
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: SaraeeD@cardiff.ac.uk; 
 
 
 

Journal of Advances in Medicine and Medical Research 
 
33(5): 8-21, 2021; Article no.JAMMR.65476 
ISSN: 2456-8899  
(Past name: British Journal of Medicine and Medical Research, Past ISSN: 2231-0614,  
NLM ID: 101570965) 

 

 

Literature Review on Epidemiological Modelling, 
Spatial Modelling and Artificial Intelligence for 

COVID-19 
 

Danial Saraee1* and Charith Silva2 
 

1
School of Medicine, UHW Main Building, Heath Park, University of Cardiff, England. 

2School of Science, Engineering and Environment, University of Salford, England. 
 

Authors’ contributions 
 

This work was carried out in collaboration among both authors. Author DS designed the study, 
performed the data collection, analysis, interpretation and wrote the first draft of the manuscript. 

Author CS contributed on data analysis and interpretation. Author DS managed the literature 
searches. Both authors read and approved the final manuscript. 

 
Article Information 

 
DOI: 10.9734/JAMMR/2021/v33i530841 

Editor(s): 
(1) Dr.  Rameshwari Thakur, Muzaffarnagar Medical College, India. 

(2) Dr. Emin Umit Bagriacik, Gazi University, Turkey. 
(3) Dr. Syed Faisal Zaidi , King Saud bin Abdulaziz University for Health Sciences, Kingdom of Saudi Arabia. 

Reviewers: 
(1) Zakir Hussain, FELTP,Pakistan. 

(2) Jean Pierre NAMAHORO, China University of Geosciences, China. 
(3) R Kesavan, University of Jaffna, Sri Lanka. 

Complete Peer review History: http://www.sdiarticle4.com/review-history/65476 
 
 
 

Received 25 January 2021 
Accepted 07 March 2021 

Published 16 March 2021 

 
 

ABSTRACT 
 

Introduction: Following the outbreak of Coronavirus (COVID-19) in Wuhan, China in December 
2019, the World Health Organisation (WHO) has declared this infectious disease as a pandemic. 
Unlike previous infectious outbreaks such as Severe Acute Respiratory Syndrome (SARS) and 
Middle Eastern Respiratory syndrome (MERS), the high transmission rate of COVID-19 has 
resulted in worldwide spread. The countries with the highest recorded incidence and mortality rates 
are the US and UK. 
Rationale/Objective: This review will compare studies that have used epidemiological models for 
disease forecasting and other models that have identified sociodemographic factors associated 
with COVID-19. We will evaluate several models, from basic equation-based mathematical models 
to more advanced machine-learning ones. Our expectation is that by identifying high impact 
models used by policy makers and discussing their limitations, we can identify possible areas for 
future research. 

Review Article 
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Evidence Review: The bibliographic database google scholar was used to search keywords such 
as ‘COVID-19’, ‘epidemiological modelling’ and ‘machine learning’. We examined data review 
articles, research studies and government-released articles. 
Results: We identified that the current SEIR model used by the UK government lacked the spatial 
modelling to enable an accurate prediction of disease spread. We discussed that machine-learning 
systems which can identify high-risk groups can be used to establish the disparities in COVID-19 
death in BAME groups. We found that most of the data hungry AI models used were limited by the 
lack of datasets available. 
Conclusion: In conclusion, advances in AI methods for infectious disease have overcome 
challenges presented in mathematical models. Whilst limitations do exist, when optimised, these 
highly advanced models have a great potential in public health surveillance, particularly infectious 
disease transmission. 
 

 
Keywords: COVID-19; machine-learning; artificial intelligence; spatial modeling; epidemiological 

modeling. 
 

1. BACKGROUND 
 
Coronavirus disease 2019 (COVID-19) is caused 
by the severe acute respiratory syndrome 
Coronavirus 2 (SARS-CoV-2) and originated in 
the Wuhan, Hubei Province, China [1]. Since the 
first cases traced back to the Huanan wholesale 
seafood market, the deadly virus has spread 
worldwide with just under 110 million cases 
globally and approximately 2,434,048 COVID-19 
related death as of 18

th
 February 2021 [2]. 

Despite the development of several vaccines, 
challenges with widespread distribution and 
extensive herd immunity evince that efforts to 
minimise disease spread are still a global priority. 
As a result, data modelling and big data have 
become the forefront in the battle against 
COVID-19. By predicting disease spread, 
forecasting the effects of social distancing 
measures and identifying high-risk regions, these 
tools have the potential to protect the vulnerable 
population in both the current crisis and future 
disease outbreaks. 
 
The aim of this literature review is to identify the 
benefits and limitations of epidemiological 
models currently used in disease forecasting. In 
addition, we will discuss the current and future 
role of AI and machine learning in COVID-19 
epidemiology and future public health 
interventions. 
 

