(Nout−1)

∑Nout

k<k ′ qkk ′ the mean
polarization and mean overlap in a given layer. We mention that a replica computation corresponding to this
model would involve the overlaps qabkk ′ where a and b are replica indexes. Within a replica symmetric
assumption, qabkk ′ with a ̸= b corresponds to the qkk ′ defined above.

The parameters ρ and α govern the dynamical evolution of the polarization of each layer during training.
A value ρ⪆ 1 has the effect to progressively increase the units polarization during training, while ρ< 1
disfavours it. The damping α which takes values in [0,1] has the effect to slow the dynamics by a smoothing
process (the intensity of which depends on the value of α), generically favoring convergence. Given the
nature of the updates in algorithm 1, each layer presents its own dynamics given the values of ρℓ and αℓ at
layer ℓ, that in general can differ from each other.

We find that it is is beneficial to control the polarization layer-per-layer, see figure 9 for the
corresponding typical behavior of the mean polarization and the mean overlaps during training. Empirically,
we have found that (as we could expect) when training is successful the layers polarize progressively towards
qk = 1, i.e. towards a precise point-wise solution, while the overlaps between units in each hidden layer are
such that qkk ′ ≪ 1 (indicating low redundancy of the units). To this aim, in most cases αℓ can be the same

24

https://github.com/ExpectationBackpropagation/EBP_Matlab_Code

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

Figure 10. Algorithms time scaling with the batch-size on a MLP with 2 hidden layers of 501 hidden units each on the
Fashion-MNIST dataset (multi-class classification). The reported time (in seconds) refers to one epoch for each algorithm.

for each layer, while tuning ρℓ for each layer allows to find better generalization performances in some cases
(but is not strictly necessary for learning).

In particular, it is possible to use the same value ρℓ for each layer before the last one (ℓ < L where L is the
number of layers in the network), while we have found that the last layer tends to polarize immediately
during the dynamics (probably due to its proximity to the output constraints). Empirically, it is usually
beneficial for learning that this layer does not or only slightly polarize, i.e. ⟨q0 ⟩ ≪ 1 (this can be achieved by
imposing ρL < 1). Learning is anyway possible even when the last layer polarizes towards ⟨q0 ⟩= 1 along the
dynamics, i.e. by choosing ρL sufficiently large.

As a simple general prescription in most experiments we can fix α= 0.8 and ρL = 0.9, therefore leaving
ρℓ<L as the only hyper-parameter to be tuned, akin to the learning rate in SGD. Its value has to be very close
to 1.0 (a value smaller than 1.0 tends to depolarize the layers, without focusing on a particular point-wise
binary configuration, while a value greater than 1.0 tends to lead to numerical instabilities and parameters’
divergence).

B.8. Computational performance: varying batch-size
In order to compare the time performances of the BP-based algorithms with our implementation of
BinaryNet, we report in figure 10 the time in seconds taken by a single epoch of each algorithm in function of
the batch-size, on a MLP of 2 layers of 501 units on Fashion-MNIST. We test both algorithms on a NVIDIA
GeForce RTX 2080 Ti GPU. Multi-class and binary classification present a very similar time scaling with the
batch-size, in both cases comparable with BinaryNet. Let us also notice that BP-based algorithms are able to
reach generalization performances comparable to BinaryNet for all the values of the batch-size reported in
this section.

ORCID iD

Carlo Lucibello https://orcid.org/0000-0003-0837-9783

25

https://orcid.org/0000-0003-0837-9783
https://orcid.org/0000-0003-0837-9783

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

References

Abbott M, Aluthge D, N3N5, Schaub S, Lucibello C, Elrod C and Chen J 2021 Tullio.jl julia package (available at: https://github.com/
mcabbott/Tullio.jl)

Aljundi R, Babiloni F, Elhoseiny M, Rohrbach M and Tuytelaars T 2018 Memory aware synapses: learning what (not) to forget Proc.
European Conf. on Computer Vision (ECCV) pp 139–54

Ardakani A, Condo C and Gross W J 2017 Sparsely-connected neural networ VLSI implementation of deep neural networks 5th Int.
Conf. on Learning Representations, ICLR 2017, Conf. Track Proc. (Toulon, France, 24–26 April 2017) (available at: OpenReview.net)

