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Abstract: Biological control is an environmentally friendly approach that holds promise to com-
plement or replace chemicals to effectively protect crop plants against pests and pathogens. En-
vironmental samples with highly diverse and competitive microbiomes that harbor antagonistic
microbes with diverse modes-of-action can provide a rich source of microbial biopesticides. In the
current study, bacteria isolated from rhizosphere soil and food spoilage samples were subsequently
screened against various plant fungal and oomycete pathogens in growth inhibition assays. These
included the new potential biocontrol bacteria Corynebacterium flavescens, Sporosarcina aquimarina and
Sporosarcina saromensis with anti-fungal and antioomycete activities. Potential candidates selected
by preliminary screening in plant assays were then applied to tomato, cabbage and chickpea plants
to control bacterial (Pseudomonas syringae pv. tomato), fungal (Alternaria brassicicola) and oomycete
(Phytophtora medicaginis) phytopathogens. Ten potential microbial biopesticides were demonstrated
to be effective against these diseases, and led to significant (p < 0.05) reductions in symptoms and/or
pathogen DNA compared to mock-treated diseased plants. We conclude that new and effective mi-
crobial biopesticides to control crop pathogens can be rapidly isolated from biodiverse microbiomes,
where bacteria may employ these features to effectively compete against each other.

Keywords: biocontrol bacteria; plant pathogens; biopesticides; antibacterial; anti-fungal; anti-oomycete

1. Introduction

Pests and pathogens use plants as sources of energy and pose significant threats to
agricultural production and food security [1]. Food production must increase by 60% by
2050 to support human demands; however, 10 to 16% of crop production is estimated to
be destroyed by pests and pathogens [2]. These include the five most important crops–
wheat, rice, maize, potato and soybean–with estimated global crop losses caused by pests
and pathogens of 21.5, 30.0, 22.6, 17.2 and 21.4%, respectively [3]. Agrochemicals are
frequently applied to control pests and pathogens, but they often harm beneficial microbes
and their residues remain in almost 40% of foods, according to FAO-WHO reports [4].
Furthermore, pesticides pose significant health risks to humans and their environment, and
provoked or induced the development of resistance both in plant pathogens and pests [5,6].
Many beneficial microorganisms isolated from plants or other environments can promote
plant growth and/or suppress plant pathogens [7]. These microbes can be applied as
biocontrol agents called biopesticides [8]. These biopesticides are considered much more
environmentally friendly alternatives to protect crops against pathogens in the future.
There are currently only about 25 microbial products that are in regular use [9,10]. This
contrasts with the thousands of chemical products that are in the market, and there is thus
a need to develop more biopesticides that have diverse modes-of-action [11]. The present
study focused on bespoke treatments of three important vegetable crops (tomato, cabbage
and chickpea) and three types of economically significant pathogens with different nutrient
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uptake mechanisms, including the hemibiotrophic bacterium Pseudomonas syringae, the
necrotrophic fungus Alternaria brassicicola and the hemibiotrophic oomycete Phytophthora
medicaginis, respectively.

Currently, only a few bacterial genera, Bacillus, Pseudomonas, Agrobacterium and Streptomyces,
are used as biopesticides [12]. According to the Dunham Trimmer estimation, the biopes-
ticide market is around 5–6% of the total global pesticide, valuing US$3–4 billion [10].
Looking into highly diverse microbial environments, such as organic carbon-rich soil
and food spoilage, may enhance new biopesticide discovery that could potentially im-
prove food production. Soils are highly diverse environments constructed from billions
of individual organisms, including various bacteria [13]. While it had previously been
thought that most bacteria are unculturable, it has recently been shown that up to 70% of
plant-associated microbes may be culturable using diverse media (Known Media Database;
KOMODO; [14,15]). We hypothesised that the plant rhizosphere presents a highly diverse,
carbon-rich environment where bacteria with interesting biotechnological activities can
be isolated. Plant rhizosphere bacteria compete with other microbes, including plant
pathogens, for nutrition and resources such as root exudates via antibiosis or hyperpar-
asitism. These include various strategies such as nutrient competition and modulating
pathogen growth conditions [16,17]. Environmental samples with highly diverse and com-
petitive microbiomes can provide a rich source of anti-microbial compounds [18,19], and
microbiomes with an abundance of organic nutrients (rhizosphere soils and food spoilage
samples) were chosen for the current study.

