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ABSTRACT 
 

High dimensional datasets that depict intricate spatial variations are necessary to predict complex 
landscape structures and the corresponding soil properties taking into account the size of the 
research region in addition to the data attributes. The number and quality of the input datasets 
taken into consideration essentially determine the quantity and quality of the soil properties that 
may be predicted thanks to data-driven learning algorithms.  The use of variable selection 
strategies both before and after the prediction can have a significant impact on the outcome and 
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can lower the related computing load. The majority of commonly used variable selection techniques 
such as correlation analysis, stepwise regression and recursive feature elimination, among others 
perform recursive statistical/mathematical comparison to identify the significant covariates that 
improve the effectiveness of the algorithm proposed. In order to identify the effective environmental 
variables in predicting the soil attribute, this article investigated a widely used recursive ranking 
method called recursive feature elimination. The covariate layer that produced the lowest RMSE 
was placed first according to the rankings of the covariates provided by recursive feature 
elimination. The findings showed that among other factors physiography, mean rainfall, rock 
outcrop difference ratio, elevation and mean temperature will be effective in predicting the soil 
properties required for digital soil mapping. 
 

 
Keywords: Digital soil mapping; variable selection techniques; environmental covariates; recursive 

feature elimination. 
 

1. INTRODUCTION 
 
Globally, the need for food increases due to 
increasing population, urbanization and climate 
change impacts. In order to mitigate the 
adversities, the need for systematic soil database 
creation  for  managerial applications are 
increasing with the decline in the soil productivity 
and quality due to the erratic rainfall distribution, 
poor and unplanned land management practices 
and climate change effects are among others [1]. 
In order to address the issues of food security 
and other concerning applications, soil physical 
and chemical attributes identification and 
mapping is essential. The conventional method 
of soil attribute delineation based on the mental 
model of the surveyor and analytical field surveys 
lacks the required precision and may pose 
serious application limitations due to human 
errors. Further, the lack of digital soil maps at the 
suitable scale can retard its implication, when the 
maps are upscaled or downscaled for a particular 
application [2,3]. The implementation of the 
geostatistics and spatial autocorrelation 
procedures, though considered as an efficient 
soil delineation technique, have been limited due 
to the assumptions that are needed to be 
satisfied. With the advances in the digital soil 
mapping procedures, the model-based methods 
of prediction can help in assessing the soil 
attributes at the unknown locations based on the 
input from the known soil observations [2]. Digital 
soil mapping deals with creating a spatial soil 
databases of different soil types of soil using 
computer technologies based on the field and 
laboratory observations in conjunction with 
spatial and attribute soil inference systems [4]. 
The integration of machine learning techniques in 
Digital Soil Mapping (DSM) plays a pivotal role in 
the analysis of vast datasets, enabling the 
extraction of meaningful patterns and 
relationships between soil properties and 