Aubin B, Loureiro B, Maillard A, Krzakala F and Zdeborová L 2021 The spiked matrix model with generative priors IEEE Trans. Inf.
Theory 67 1156–81

Baldassi C, Borgs C, Chayes J T, Ingrosso A, Lucibello C, Saglietti L and Zecchina R 2016 Unreasonable effectiveness of learning neural
networks: from accessible states and robust ensembles to basic algorithmic schemes Proc. Natl Acad. Sci. 113 E7655–62

Baldassi C, Braunstein A, Brunel N and Zecchina R 2007 Efficient supervised learning in networks with binary synapses Proc. Natl Acad.
Sci. 104 11079–84

Baldassi C, Gerace F, Lucibello C, Saglietti L and Zecchina R 2016 Learning may need only a few bits of synaptic precision Phys. Rev. E
93 052313

Baldassi C, Ingrosso A, Lucibello C, Saglietti L and Zecchina R 2015 Subdominant dense clusters allow for simple learning and high
computational performance in neural networks with discrete synapses Phys. Rev. Lett. 115 128101

Baldassi C, Pittorino F and Zecchina R 2020 Shaping the learning landscape in neural networks around wide flat minima Proc. Natl
Acad. Sci. 117 161–70

Barbier J, Krzakala F, Macris N, Miolane Leo and Zdeborová L 2019 Optimal errors and phase transitions in high-dimensional
generalized linear models Proc. Natl Acad. Sci. 116 5451–60

Bethe H 1935 Statistical theory of superlattices Proc. R. Soc. A 150 552
Braunstein A and Zecchina R 2006 Learning by message passing in networks of discrete synapses Phys. Rev. Lett. 96 030201
Chaudhari P, Choromanska A, Soatto S, LeCun Y, Baldassi C, Borgs C, Chayes J T, Sagun L and Zecchina R 2017 Entropy-sgd: biasing

gradient descent into wide valleys 5th Int. Conf. on Learning Representations, ICLR 2017, Conf. Track Proc. (Toulon, France, 24–26
April 2017) (available at: OpenReview.net)

Diffenderfer J and Kailkhura B 2021 Multi-prize lottery ticket hypothesis: finding accurate binary neural networks by pruning a
randomly weighted network Int. Conf. on Learning Representations

Donoho D L, Maleki A and Montanari A 2009 Message-passing algorithms for compressed sensing Proc. Natl Acad. Sci. 106 18914–9
Feng Y and Tu Y 2021 The inverse variance–flatness relation in stochastic gradient descent is critical for finding flat minima Proc. Natl

Acad. Sci. 118 e2015617118
Fletcher A K, Rangan S and Schniter P 2018 Inference in deep networks in high dimensions 2018 IEEE Int. Symp. on Information Theory

(ISIT) (IEEE) pp 1884–8
Frankle J, Dziugaite G K, Roy D and Carbin M 2021 Pruning neural networks at initialization: why are we missing the mark? Int. Conf.

on Learning Representations
Fusi S, Drew P J and Abbott L F 2005 Cascade models of synaptically stored memories Neuron 45 599–611
Gabrié M 2020 Mean-field inference methods for neural networks J. Phys. A: Math. Theor. 53 223002
Gabrie M, Manoel, A Luneau C, Barbier J, Macris N, Krzakala F and Zdeborova L 2019 Entropy and mutual information in models of

deep neural networks J. Stat. Mech. 2019 124014
Gallager R 1962 Low-density parity-check codes IRE Trans. Inf. Theory 8 21–28
Garipov T, Izmailov P, Podoprikhin D, Vetrov D P and Wilson A G 2018 Loss surfaces, mode connectivity and fast ensembling of dnns

Advances in Neural Information Processing Systems vol 31, ed S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi and
R Garnett (Red Hook, NY: Curran Associates)

Glorot X and Bengio Y 2010 Understanding the difficulty of training deep feedforward neural networks Proc. 13th Int. Conf. on Artificial
Intelligence and Statistics (Proc. Machine Learning Research) vol 9, ed Y W Teh and M Titterington (Sardinia: PMLR) pp 249–56

Goldt S, Mézard M, Krzakala F and Zdeborová L 2020 Modeling the influence of data structure on learning in neural networks: the
hidden manifold model Phys. Rev. X 10 041044