2. CURRENT EQUATION-BASED 
EPIDEMIOLOGICAL MODEL FOR 
COVID-19 

 
The most frequently used epidemiological model 
worldwide is the susceptible-exposed-infected-
removed (SEIR) epidemiological model. This 
compartmental model has been used to quantify 

transmission dynamics in order to derive 
epidemic curves and to observe the impact of 
control measures placed by the government. The 
SEIR model in short places a population in four 
different states: susceptible (S), exposed (E), 
infected (I), and recovered (R) at a given time 
(Fig. 1) [3]. Assuming the population is constant 
based on equal birth rates (α) and death rates 
(γ), the model predicts the number of individuals 
in each compartment by integrating differential 
equations formed [4]. The predictions assume 
that the whole population is considered 
susceptible (s). The rate at which a susceptible 
(S) individual enters the exposed (E) 
compartment is β, which is the number of 
contacts a susceptible individual has with 
infected individuals per unit time. These are 
dynamic numbers due to the variance of 
population patterns in the susceptible and 
infectious group. Social distancing intends to 
reduce the β value by limiting contact between 
susceptible and infectious individuals.  The rate 
at which an exposed individual becomes 
infectious is the average disease incubation time 
(ε-1), which is constant for a specific disease. 
Finally, the rate at which an infectious (I) 
individual enters the removed (R) compartment is 
the average duration of infection (γ) until the 
person has recovered or died. This number is 
intrinsic to the specific disease and remains 
constant. 
 

Using these equations from the SEIR model, the 
reproductive ratio (R0) can be produced (Fig. 1). 
 

 
 

The reproductive ratio indicates the average 
secondary infections arising from one infected 



person in an unvaccinated population initially free 
of disease [5]. This estimated R0 
and ubiquitously used by governments and WHO 
to measure the spread of disease and allow early 
strategy planning. In the UK, the R0

in the daily Coronavirus press conference 
updates. It is used as a quantitative 
measurement to determine when the virus 
transmissibility is low enough to ease lockdown 
restrictions [6]. Undoubtedly, the SEIR 
epidemiological model has been incredibly useful 
for government and policy makers worldwide to 
measure the effectiveness of control measures.
A review by The London School of Hygiene & 
Tropical Medicine (LSHTM) [7] discusses the use 
of the SEIR model by the UK government. The 
team analysed data from Wuhan and sim
control measures into the model. A limitation of 
the SEIR model is that contact between 
individuals is not considered, which is relevant in 
healthcare settings where workers are in close 
contact with confirmed cases. This can be 
overcome by an agent-based model, where 
 

 
Fig. 1.  SEIR epidemiological model of disease spread: This epidemiological model places a 

constant population in four categories. The model assumes that everyone in the population is 
susceptible from birth, therefore does not consider congenital immunity. The 

susceptible person is exposed is termed β, this depends on social distancing, population 
density and social behaviour. Those in the exposed category have the virus however are not 

able to transmit the virus. The time it takes an exposed per
ε and is an incubation period that remains constant for a specific virus. The average time for 

an infectious person to have recovered or died is termed γ. At each stage, individuals can 
enter the Dead phase (α) from natur

disease, a recovered individual can return to susceptible group at a rate of (
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A review by The London School of Hygiene & 

discusses the use 
of the SEIR model by the UK government. The 
team analysed data from Wuhan and simulated 
control measures into the model. A limitation of 
the SEIR model is that contact between 
individuals is not considered, which is relevant in 
healthcare settings where workers are in close 
contact with confirmed cases. This can be 

based model, where 

household and healthcare infrastructure 
domains can be incorporated into the model to 
provide explicit detail of disease transmission in 
these different settings. 

 
Another challenge faced is that the SEIR model 
assumes that the population recovered from the 
disease cannot become reinfected due to 
lifelong immunity. Whilst evidence from the Flu 
Watch cohort study shows reinfection from the 
same strain of coronavirus within the same 
season is highly unlikely, there is no robust data 
to support this [8].  In fact, diseases such as 
malaria and cholera show a waning of 
immunity after recovery from infection 
consideration of the somewhat limited evidence 
for lifelong immunity in recovered patients, 
the SEIR model must acknowledge the possibility 
of reinfection and thus all recovered 
individuals should return to the susceptible 
compartment after a given time ( ).
 