Both in vitro and in vivo tests can be used to identify effective antagonistic bacteria that
possibly have not been considered as biocontrol agents [20]. Many vegetables are severely
affected by bacterial, fungal and oomycete pathogens [21,22]. In the current study, we
have focused on 68 previously identified bacteria antagonistic against bacterial pathogens
obtained from rhizosphere soil and food spoilage [23], and developed ten potential new
microbial biopesticides against bacterial, fungal and oomycete phytopathogens.

2. Materials and Methods
2.1. Anti-Fungal and Antioomycete Assays

A total of 68 rhizosphere soil and food spoilage bacteria were previously found to
be active against bacterial pathogens Pseudomonas syringae pv. tomato DC3000 (Pst) and
Clavibacter michiganensis [23]. These came from clay-rich soil collected in Tennyson, Queens-
land, Australia (27◦31′37.0′′ S 152◦59′51.7′′ E) and food spoilage samples (mixed vegetable
and fruit scraps from a compost bin), and were identified by 16S rRNA sequencing. In
the present study, these bacteria were further evaluated for their potential as biocontrol
agents against various fungal and oomycete plant pathogens. Bacterial isolates were grown
on various liquid media including Yeast Extract Peptone (YEP), Liquid Medium (LM),
Luria Bertani (LB) and De Man, Rogosa and Sharpe (MRS) at 28 ◦C in a shaker incubator
at 120 rpm (Supplementary Table S1). All growth inhibition assays were then performed
on Petri dishes using PDA (Supplementary Table S1) [24]. The potential antagonizing
effects of bacterial isolates were examined against fungal and oomycete plant pathogens,
including Fusarium oxysporum, Alternaria brassicicola, Alternaria solani, Phytophthora capsici,
Phytophthora medicaginis and Phytophthora cinnamomi. Potential biocontrol bacteria were
cultured overnight at 28 ◦C in a shaker incubator. The pure fungal inoculum was placed
in the center of a new PDA plate with two lines of streaked biocontrol bacteria, includ-
ing Staphylococcus saprophyticus for comparison in three replicate plates for each isolate
(Supplementary Figure S1). Staphylococcus saprophyticus was chosen as a reference microbe
because its antagonistic activity against the pathogens tested was low, it came from the
same soil samples and can be incubated under identical conditions. Plates were incubated
at 28 ◦C until the control plate for each pathogen (without biocontrol bacteria) reached ~80%
fungal coverage of the plate (1–2 weeks). Anti-fungal/oomycete effects were quantified by
the following formula [24]:
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(Average control plate colony diameter − Average bacteria treated plate colony diam-
eter)/Average control plate colony diameter × 100.

A minimum of 50% in vitro pathogen inhibition was applied as a threshold for further
experimentation with these microbial isolates. These were then used in preliminary plant
assays where they were sprayed onto tomato and cabbage or watering to chickpea seedlings
(one plant per isolate) to select four isolates for subsequent in plant biocontrol assays.