Goodfellow I J, Mirza M, Xiao D, Courville A and Bengio Y 2013 An empirical investigation of catastrophic forgetting in gradient-based
neural networks (arXiv:1312.6211)

Han S, Mao H and Dally W J 2016 Deep compression: compressing deep neural network with pruning, trained quantization and
huffman coding 4th Int. Conf. on Learning Representations, ICLR 2016, Conf. Track Proc. (San Juan, Puerto Rico, 2–4 May 2016)
ed Y Bengio and Y LeCun

Hernández-Lobato Je M and Adams R P 2015 Probabilistic backpropagation for scalable learning of bayesian neural networks Proc. 32nd
Int. Conf. on Int. Conf. on Machine Learning (ICML’15) vol 37 pp 1861–9 (available at: JMLR.org)

Hubara I, Courbariaux M, Soudry D, El-Yaniv R and Bengio Y 2016 Binarized neural networks Advances in Neural Information
Processing Systems vol 29, ed D Lee, M Sugiyama, U Luxburg, I Guyon and R Garnett (Red Hook, NY: Curran Associates)

Jiang Y, Neyshabur B, Mobahi H, Krishnan D and Bengio S 2020 Fantastic generalization measures and where to find them Int. Conf. on
Learning Representations

Kabashima Y, Krzakala F, Mézard M, Sakata A and Zdeborová L 2016 Phase transitions and sample complexity in bayes-optimal matrix
factorization IEEE Trans. Inf. Theory 62 4228–65

Kirkpatrick J et al 2017 Overcoming catastrophic forgetting in neural networks Proc. Natl Acad. Sci. 114 3521–6
Kuck J, Chakraborty S, Tang H, Luo R, Song J, Sabharwal A and Ermon S 2020 Belief propagation neural networks Advances in Neural

Information Processing Systems vol 33, ed H Larochelle, M Ranzato, R Hadsell, M F Balcan and H Lin (Red Hook, NY: Curran
Associates) pp 667–78

Laborieux A, Ernoult M, Hirtzlin T and Querlioz D 2021 Synaptic metaplasticity in binarized neural networks Nat. Commun. 12 2549
Li H, Xu Z, Taylor G, Studer C and Goldstein T 2018 Visualizing the loss landscape of neural nets Advances in Neural Information

Processing Systems vol 31, ed S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi and R Garnett (Red Hook, NY:
Curran Associates)

Liu Z, Shen Z, Li S, Helwegen K, Huang D and Cheng K-T 2021 How do adam and training strategies help bnns optimization Proc. 38th
Int. Conf. on Machine Learning (Proc. Machine Learning Research, 18–24 July 2021) vol 139, ed MMeila and T Zhang (PMLR) pp
6936–46

26

https://github.com/mcabbott/Tullio.jl
https://github.com/mcabbott/Tullio.jl
https://OpenReview.net/
https://doi.org/10.1109/TIT.2020.3033985
https://doi.org/10.1109/TIT.2020.3033985
https://doi.org/10.1073/pnas.1608103113
https://doi.org/10.1073/pnas.1608103113
https://doi.org/10.1073/pnas.0700324104
https://doi.org/10.1073/pnas.0700324104
https://doi.org/10.1103/PhysRevE.93.052313
https://doi.org/10.1103/PhysRevE.93.052313
https://doi.org/10.1103/PhysRevLett.115.128101
https://doi.org/10.1103/PhysRevLett.115.128101
https://doi.org/10.1073/pnas.1908636117
https://doi.org/10.1073/pnas.1908636117
https://doi.org/10.1073/pnas.1802705116
https://doi.org/10.1073/pnas.1802705116
https://doi.org/10.1098/rspa.1935.0122
https://doi.org/10.1098/rspa.1935.0122
https://doi.org/10.1103/PhysRevLett.96.030201
https://doi.org/10.1103/PhysRevLett.96.030201
https://OpenReview.net/
https://doi.org/10.1073/pnas.0909892106
https://doi.org/10.1073/pnas.0909892106
https://doi.org/10.1073/pnas.2015617118
https://doi.org/10.1073/pnas.2015617118
https://doi.org/10.1016/j.neuron.2005.02.001
https://doi.org/10.1016/j.neuron.2005.02.001
https://doi.org/10.1088/1751-8121/ab7f65
https://doi.org/10.1088/1751-8121/ab7f65
https://doi.org/10.1088/1742-5468/ab3430
https://doi.org/10.1088/1742-5468/ab3430
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1103/physrevx.10.041044
https://doi.org/10.1103/physrevx.10.041044
https://arxiv.org/abs/1312.6211
https://JMLR.org/
https://doi.org/10.1109/TIT.2016.2556702
https://doi.org/10.1109/TIT.2016.2556702
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1038/s41467-021-22768-y
https://doi.org/10.1038/s41467-021-22768-y