1.  SEIR epidemiological model of disease spread: This epidemiological model places a 
constant population in four categories. The model assumes that everyone in the population is 
susceptible from birth, therefore does not consider congenital immunity. The rate at which a 

susceptible person is exposed is termed β, this depends on social distancing, population 
density and social behaviour. Those in the exposed category have the virus however are not 

able to transmit the virus. The time it takes an exposed person to become infectious is termed 
ε and is an incubation period that remains constant for a specific virus. The average time for 

an infectious person to have recovered or died is termed γ. At each stage, individuals can 
enter the Dead phase (α) from natural causes. If lifelong immunity is not assumed with 

disease, a recovered individual can return to susceptible group at a rate of (
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A benefit of SEIR models is their adaptability. As 
such, many models have included additional 
features.  Lin et al. [10] for instance, included 
public risk perception and number of cumulative 
cases in the SEIR model [10]. Additional 
compartments can be added, for example, 
Giordano et al. [11] used a mean-field 
epidemiological model, known as SIDARTHE, 
encompassing susceptible (S), infected (I), 
diagnosed (D), ailing (A), recognized (R), 
threatened (T), healed (H) and extinct (E) 
categories [11]. This model detects the difference 
between undiagnosed and diagnosed infections 
whilst also distinguishing the severity of disease 
into life threatening and non-life threatening. This 
allows the model to determine the variation 
between the actual and perceived case fatality 
rate in order to identify discrepancies between 
the actual infection dynamics and the disease 
forecast projections. This model has been highly 
effective in presenting the epidemic curves of 
mortality and morbidity rates of COVID-19 in both 
symptomatic and asymptomatic individuals in 
different scenarios. These scenarios compared 
more lenient measures to stricter lockdown rules, 
as well as the effects of population-wide testing 
and contact tracing versus low testing and no 
contact tracing over 350 days. The study 
emphasized a limitation of using aggregated 
data; it cannot be supplemented with spatial 
modelling. The lack of incorporation of spatial 
modelling is also seen in SIR models and its 
predecessors such as the SEIR and SEIRS 
models.  This reduces the accuracy in tracking 
the spread of disease, especially in populated 
cities. Incorporating spatio- temporal domains is 
incredibly important in highly contagious 
diseases such as COVID-19. 

 
The spread of contagious diseases depends 
highly on the interactions of individuals in the 
population [12]. These interactions are 
dependent on geographic and social agents. The 
transmission of disease can be accurately 
forecasted if factors such as spatial distribution 
and mobility of individuals through geographical 
areas are incorporated. Implementing 
georeferenced GIS data layers and assimilating 
real landscapes with geospatial data provides 
more detail of the discrete interactions of 
individuals in realistic networks. Thus, providing 
a clearer picture of disease transmission [13]. An 
example of one such complex model is the 
previously described agent-based models, which 
track the progression of disease through each 
individual [12]. The model tracks individual 
movements in different social and geographic 

environments such as the workplace and 
incorporates daily activities such as the use of 
public transport in order to track contacts within 
geographic and social networks. This very model 
was used by Neil Ferguson, a mathematical 
epidemiologist at Imperial College London [14]. 
The paper published on 16th March 2020 used 
the same agent-based model used by the team 
in 2006 to reduce the impact of a potential flu-
pandemic [15]. The model assumes 
transmissions between susceptible and 
infectious individuals occur in the household, 
workplace, school and outer communities as 
these are places that have the highest contact 
time for disease transmission. Therefore, the 
individual simulation model uses travel data, 
population density data, census data containing 
household size, workplace densities and data on 
average school class size. The model predicted 
that a lack of government action would lead to 
510,000 deaths (R0 of 2.4) in the UK and 2.2 
million in the US. The model incorporated case 
isolation, social distancing and home quarantine 
scenarios which predicted significant reduction in 
the number of COVID-19 cases. These 
projections published by Ferguson and his team 
prompted the UK and US government to enforce 
lockdown rules [16]. Whilst the agent-based 
model reflects reality more than the equation-
based models, the agent-based model requires a 
high volume of social contact data, such as how 
people travel to work or where they go during 
their free time. 
 

A SEIR model was also used by the same 
Imperial university team which produced the 
similar results, with a US death rate of 2.18 
million compared to 2.2 million predicted with the 
agent-based model [17]. Both aforementioned 
models have benefits and limitations. The 
equation-based SEIR model is a quick and easy 
solution to disease modelling for a grouped 
population, whilst the agent-based model 
predicts individual contacts in a population which 
is complex and data hungry. 
 

2.1 Sociodemographic Factors Associa- 
ted with Infectious Disease 

 

As observed throughout history and the current 
pandemic, infectious disease does not 
discriminate and can affect anyone. However, 
sociodemographic factors, such as race, gender, 
age and poverty can result in disproportionate 
morbidity in certain groups. Recognising risk 
factors for increased mortality is important for 
protection of both high risk individuals and the 
wider community. 
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Table 1. Summary of studies reviewed 
 

Title Author(s) Advantages Disadvantages  
A Simulation of a COVID-19 
Epidemic Based on a 
Deterministic SEIR Model 

Carcione J et al. 
(2020)  

The model allows for inclusion of spatial diffusion 
of the virus for more accurate 2 dimensional 
estimation of disease spread  

Lacks extra compartments such as 
asymptomatic (A) and dead-infected (D).  