2.2. Biopesticide and Plant Bacterial Disease Suppression Assays

Solanum lycopersicum (tomato) plants (cv Moneymaker) were grown in 55 mm pots
in UQ23 potting mix for 4 weeks in growth cabinets with 16 h light at 26 ◦C and 8 h night
at 21 ◦C, with a light intensity of 100 µmol photons m−2 s−1 (white fluorescent lamps).
Eight-week-old tomato plants, in three biological replicates containing 10 pooled plants
per replicate, were sprayed with potential beneficial biocontrol bacteria (33YE, 46YE, 14th,
28MC and a mixture of all isolates) that also previously showed antibacterial activity against
Pst [23], 1 day before and 1 day after bacterial pathogen treatment. Briefly, the four bacterial
isolates were grown overnight in 10 mL cultures that were upscaled to five 100 mL cultures
each in 500 mL flasks. The cultures were centrifuged at 4170× g for 10 min, the supernatants
were discarded and bacterial pellets were resuspended in 10 mM MgCl2 containing 0.02%
Silwet L-77. The OD600 for all bacterial cultures was adjusted to 1.57. The same procedure
was repeated for Pst, and the OD600 was adjusted to 0.2 based on previous studies [25].
Bacterial suspensions were then sprayed onto plant leaves by applying both sides of each
leaflet of all leaves for each plant, and mock-treatments comprised application with MgCl2
solution only. Six days after pathogen inoculation, all plant leaves were collected. Disease
symptom scores were based on the percentage of leaflet area displaying chlorosis, brown
spots or necrosis (1 = 0–20%; 2 = 20–40%; 3 = 40–60%; 4 = 60–80%; 5 = 80–100%). Total
DNA from the same leaflets was extracted with the CTAB method [26]. For pathogen
quantification using real-time quantitative PCR (qPCR), 40 ng of genomic DNA was mixed
with 6 µL of FastStart Essential DNA Green Master mix (Bioline, UK) containing 3 µM each
of the corresponding primers (Supplementary Table S2). The copy number of a specific Pst
gene (gyrA) was determined for each sample using qPCR (Roche LightCycler® 96, Basel,
Switzerland) and normalized to tomato ACTIN [27,28].

2.3. Biopesticide and Plant Fungal Disease Suppression Assays

Golden Acre cabbage plants (Brassica oleracea var. capitata) were grown in a growth
cabinet under 16 h light at 26 ◦C and 8 h night at 21 ◦C with a light intensity of 100 µmol
photons m−2 s−1 (white fluorescent lamps). 4-week-old plants in three biological repli-
cates containing 10 plants per replicate were inoculated with potential biocontrol isolates
46YE, 28M, 4YE, 44LGS and a mixture of all isolates 1 day before and 1 day after fungal
pathogen treatment. Cultivations of bacterial strains and preparations for mock treatments
are explained in Section 2.2. Cabbage plants were inoculated with Alternaria brassicicola
24 h after initial treatment, with biocontrol bacteria based on the established protocol for
A. solani [29]. Briefly, spores from 2-week-old A. brassicicola cultures on PDA plates were
harvested using sterile water containing 0.005% (v/v) Tween 40. The spore concentra-
tion was then measured using a hemocytometer, and adjusted to make up 500 mL of a
1.8 × 105 spores/mL suspension, which was sprayed on cabbage plants (application on
both sides of the leaves). Five days after the initial inoculation, plants were symptom-scored
based on the percentage of leaf area displaying necrosis (1 = 0–20%; 2 = 20–40%; 3 = 40–60%;
4 = 60–80%; 5 = 80–100%). The same leaves were harvested for qPCR (Roche LightCycler®

96, Basel, Switzerland) using primers listed in Table S2, Supplementary File. Pathogen
amplicons were normalized to cabbage DLH [30,31].

2.4. Biopesticide and Plant Oomycete Disease Suppression Assays

Chickpea (Cicer arietinum var genesis 090) plants (14–17 plants per treatment) were
grown in UQ23 potting mix in growth cabinets with 16 h light at 26 ◦C and 8 h night
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at 21 ◦C and a light intensity of 100 µmol photons m−2 s−1 (white fluorescent lamps)
for 3 weeks. Cultivations of bacterial strains and preparations for mock treatments are
explained in Section 2.2. Each pot with a 3-week-old plant in the treatment was watered
with 10 mL biocontrol bacteria (44LGS, 43M, 30LM, 14TH and a mix of all four) 1 day
before oomycete inoculation. The P. medicaginis infection assay was conducted based on the
method described by Ozgonen et al. [32]. Briefly, P. medicaginis was grown on PDA plates at
28 ◦C in a dark incubator for 2 weeks. Then, 1 cm2 agar plugs from plates were transferred
into a 1 L flask containing 300 g of autoclaved wheat seeds, and the oomycete was grown
for 2 weeks at 28 ◦C under continuous light. Eight infected wheat seeds were placed on the
soil surface for each pot, which contained a 3-week-old chickpea plant after the biocontrol
isolate treatments. An additional 20 infected wheat seeds were randomly distributed in the
chickpea water tray where pots were kept. Biocontrol treatments continued every week
until the end of the experiment. At 4 weeks post-inoculation with P. medicaginis, plants
were uprooted, dried and weighed.