Mach. Learn.: Sci. Technol. 3 (2022) 035005 C Lucibello et al

Maillard A, Krzakala F, Mézard M and Zdeborová L 2021 Perturbative construction of mean-field equations in extensive-rank matrix
factorization and denoising (arXiv:2110.08775)

Manoel A, Krzakala F, Mézard M and Zdeborová L 2017 Multi-layer generalized linear estimation 2017 IEEE Int. Symp. on Information
Theory (ISIT) pp 2098–102

Manoel A, Krzakala F, Tramel E W and Zdeborová L 2017 Streaming bayesian inference: theoretical limits and mini-batch approximate
message-passing 2017 55th Annual Allerton Conf. on Communication, Control and Computing (Allerton) pp 1048–55

McCloskey M and Cohen N J 1989 Catastrophic interference in connectionist networks: the sequential learning problem The Psychology
of Learning and Motivation vol 24 (Amsterdam: Elsevier) pp 109–65

Mézard M 2017 Mean-field message-passing equations in the hopfield model and its generalizations Phys. Rev. E 95 022117
Mézard M and Montanari A 2009 Information, Physics and Computation (Oxford, NY: Oxford University Press)
Mézard M, Parisi G and Virasoro M A 1987 Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications

vol 9 (Singapore: World Scientific)
Minka T P 2001 Expectation propagation for approximate bayesian inference Proc. 17th Conf. on Uncertainty in Artificial Intelligence

(UAI’01) (San Francisco, CA) (Morgan Kaufmann Publishers) pp 362–9
Parker J T, Schniter P, and Cevher V 2013 Bilinear generalized approximate message passing CoRR (arXiv:1310.2632)
Parker J T, Schniter P and Cevher V 2014 Bilinear generalized approximate message passing-part I: derivation IEEE Trans. Signal Process.

62 5839–53
Pearl J 1982 Reverend Bayes on inference engines: a distributed hierarchical approach (Cognitive Systems Laboratory, School of

Engineering and Applied Science)
Peierls R 1936 On ising’s model of ferromagnetismMath. Proc. Camb. Phil. Soc. 32 477–81
Pittorino F, Lucibello C, Feinauer C, Perugini G, Baldassi C, Demyanenko E and Zecchina R 2021 Entropic gradient descent algorithms

and wide flat minima Int. Conf. on Learning Representations
Rangan S, Schniter P and Fletcher A K 2019 Vector approximate message passing IEEE Trans. Inf. Theory 65 6664–84
Rao R P N 2007 Neural models of Bayesian belief propagation Bayesian Brain: Probabilistic Approaches to Neural Coding (Cambridge,

MA: MIT Press) pp 239–67
Robins A 1995 Catastrophic forgetting, rehearsal and pseudorehearsal Connect. Sci. 7 123–46
Satorras V G and Welling M 2021 Neural enhanced belief propagation on factor graphs Int. Conf. on Artificial Intelligence and Statistics

(PMLR) pp 685–93
Soudry D, Hubara I and Meir R 2014 Expectation backpropagation: parameter-free training of multilayer neural networks with

continuous or discrete weights Advances in Neural Information Processing Systems vol 1 p 2
Soudry D, Hubara I and Meir R 2014 Expectation backpropagation: parameter-free training of multilayer neural networks with

continuous or discrete weights Advances in Neural Information Processing Systems vol 27, ed Z Ghahramani, MWelling, C Cortes,
N Lawrence and K QWeinberger (Red Hook, NY: Curran Associates)

Stamatescu G, Gerace F, Lucibello C, Fuss I and White L B 2020 Critical initialisation in continuous approximations of binary neural
networks (available at: https://openreview.net/forum?id=rylmoxrFDH)

Sung Y-L, Nair V and Raffel C 2021 Training neural networks with fixed sparse masks (arXiv:2111.09839)
Tung F and Mori G 2018 Clip-q: deep network compression learning by in-parallel pruning-quantization 2018 IEEE/CVF Conf. on