Dynamic Analysis of an SEIR 
Model with Distinct Incidence for 
Exposed and Infectives 

Prem K et al. (2020) Created synthetic contact matrices in order to 
incorporate location-specific physical distancing 
measures 

Does not consider increase individual 
contact in healthcare settings and 
school/work environment  
Does not assume population immunity in 
model  

A conceptual model for the 
coronavirus disease 2019 
(COVID-19) outbreak in Wuhan, 
China with individual reaction and 
governmental action. 

Lin Q et al. (2019) Used parameter estimates from 1918 flu 
pandemic which showed similar infection-fatality 
rate. Using these parameters allowed for time-
varying report rate- this provides high fitting 
performance. 

Transmission from asymptomatic groups 
not incorporated into the model.  

Modelling the COVID-19 
epidemic and implementation of 
population-wide interventions in 
Italy 

Giordano G et al. 
(2020) 

Model implements diagnosed vs non-diagnosed 
infected cases which highlights the difference 
between actual infection dynamic versus 
predicted.  

The model overestimated the number of 
patients with symptoms or life-threatening 
symptoms because the average infected 
individual was younger and may not show 
symptoms  

An agent-based approach for 
modelling dynamics of 
contagious disease spread 

Perez L, et al. (2009) The model shows the progression of disease 
through each individual, taking into account the 
interaction between individuals in different 
environmente via GIS data layers. This allows 
for more accurate disease dynamic predictions 

Not all the population is considered in the 
model due to limited memory space. This 
may underestimate individual contacts.  
 
Model validation in geographical data is 
limited  

Spatiotemporal Infectious 
Disease Modelling 

Angulo J et al. 
(2009) 

Infectious disease data is highly sparse. This 
model benefits by a state-space model with 
disease data of different certainties in order to 
produce real-time disease estimates. More 
importantly, these estimates are in real-time as 
new observations are made  

As the proportion of susceptible individuals 
reduces over time, the transmission rate 
estimation accuracy also declines.  

Strategies for containing an Ferguson et al. Rather than using past estimates of transmission A very basic model observing changes to 
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Title Author(s) Advantages Disadvantages  
emerging influenza pandemic in 
Southeast Asia 

(2006) from previous pandemics, they re-analysed 
incubation periods and household transmission 
data to provide a transmission estimate more 
consistent with the disease they are modelling. 

reproductive number (R0) following 
different scenarios such as social 
distancing. A major disadvantage is that 
very basic assumptions are incorporated 
into the model. For example, they 
implemented social distancing measures 
by reducing contacts at workplace by 50%.  

Use of artificial intelligence in 
infectious diseases. Artificial 
Intelligence in Precision Health 

Agrebi S et al. 
(2020) 

Models in this review such as the ARIMA model 
can filter out noisy data and use linear 
dependence to find local trends  

Lack of datasets  

Machine Learning Techniques for 
Cognitive Decision Making 

Chandiok A and 
Chaturvedi D (2015) 

Artificial neural networks had the highest 
accuracy rate and performs excellent for learning 
non-linear (separable) problems 
 

The neural networks take a long time to 
train the model  

Artificial intelligence in radiology Hosny A et al. (2018) Deep learning methods in imaging analysis 
mean that algorithms can learn from data without 
initial input by human experts.  

The AI model was unable to carry out 
more than one task at a time in order to 
detect multiple abnormalities 

Learning Data-Driven Patient 
Risk Stratification Models for 
Clostridium difficile 

Wiens J et al. (2014) Electronic medical record-based methods used 
in this study have a 10% improvement in the 
AUROC over that of the Curated model. The 
EMR model also reduced the number of false 
positives. 

The model is a basic linear model.  
 
Not time-varying parameters  

Patient Risk Stratification with 
Time-Varying Parameters: 
A Multitask Learning Approach 

Wiens J et al. (2016) Includes time-varying parameters Decision threshold remained the same 
every day. Daily variable decision 
thresholds could be helpful.  

Predicting Mortality Risk in 
Patients with COVID-19 Using 
Artificial Intelligence to Help 
Medical Decision-Making 

Pourhomayoun M 
and Shakibi M. 
(2020)  

A confusion matrix showed that the neural 
network was able to accurately predict mortality 
risk in patients  

The random Forest algorithm only 
contained 20 trees.  