2.5. Statistical Analyses

Results of fungal plate assays were assessed for significant differences (p < 0.05) using
Microsoft Office Excel Student’s t-test compared to S. saprophyticus assays. Student’s t-test
was performed on biopesticide raw data to determine significant differences (p < 0.05)
between mock-treated control and biocontrol treatment plant samples.

3. Results
3.1. Anti-Fungal and Antioomycete Assays

Anti-fungal and anti-oomycete plate inhibition assays showed activity against three
fungi and three oomycetes for 38 out of the 68 selected bacterial isolates
(Supplementary Figure S1; Table S3). Bacillus amyloliquefaciens (isolate 1, 2), Bacillus licheni-
formis, Brevibacillus laterosporus, Bacillus megaterium (2, 3), Bacillus methylotrophicus (1, 2),
Bacillus mojavensis, Bacillus pumilus (9), Bacillus safensis (3), Bacillus subtilis (1), Corynebac-
terium flavescens, Klebsiella pneumoniae, Sporosarcina aquimarina (3) and Pseudochrobactrum
kiredjianiae (3) were all able to inhibit the growth of all fungal and oomycete pathogens by
more than 50% (Figure 1). However, other bacterial isolates were able to also inhibit at least
one fungus or oomycete.
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cate statistically significant differences (p < 0.05 in Student’s t−test) to the S. saprophyticus control. 
This bacterium was chosen for comparisons, as it showed low in vitro bioactivity against plant path-
ogens. 

3.2. Use of Biocontrol Bacteria as Biopesticides to Control Bacterial Plant Pathogens in Tomato 
The four best biocontrol bacteria, which inhibited Pst on pathogen growth inhibition 

plate assays, were applied on tomato plants as potential biopesticides agents against Pst 
(Figure 2A, B). After symptom analysis and qPCR quantification, disease symptoms and 
the number of pathogens per plant cell significantly (p < 0.05) declined for plants treated 
with isolates Paenibacillus peoriae (14TH), Comamonas jiangduensis (28MC), B. methylotrophi-
cus (46YE), Bacillus amyloliquefaciens (33YE) and the mixture of all four compared to mock 
(MgCl2) treatments (Figure 2C,D).  
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Figure 1. Growth inhibition assay of 38 bacterial isolates out of 68 isolates tested in comparison
to S. saprophyticus. Shown are mean values ± SEs from three biological replicates of percentage
growth inhibition relative to bacteria-free control plates with P. capsici, P. medicaginis, F. oxysporium f.sp.
lycopersici, A. solani and A. brassicicola. The red line indicates a 50% inhibition cut-off. Asterisks indicate
statistically significant differences (p < 0.05 in Student’s t-test) to the S. saprophyticus control. This
bacterium was chosen for comparisons, as it showed low in vitro bioactivity against plant pathogens.

3.2. Use of Biocontrol Bacteria as Biopesticides to Control Bacterial Plant Pathogens in Tomato

The four best biocontrol bacteria, which inhibited Pst on pathogen growth inhibition
plate assays, were applied on tomato plants as potential biopesticides agents against Pst
(Figure 2A,B). After symptom analysis and qPCR quantification, disease symptoms and the
number of pathogens per plant cell significantly (p < 0.05) declined for plants treated with
isolates Paenibacillus peoriae (14TH), Comamonas jiangduensis (28MC), B. methylotrophicus
(46YE), Bacillus amyloliquefaciens (33YE) and the mixture of all four compared to mock
(MgCl2) treatments (Figure 2C,D).