Computer Vision and Pattern Recognition pp 7873–82
Wu A, Nowozin S, Meeds E, Turner R E, Hernandez-Lobato J M and Gaunt A L 2018 Deterministic variational inference for robust

bayesian neural networks (arXiv:1810.03958)
Yedidia J S, Freeman W T and Weiss Y 2003 Understanding belief propagation and its generalizations Exploring Artificial Intelligence in

the New Millennium (San Francisco, CA: Morgan Kaufmann Publishers) pp 239–69
Zdeborová L and Krzakala F 2016 Statistical physics of inference: thresholds and algorithms Adv. Phys. 65 453–552
Zenke F, Poole B and Ganguli S 2017 Continual learning through synaptic intelligence Int. Conf. on Machine Learning (PMLR)

pp 3987–95
Zou Q, Zhang H and Yang H 2021 Multi-layer bilinear generalized approximate message passing IEEE Trans. Signal Process. 69 4529–43

27

https://arxiv.org/abs/2110.08775
https://doi.org/10.1103/PhysRevE.95.022117
https://doi.org/10.1103/PhysRevE.95.022117
http://arxiv.org/abs/1310.2632
https://doi.org/10.1109/TSP.2014.2357776
https://doi.org/10.1109/TSP.2014.2357776
https://doi.org/10.1017/S0305004100019174
https://doi.org/10.1017/S0305004100019174
https://doi.org/10.1109/TIT.2019.2916359
https://doi.org/10.1109/TIT.2019.2916359
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
https://openreview.net/forum?id=rylmoxrFDH
https://arxiv.org/abs/2111.09839
https://arxiv.org/abs/1810.03958
https://doi.org/10.1080/00018732.2016.1211393
https://doi.org/10.1080/00018732.2016.1211393
https://doi.org/10.1109/TSP.2021.3100305
https://doi.org/10.1109/TSP.2021.3100305

	Deep learning via message passing algorithms based on belief propagation
	1. Introduction
	2. Related works
	3. Learning by message passing
	3.1. Posterior-as-Prior updates
	3.2. Inner message passing loop
	3.2.1. Meaning of messages
	3.2.2. Scalar free energies
	3.2.3. Start and end of message passing
	3.2.4. BP forward pass
	3.2.5. BP backward pass
	3.2.6. Computational complexity

	4. Numerical results
	4.1. Experiments across architectures
	4.2. Sparse layers
	4.3. Experiments across datasets
	4.4. Locally Bayesian error
	4.5. Local energy
	4.6. Continual learning

	5. Discussion and conclusions
	Appendix A. BP-based message passing algorithms
	A.1. Preliminary considerations
	A.1.1. Meaning of messages
	A.1.2. Scalar free energies
	A.1.3. Binary weights
	A.1.4. Start and end of message passing

	A.2. Derivation of the BP equations
	A.2.1. Factor-to-variable-W messages
	A.2.2. Factor-to-variable-x messages
	A.2.3. Variable-W-to-output-factor messages
	A.2.4. Variable-x-to-input-factor messages
	A.2.5. Variable-x-to-output-factor messages
	A.2.6. Wrapping it up

	A.3. BP equations
	A.3.1. Initialization
	A.3.2. Forward pass
	A.3.3. Backward pass

	A.4. BPI equations
	A.4.1. Forward pass
	A.4.2. Backward pass

	A.5. MF equations
	A.5.1. Forward pass
	A.5.2. Backward pass

	A.6. Derivation of the AMP equations
	A.7. AMP equations
	A.7.1. Initialization
	A.7.2. Forward pass
	A.7.3. Backward pass

	A.8. Activation functions
	A.8.1. Sign
	A.8.2. ReLU

	A.9. The ArgMax layer
	A.9.1. Approach 1: Jensen inequality
	A.9.2. Approach 2: Jensen again

	Appendix B. Experimental details
	B.1. Hyper-parameters of the BP-based scheme
	B.2. Damping scheme for the message passing
	B.3. Architectures
	B.4. Varying the dataset
	B.5. SGD implementation (BinaryNet)
	B.6. EBP implementation
	B.7. Unit polarization and overlaps
	B.8. Computational performance: varying batch-size

	References