A machine learning-based model 
for survival prediction in patients 
with severe COVID-19 infection 

Yan L et al. (2020)  XGBoost recursive based tree system allows for 
clearer interpretability  
 
Any blood sample can be used in the model  

Of the 3000 patients used in this study, 
none of the outcomes had been released  
 
A single-centred study with limited dataset  
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Title Author(s) Advantages Disadvantages  
Prediction of criticality in patients 
with severe COVID-19 infection 
using three clinical features: a 
machine learning-based 
prognostic model with clinical 
data in Wuhan 

Yan L et al. (2020) Of the 300 clinical features tested, 3 clinical 
features were identified via the model that give 
poor prognosis. Scientific research backed the 
features the model identified.  

Improved interpretability means loss of 
performance. The performance can be 
improved with a black box model. Only 3 
biomarkers used for mortality prediction. 
However, risk of reduced capacity of 
prediction when more biomarkers are used  

Spatially explicit models for 
exploring COVID‐19 lockdown 
strategies 

O'Sullivan D, 
Gahegan M, Exeter 
D and Adams B 
(2020) 

The branching process variant of the model 
allows for the detailed generation of tracking 
connected cases (contact tracing) 

Uncertainty around the COVID-19 
parameters – more data configuration is 
needed.  

Spatial modelling, risk mapping, 
change detection, and outbreak 
trend analysis of coronavirus 
(COVID-19) in Iran 

Pourghasemi H et al 
(2020)  

Anthropogenic factors such as person-person 
contact and person-surface contact was 
incorporated into the model via data obtained 
from Open Street Map and human footprint map. 
The random forest model used minimised 
“preconception and inconsistency owing to the 
assimilation of outcomes of each tree” 
 

The accuracy of the training dataset was 
only 78.86% 

Geographical information 
systems and tropical medicine 

Khan O et al. (2010)  Disease surveillance can be carried out to 
predict disease spread via contact by satellite 
imagery and image interpretation. This model 
presented data in an interpretable way for the 
general public and healthcare professionals to 
understand.  

The spatial analytic tool is limited by the 
lack of a temporal component- this means 
information is presented as a static 
snapshot.  

Towards a Web GIS-based 
approach for mapping a dengue 
outbreak 

Butt M et al. (2019)  Satellite data of Landsat V was overlaid the GIS 
model to determine hotspots of disease. The 
PRISM model used provided synchronous 
sharing of geospatial information to government. 
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As COVID-19 spread from China to more 
ethnically diverse regions of the world such as 
the UK, where 13% of the population are from 
ethic minority backgrounds, it became more 
obvious that these groups are more severely 
affected [18]. For example, 11 doctors who died 
from COVID-19 were from black, Asian, and 
minority ethnic (BAME) communities [19]. In 
addition, a recent National intensive care audit 
reported a third of patients in intensive care units 
being of ethnic minority backgrounds [20]. 
Further studies showed that up to 22

nd
 April 

2020, 63% of COVID-19 related deaths in health 
workers were from BAME groups. Evidently, the 
data shows BAME individuals are at increased 
risk of death from COVID-19 [21]. 
 

The first and largest cross-sectional analysis was 
carried out by Lusignan et al. [22].  Using R 
software, they analysed data by multivariable 
logistic regression models with multiple 
imputation in order to identify variables 
associated with COVID-19. They found that 
15.5% who tested positive were white and 62.1% 
were ethnically black. Overall, black people were 
disproportionately affected, even when 
adjustments were made for confounding 
variables such as hypertension and diabetes. 
Other clinical and demographic risk factors of 
COVID-19 included chronic kidney disease, 
obesity, being aged between aged 40 to 64 years 
and living in deprived areas. Challenges with this 
study, as seen in many other studies using NHS 
data, is that a large proportion of data is missing. 
For example, of the 3802 patients, 1014 (26·7%) 
had no data on ethnicity due to death certificates 
not including this information. This was overcome 
by randomly assigning an ethnic group based on 
proportion ethnicity in the area from Census 
data.  Other incomplete data was addressed via 
multivariate Imputation by chained equations 
(MICE) and sensitivity analysis using complete 
case analysis [23]. 
 

Recent data was published by the UK National 
Statistics Office looking at COVID-19 related 
deaths by ethnic group during the 2 March and 
10 April 2020 period [24,25]. Using a logistic 
regression model, they found BAME groups had 
a higher risk of dying from COVID-19. In order to 
quantify the risk of ethnicity without cofounding 
variables, adjustments were made for 
sociodemographic factors.  Level of deprivation, 
rural urban classification, age, household 
composition and socioeconomical status were all 
adjusted for separately and presented as odd 
ratios. 