3.3. Use of Biocontrol Bacteria as Biopesticides to Control Fungal Plant Pathogens in Cabbage

Based on preliminary screening in plant assays, the four most promising A. brassicicola
antagonists, B. methylotrophicus (46YE), Brevibacillus laterosporus (4YE), B. licheniformis (28M),
Bacillus megaterium (44LGS) and a mixture of these four bacterial isolates were examined
for their potential as biopesticides to control dark leaf spot in cabbage (Figure 3A,B). The
symptom scoring suggests that individual isolates significantly (p < 0.05) reduced disease
symptoms on cabbage plants, but not the mixture of isolates (Figure 3C). However, qPCR
data show that all treatments, including the mixture of isolates, significantly decreased the
amount of pathogen DNA (p < 0.05; Figure 3D).
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Figure 2. Biopesticide assay to control bacterial speck in tomato at 5 days post-infection. (A) Tomato
mock treatment after Pst infection. (B) Tomato treated with B. amyloliquefaciens (33YE) after Pst
infection. (C) Disease symptom scores of Pst by four biocontrol bacteria and their mixture compared
to mock-treated control plants (shown are mean values ± SEs; n = 30). (D) qPCR results showing the
amount of Pst DNA (GYRASE A) relative to tomato DNA (ACTIN). Shown are mean values ± SEs
of three biological replicates, each containing DNA of ten pooled plants. Asterisks indicate values
that were significantly different (p < 0.05 in Student’s t-test) compared to mock (MgCl2)-treated
control plants.
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Figure 3. Biopesticide assay to control leaf spot in cabbage at 5 days post-infection. (A) Cabbage
mock (MgCl2) treatment post-infection with A. brassicicola. (B) Cabbage treated with B. laterosporus
(4YE) treatment post-infection with A. brassicicola. (C) A. brassicicola symptom scores, including
chlorosis and dark leaf spot (mean values ± SEs; n = 30). (D) qPCR results showing the amount
of A. brassicicola DNA (Scd1) relative to cabbage DNA (DLH). Shown are mean values ± SEs of
three biological replicates, each containing DNA of ten pooled plants. Asterisks indicate values
that were significantly different (p < 0.05 in Student’s t-test) compared to the mock (MgCl2)-treated
control plants.

3.4. Use of Biocontrol Bacteria as Biopesticides to Control Oomycete Plant Pathogens in Chickpea

Based on preliminary screening in plant assays, the four most promising biocontrol
isolates B. megaterium (44LGS), C. flavescens (43M), Bacillus mojavensis (30LM), Paenibacillus
peoriae (14TH) and a mixture of all four were used as pretreatment to the soil of chickpea
plants before they were challenged with P. medicaginis. No leaf symptoms were observed at
4 weeks post-infection, but upon inspection of the roots, it was evident that all bacterial pre-
treatments significantly (p < 0.05) prevented root biomass decline compared to mock-treated
(MgCl2) P. medicaginis-infected control plants (Figure 4). This suggests that in the presence
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of biocontrol bacteria, P. medicaginis was not able to infect plants effectively and significantly
prevented root damage. The efforts to quantify P. medicaginis using molecular techniques
were unsuccessful due to the lack of specific primers for P. medicaginis quantification.
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Figure 4. Biopesticide assay to control Phytophthora root rot in chickpea at 4 weeks post-infection.
Average root dry weight (g) per treatment of chickpea plants 4 weeks post-infection with P. medicaginis
(mean values ± SEs, n = 14–17). Asterisks indicate values that were significantly different (p < 0.05 in
Student’s t-test) compared to the mock (MgCl2)-treated P. medicaginis-infected control plants.

4. Discussion

In this study, previously identified bacteria active against bacterial phytopathogens
and food pathogens [23] were tested in the current study against fungal and oomycete
pathogens (Figure 1 and Supplementary Figure S1). Several reviews summarised reports
on anti-fungal activities of Bacillus, Brevibacillus, Lactobacillus and Paenibacillus species, as
they produce a wide range of anti-microbial compounds [33–36]. There are a few reports
that show anti-fungal activity of Ochrobactrum and Klebsiella [37–39], and a recent study has
shown the potential anti-fungal activity of Pseudochrobactrum kiredjianiae [40], which was
also confirmed in our study. To our knowledge, however, there is currently no scientific
report on C. flavescens, S. aquimarina and Sporosarcina saromensis anti-fungal or oomycete
activities. To evaluate the potential application of biocontrol bacteria as biopesticides, we
have developed three different assays against bacterial, fungal and oomycete pathogens.

Bacterial speck caused by Pst is an important economical bacterial phytopathogen in
tomato plants [41]. In our biopesticide assay, we have applied four potential biocontrol
bacteria as biopesticides, and B. amyloliquefaciens (33YE) was the best biopesticide among
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other treatments to suppress Pst symptoms (Figure 2). B. amyloliquefaciens is a well-known
plant growth-promoting bacterium; for example, it can alleviate the symptoms of Pst in
sugar beet plants [42].