 

Initially, an explanation for these findings is that 
BAME groups have a higher incidence of pre-
existing chronic conditions such as high blood 
pressure, diabetes, asthma and obesity which 
increases their risk of COVID-19 [19]. Despite 
this, racial disparities in those pre-existing 
conditions do not reflect the huge COVID-19 
death disparities. In reality, ethnicity influences 
culture and behaviour which can increase 
susceptibility to disease. For example, BAME 
groups tend to work in lower paid jobs, live in 
higher household size and live in more densely 
populated areas, all of which increases risk of 
exposure [26]. Many of the studies in this 
literature review did not consider socioeconomic 
factors such as employment in high-risk 
positions, income, literacy rates, access to 
healthcare and education. Aggregating groups of 
population to mortalities is an oversimplification 
and cannot explain the excessive deaths in 
BAME groups. Dissecting these groups by 
accounting for characteristics such as place of 
residence, leads to a better understanding of 
which factors cause these disproportionalities. 
However, due to the complex nature of ethnicity 
which is comprised of genetic, behavioural and 
social factors that interplay, further exploration of 
these observations is needed with associated 
robust analysis. Describing these findings is 
important in understanding more about this 
complex disease. Recent correspondence 
published by the Institute for Global Health, 
University College London in the Lancet 
expressed research into ethnicity as “an urgent 
public health research priority”

 
[18]. However, 

one of the future challenges with identifying high 
risk ethnic groups is that the UK mortality 
reporting does not legally need to include 
ethnicity. Furthermore, the published data on 
ethnicity is aggregated, meaning associations 
identified may lead to the formation of inaccurate 
conclusions. Nevertheless, finding the definitive 
cause for any ethnic disparities is important. 
Artificial intelligence (AI) and machine learning 
technology in this area could be useful in 
understanding this disparity and ultimately 
protecting those at higher risk. 
 

3. ADVANCED MODELLING: AI AND 
MACHINE LEARNING 

 

Artificial intelligence is a branch of computer 
science where computers are able to mimic 
human intelligence in order to carry out complex 
tasks [27]. One type of AI is machine learning 
which identifies patterns and nuances from data 
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whilst the system learns and adapts from 
experience in order to improve overtime [28]. 
 

3.1 Use of AI and Machine Learning in 
Medicine 

 
Infectious disease is a complex problem which 
requires innovative solutions. AI could be the 
modern technology with these solutions. As data 
storage capabilities have improved over the 
years in healthcare and more valuable data has 
been gathered, machine learning (ML) tools have 
been implemented to identify data patterns and 
predict future outcomes [29,30]. AI has already 
made its mark in medicine with its role in 
predicting phenotypes from genotypes, radiology 
and pathology diagnosis [31]. Particularly, 
advances in AI research became apparent with 
AI success in the field of radiology. ML 
algorithms used to interpret complex patterns of 
imaging data in image-based tasks have 
surpassed humans in certain task-specific 
applications [32]. The ability of an ML method to 
learn and improve as it extracts patterns and 
features from the high volume of input datasets 
found in healthcare records improves its 
predictive features and decision-making ability. 
 

3.2 Use of AI And Machine Learning in 
Infectious Disease 

 
AI goes beyond the normal equation-based 
models previously described. The 
aforementioned AI algorithms learn from the 
data, allowing other algorithms to 
make decisions using experience stored in the 
knowledge base [29]. A decision-making method 
called Gaussian process regression was used by 
a team at Oxford University to find the optimal 
malarial policy the government should use based 
on the spread of disease in areas of the 
population [33]. Implementing the correct policies 
at the right time was important as funding cuts in 
disease prevention necessitated budgeting 
changes. 
 
Using ML based applications, efforts are already 
underway for predicting individual health risk 
factors that contribute to the overall risk of 
disease. Wiens et al. [34,35] developed an 
application that learns to map data such as 
patient history, lab results and demographics to 
predict patient risk to Nosocomial Clostridium 
difficile; a common hospital acquired bacterial 
infection [35]. The data-driven risk-stratification 
model can also identify hotspot areas of a 
hospital that may require more thorough 

disinfection. A limitation the model posed was 
that it assumes a constant risk of Clostridium 
difficile infection during a patient's time in 
hospital, whilst this is a dynamic variable. Daily 
risk estimates were produced by a multitask 
machine, allowing time-dependent variables to 
be considered. These estimates allow healthcare 
staff to rapidly isolate a recently identified high-
risk patients from other patients hence reducing 
the spread of disease [35]. 
 
Following the review of many AI applications in 
the medical field, the main challenge posed is  
the vast volume of medical data stored in the 
electronic health records. Whilst this high volume 
of data is crucial for data hungry machine 
learning models, much of the data is described 
as ‘noisy’ [36]. Noisy data contains a high 
proportion of missing or irrelevant data. 
Unfortunately, these fully automated ML systems 
begin to learn new concepts from the noisy data 
resulting in inaccurate predictions; a concept 
known as overfitting. More commonly, this issue 
is overcome by using training regularization 
methods. Unfortunately, AI faces more 
challenges with infectious disease analytics as 
every disease has its own unique natural 
characteristics, such as the incubation period 
and transmissibility [33]. These characteristics 
are difficult to predict until the disease has 
emerged, which makes early forecasting 
challenging. 
 

3.3 Use of AI and Machine Learning for 
COVID-19 

 
As COVID-19 incidence increased exponentially, 
healthcare systems have been overwhelmed and 
resources strained. In order to reduce the 
burden, proposed prediction models from rule-
based models to highly advanced ML models 
have been implemented. This enables 
identification of high-risk patients, diagnosis  and 
prediction of disease outcomes and prognosis 
[37]. 
 
An AI model proposed by Pourhomayoun et al. 
[38] calculated mortality risks for COVID-19 
positive patients, to help triage and prioritise at-
risk patients more efficiently and accurately in the 
current overwhelmed healthcare system [40]. 
The ML algorithms used 117,000 COVID-19 
positive patients to train a model that would 
predict mortality risks based on 42 features. 
These consisted of physiological conditions and 
demographic features extracted from medical 
records. Support Vector Machine (SVM), Neural 
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Networks and Random Forest were the 
algorithms used to create the predictive model. 
Performance measurements were made using 
AUC - ROC curves and the accuracy of the 
predictions was calculated using 10-fold cross-
validation. The results showed that neural 
network algorithms were the most accurate at 
93.75%. 
 

A systematic review critically appraising 66 
models from 51 studies found that the majority of 
the studies that used ML models were used for 
image analysis of CT scans and X-rays for 
COVID-19 analysis [37]. The remaining ML 
models were used for mortality prediction using 
demographics such as age and biomarkers from 
blood tests [36,40]. A group in China used the 
XGBoost model which is a high-performance ML 
algorithm [40]. Using 909 blood samples from 
485 patients, an operable decision tree was 
developed from three selected blood biomarkers  
(LDL, hsCRP, lymphocytes). Across all literature 
these three biomarkers are frequently used for 
COVID-19 prognosis prediction. The predictive 
model can quantify the risk of death at 90%. 
More importantly, this model can be used to 
prioritise patients that require specialised care 
which is incredibly helpful where resources such 
as ventilation support are limited. The accuracy 
of the model could be further improved with more 
datasets. Despite currently using only three 
biomarkers to avoid overfitting, advances in our 
understanding of COVID-19 pathophysiology will 
enable identification more useful biomarkers that 
influence disease severity, such as Interleukin-6 
[41]. Implementing these into a predictive model 
could further improve the model performance. 
 

Limitations across all models reviewed included 
the high-risk of bias due to low sample size and 
poor reporting [37]. In addition, the models 
showed variable predicted outcomes, which can 
result in miscalibration. The authors also lacked 
adequate identification of target populations 
which is important for a contextualised approach 
to model appraisal. Currently, none of these 
models can be applied in practice and due to 
severe time constraints to publish findings, the 
majority of the papers in the systematic review 
are preprint and have not been peer-reviewed. 
Nevertheless, these models provide a platform 
for further development to ultimately produce a 
robust predictive model that can be used in 
practice. As more clinical datasets are gathered, 
stronger predictive models can be developed. 
Following validation by an independent external 
validator, clinicians can implement these models 
in practice. 

There are limited papers that have used ML 
models to identify sociodemographic factors 
associated with COVID-19. This is an area of 
future research, where these dynamic ML 
models can identify people with COVID-19 
related risk-factors in the population. Isolating 
these individuals and preventing exposure to the 
disease could reduce the number of patients 
admitted to hospital with severe COVID-19 
symptoms that require a transfer to an ICU, 
which is essential in a time where critical care 
capacity is limited. 
 

4. Spatial Modelling and Epidemiology 
 

Spatial modelling in disease epidemiology 
involves the input of spatial data with geographic 
information systems into models in order to find 
and visualise the geographical distribution of 
disease based on demographic, environmental 
and sociodemographic factors [42]. Most, if not 
all infectious diseases are heavily influenced by 
environmental factors. Therefore, incorporating 
geospatial data in complex spatial models in 
order understand more about the transmission 
dynamics has been incredibly useful in disease 
epidemiology.  GIS and spatial modelling go 
beyond simply visualizing data for the public. The 
spatial models can be vital in identifying sub-
scale areas with emerging COVID-19 cases [43]. 
As national lockdown measures begin to be 
lifted, applying small spatial scales using spatial 
modelling allows sub-national areas such as 
cities or neighbourhoods that are at higher risk to 
be identified.  This should help to significantly 
prevent the spread of COVID-19 in the wider 
community and thus prevent further peaks. 
 