Alternaria leaf spot causes severe infection and significant loss to brassica plants,
such as canola [43]. Effects of Bacillus sp. on Alternaria alternata and Paenibacillus sp. on
A. solani have been investigated before on tomato plants [44,45]; however, there is no
evidence to demonstrate the effectiveness of Bacillus sp. and Brevibacillus sp. as biocontrol
agents for A. brassicicola in cabbage. In our in vivo study, we found that B. laterosporus
(4YE) supplied the best biocontrol performance in reducing the symptom and number of
pathogens compared to other treatments (Figure 3). Although B. laterosporus has insecticidal
effects, it has not been used as a biopesticide to control fungal pathogens or insects on
plants [46]. The treatment with bacterial mixture also reduced the number of pathogens in
cabbage leaf cells (as shown by qPCR), but the disease symptoms were exacerbated. This
may have occurred because pathogen DNA in necrotic tissue could be degraded. A mixture
of several biocontrol bacteria may also increase the likelihood for the activation of defense
signaling pathways and plant hypersensitive response [47,48].

Phytophthora root rot is an important soil-borne disease of chickpea in Australia caused
by P. medicaginis with up to $8.2 million annual yield losses [49]. Anti-fungal activity of
Mesorhizobium ciceri and its growth promotion on chickpeas against P. medicaginis has been
evaluated, and it has been shown that this bacterium can increase the biomass, improve
nodulation and enhance disease resistance [50]. We chose four potential biocontrol bacteria
and tested them in vivo against this phytopathogen. The mixture of the four bacterial
isolates was by far the most effective treatment to prevent chickpea root biomass loss
from P. medicaginis infection, although each individual bacterial treatment decreased root
infection (Figure 4). A possible explanation could be a synergistic effect [51] from the
mixture of bacteria that complement each other, and further studies may focus on the
mechanisms on how this occurs. This could be done by direct anti-oomycete activity from
all four isolates used. In addition, some of these isolates may also prime the plants to
trigger defense responses, and induce systemic resistance or provide direct root growth-
promoting effects.

In the future, it may also be possible to directly use the bioactive compounds of the
biocontrol bacteria used as biopesticides. For this purpose, it is important to further elucidate
the modes-of-action. Apart from the anti-fungal and oomycete activity shown in the current
study (Figures 1 and 3), we have previously shown that B. laterosporus isolate 4YE has activity
against the Gram-positive tomato pathogen Clavibacter michiganensis, and that during this
process, several anti-microbial metabolites (AMMs) and peptides (AMPs) were produced [23].
These were the diketopiperazines (DKPs) 3-isobutylhexahydropyrrolo [1,2-a]pyrazine-1,4-
dione, 3-butyl-6-methylpiperazine-2,5-dione, 2,3,6,7,8,8a-hexahydropyrrolo[1,2-a]pyrazine-1,4-
dione, as well as 9-octadecenamide, DMSO and acetic acid. Potential AMPs were derived from
50S ribosomal protein L7/L12 and cold-shock protein [23]. Other studies for the invertebrate
pathogen, B. laterosporus, also showed the biosynthesis of a wide range of anti-microbials,
including tauramamide [52–54].

B. amyloliquefaciens is one of the best-studied biocontrol bacteria, which produces a wide
range of anti-microbial compounds, including amylocyclicin [55–58]. Our B. amyloliquefaciens
isolate 33YE possesses AMM activity against the tomato pathogen C. michiganensis and
AMP activity against the human pathogen Listeria monocytogenes [23]. Potential AMPs
were derived from thioredoxin, septation protein SpoVG, 50S ribosomal protein L7/L12,
phosphocarrier protein HPr, non-specific DNA-binding protein Hbs, a chaperonin and
other hypothetical and cold shock proteins.

Apart from the anti-bacterial, -fungal and -oomycete activity shown in the current
study (Figures 1 and 2), P. peoriae (14TH) also showed AMM activity against food-pathogenic
E. coli. AMMs included the DKP 3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione, as
well as DMSO and eicosanol [23]. P. peoriae also produces glycopeptides, 10 kDa peptides
and polymyxin [33,59]. B. methylotrophicus also produces a wide range of anti-microbials,
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including lipopeptides and volatile compounds [60,61], and B. methylotrophicus (46YE) also
showed AMP activity against C. michiganensis from a number of proteins [23].