A team in Iran carried out spatial modelling and 
risk mapping based on a random forest machine 
learning technique (RF-MLT) using the ‘random 
forest package’ in R software [44]. Random 
forest is a type of supervised machine learning 
algorithm that combines multiple decision trees 
via Bootstrap aggregation. The advantage of 
combining these decision trees is the reduction 
of both bias and the likelihood of overfitting, 
resulting in high forecast accuracy. Sixteen 
variables were tested in the model including 
climatic factors, such as temperature, which were 
taken from WorldClim datasets and geographical 
factors such as distance from roads and city 
densities. These variables were mapped to 
predict disease transmission. Socially dense 
places such as bus stations and places of 
worship were accounted for using ArcGIS spatial 
tools.  Heat maps were created which showed 
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the distribution of higher incidences of infection in 
different regions of Iran. The spatial analysis 
showed a correlation of high infection rate 
between two regions. For example, the cities of 
Alborz and Qazvin both had high levels of 
infection as a result of busy motorway 
connections. Whilst validation of risk maps via 
ROC-AUC showed a score of 0.886 which is 
classed as ‘very good’, GIS- based methods 
have been a more commonly used method. 

 
4.1 GIS Modelling 
 

Geoinformatics has played an important role in 
predicting future disease outbreaks and tracking 
the spread of disease. Using epidemiology 
mapping technology with location-based alert 
systems allows visualisation of trends and 
patterns which are a helpful resource for public 
health decision makers [45]. For over 20 years 
the World Health Organization’s (WHO) greatest 
tool in disease mapping has been 
geoinformatics, specifically geographical 
information systems (GIS). Previously, WHO 
used GIS in order to track vector borne disease 
outbreaks like dengue and to analyse the 
vulnerable areas which required urgent 
vaccination programs [46]. Mapping of climate 
and population density for the Dengue virus 
showed that population density is the most 
significant factor in the spread of Dengue [47]. 
 

During the early pandemic, Johns Hopkins 
University created a widely popular interactive 
web-based dashboard using real-time data from 
US CDC (Centres for Disease Control and 
Prevention) and ECDC (European Centre for 
Disease Prevention and Control) [48]. The 
dashboard was updated regularly via Esri’s 
ArcGIS Living Atlas team, streaming real-life data 
which detailed and visualised virus progression 
and confirmed cases worldwide [49]. However, 
the lack of real-time travel data prevents analysis 
of mobility patterns which is important in mapping 
disease spread. GIS is particularly helpful as it 
allows the identification of high-risk populations 
areas. This enables local authorities to provide 
timely information to both the public and channel 
healthcare resources for early healthcare 
intervention. For example, in Canada using data 
from Canada’s Community Health Survey, areas 
with a high density of the population with pre-
existing conditions and an aging population are 
identified via the dashboard, thereby allowing 
local government to redirect resources to prepare 
for a surge in hospital admissions [50]. 

 

4.2 Using GIS to Identify 
Sociodemographic Risk Factors of 
COVID-19 

 

The majority of GIS has been used to predict 
new outbreaks, track disease spread and 
analyse the impact of social distancing. However, 
limited publications have used GIS to identify 
those risk-factors associated with COVID-19 in 
relation to various geographic regions. A useful 
tool in ArcGIS software is adding data layers of 
demographic characteristics from the “Living 
atlas of the world” onto the dashboard in order to 
identify sociodemographic features associated 
with COVID-19 hotspots. Identifying these risk 
factors that influence severity and prognosis of 
disease is crucial in understanding disease 
spread, facilitating public health planning and 
protecting vulnerable people. 
 

5. CONCLUSION 
 

As efforts to distribute vaccines continue, 
improving our understanding of the spread of 
COVID-19 and high-risk groups has become of 
great importance in order to contain the virus and 
reduce mortality rates. Whilst current 
epidemiological models used by the government 
have been incredibly useful, more innovative 
solutions such as AI and machine-based learning 
are now being embraced. The vast volume of 
health data available and advances in AI based 
applications, provide a great tool in forecasting 
disease spread and identifying high-risk patients. 
 

A review of the current literature has shown the 
great potential of AI and machine-based learning 
technology in the field of medicine. Therefore, 
with the potential to solve the biggest crisis 
facing the world, the authors encourage more 
use of AI-based applications together with the 
equation-based models commonly used. This 
has the potential to make a major contribution to 
halting the current pandemic and reducing the 
burden on healthcare systems and damaged 
economies. 
 

More than ever, epidemiological modelling is vital 
in understanding the spread of disease 
outbreaks and allowing for advanced intervention 
in order to prevent further disease spread, 
reduce mortality rates and ultimately reduce 
economical damage. 
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