Further anti-microbial activity has been reported for B. mojavensis (30LM) against
L. monocytogenes (AMP activity) [23]. B. mojavensis anti-microbial agents include mojavensin
and the heat-stable toxin amylosin [62–64]. C. jiangduensis, a biosurfactant-producing bac-
terium [65], also produces AMPs and AMMs against P. syringae for the isolate (28MC) tested
in the current study [23], which may explain the observed resistance against this pathogen
in tomato (Figure 2). Apart from the observed activity against P. medicaginis (Figure 2),
C. flavescens (43M) also had AMM activity against C. michiganensis and P. syringae [23].
C. flavescens is a beneficial bacterium applied in food industries to make cheese pigmenta-
tion, and its application as a biocontrol agent needs to be investigated further [66]. Apart
from the observed activity against A. brassicicola (Figure 3), B. licheniformis (28M) also
possessed AMP against L. monocytogenes [23]. B. licheniformis produces bacteriocin-like
molecule lichenin [67,68]. B. megaterium (44LGS) was active against all pathogens tested in
the present study, and previous studies found that B. megaterium produces anti-microbial
metabolites and a cyclic polypeptide [69,70].

Symptom scoring and molecular analysis have shown that biopesticide treatments
significantly lowered disease symptoms and the number of pathogens in tomato, cabbage
and chickpea. This could happen due to direct interactions between biocontrol bacteria
and their anti-microbial compounds and pathogens. In the current study ten potential
biopesticides have been developed from Bacillus, Brevibacillus, Paenibacillus, Comamonas and
Corynebacterium species that should be further tested under field conditions. The appli-
cation of Bacillus species as biopesticides has been widely explored [71], but Brevibacillus,
Paenibacillus and Comamonas species, while known for their anti-microbial activity, have
not yet been tested as potential biopesticides. Several reports have suggested the potential
application of Paenibacillus species as biopesticide agents. However, this is the first report
that shows the potential application of P. peoriae as a biopesticide [45,72,73]. In addition,
this study has shown potential uses of Brevibacillus, or Comamonas and Corynebacterium
species as biopesticides against bacterial, fungal and oomycete pathogens.

Regulatory and technical barriers have limited biopesticide applications in agricul-
tural industries [74]. Compared to conventional pesticides, biopesticides typically have
a lower efficacy and stability [75]. Further studies will be required to determine if these
bacteria when applied to plants would remain dominant in the soil and phyllosphere
microbiomes or require formulation (e.g., preferred carbon source) to improve their sta-
bility. Biopesticides may have potential side effects on the environment, which need to
be well studied. It has been shown that a fungus-based bioinsecticide could impact insect
pollinators’ functioning [76]. Therefore, possible environmental tests are needed before
industrial applications of biopesticides are implemented.

5. Conclusions

Biopesticide application is an environmentally-friendly alternative for chemical pesti-
cides. However, the current lack of diversity of available microbial biopesticides and their
limited adaptability to different climate and farming conditions need to be investigated
and addressed [11,77,78]. The current study took a biodiscovery approach by accessing
diverse microbial taxa from environmental samples with the aim to rapidly develop mi-
crobial biopesticides to control the most devastating plant pathogens. The technology to
rapidly develop new biopesticides is relevant for both agriculture and natural ecosystems
where fungal threats to plant and ecosystem health increased 5-fold within 15 years [79].
The current study reports the application of soil bacteria against bacterial, fungal and
oomycete plant pathogens as biocontrol agents. Our work suggests that environmental
microbiomes, where bacteria compete against each other, such as rhizosphere soil, are a
plentiful source for biocontrol agents against a wide range of diseases. Among these, three
new potential biocontrol bacteria, Corynebacterium flavescens, Sporosarcina aquimarina and
Sporosarcina saromensis, have been isolated that displayed anti-fungal and antioomycete
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activities against vegetable crop diseases that have not been reported previously. In total,
we developed ten potential microbial biopesticides that significantly reduced the number
of pathogens and disease symptoms in tomato, cabbage and chickpea plants.
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microbial isolates against fungal and oomycete pathogens.
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