environmental factors. With algorithms like 
decision trees, support vector machines, and 
neural networks, DSM can predict soil attributes, 
such as nutrient content, texture, and pH, with 
remarkable accuracy [5]. Digital soil maps have 
immense applications across various sectors. 
Agriculture benefits from DSM by optimizing crop 
selection, fertilizer application, and irrigation 
strategies based on soil characteristics, leading 
to increased productivity and sustainability. Land-
use planning, environmental management, and 
conservation efforts also reap rewards from 
Digital Soil Mapping (DSM) aiding in identifying 
suitable areas for urban development, protected 
habitats and reforestation initiatives. 
Nonetheless, challenges persist in the domain of 
DSM, including data integration, model 
validation, and uncertainty assessment. The 
accuracy of the digital soil mapping-based 
predictions generally depends on the quality and 
the quantity of the input datasets considered. 
The bias associated with the performance of the 
learning-based predictions associated with the 
input datasets includes, sampling techniques and 
size implemented, redundancy associated with 
the covariates and the spatial autocorrelation 
associated with validation measures [6]. Though 
several of the studies incorporated covariates 
covering the SCORPAN factors [7], several of 
the studies limited the use of legacy soil maps 
and other potential covariates [8]. Most of the 
covariates are commonly derived from the 
SRTM-DEM derived variables and remote 
sensing variables (Landsat-8, Sentinel -2), 
among others. Appropriate covariate selection 
methods are generally implemented before and 
after the model calibration. The latter determines 
the most influential parameters of the model 
calibration and the former is based on the a-priori 
information of the soil scientists and are 
instigated to reduce the high dimensionality of 
the datasets incorporated [9]. Different types of 
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variable selection/feature selection techniques 
include, (1) Filter methods, (2) wrapper method, 
(3) embedded methods and (4) ensemble 
methods, have been implemented in various 
studies [10], of which the recursive feature 
elimination has been majorly utilized for selecting 
the covariate parameters [5, 11-16]. Other 
variable selection measures that have been 
implemented includes, in-built variable feature 
importance of Random Forest (RF) [17,18], 
Boruta[19,20], Stepwise regression, stepwise 
AIC [21,22], Multicollinearity analysis, Pearsons 
or Kendall Correlation Analysis [23,24], etc., 
Iterative principal component analysis were 
adopted to reduce the high dimensionality of the 
reflectance and elevation variables for enabling 
the quantitative prediction of the soil physical 
properties [25-27]. Similarly, most intricate and 
complex genetic algorithm (GA) have been 
utilized for selecting the covariate parameters for 
predicting the soil organic carbon (SOC) [28]. 
Several of the case-based methods have also 
been implemented in selecting the suitable 
covariate parameters. Zeraatpisheh, M., Y. 
Garosi, H. R. Owliaie, S. Ayoubi, R. Taghizadeh-
Mehrjardi, T. Scholten and M. Xu [19] studied 
and categorized the covariates based on their 
attribute temporal characterization. In this study, 
some variable selection methods have been 
reviewed and the recursive feature elimination 
method has been implemented for covariate 
ranking with 37 covariate layers against the soil 
pH attribute. 
 

1.1 Study Area 
 
The state of Tamil Nadu is located between 
latitude 08°05′ and 13°35′ N and longitude 76°15′ 
to 80°20′ E and the state is prominently covered 
by four major soil types of coastal soils, laterite 
soils, red soils, and black soils. The study area 
map is depicted in the Fig. 1. The Eastern Ghats 
are a chain of irregular hills in the northern 
regions of the state, and the Western Ghat 
mountain ranges stretch along its western 
boundary. The Western Ghats cover the entire 
western border with Kerala, thereby blocking the 
state from receiving the majority of the rain-
bearing clouds associated with the South West 
Monsoon. Since the state is situated in the 
Western Ghats rain shadow zone, it experiences 
more rainfall from the northeast monsoon than 
the south west monsoon. The south-central and 
central regions are dominated by arid plains. The 
state experiences erratic climatic conditions 
considering the topographical characteristics and 
receives most of the downpour from the North 

East Monsoon from October to December with 
dominating northeast winds. The annual 
maximum and the minimum temperature in the 
state ranges from 33 to 45°C and the minimum 
temperature, excluding a mountainous region, is 
24°C, and it decreases to about 10°C during the 
winter. The average amount of precipitation in 
the state per year is 945.9 mm. The state of 
Tamil Nadu is classified into seven agro-climatic 
zones (i.e.) north-eastern, north-western, 
western, high altitude and hilly, Cauvery delta, 
southern, and high rainfall zones. The state is 
also subjected to the adverse variations in the 
cropping pattern and intensity attributing to the 
geographical and temporal variations of the 
rainfall and changes in the soil characteristics 
with climate change. 
 

2. MATERIALS AND METHODS 
 
In order to perform the covariate selection 
through the recursive feature elimination, the soil 
samples containing the soil attribute information 
(pH) were used in the case study. The legacy soil 
information from the NRSC map have been 
utilized for the soil sample extraction (27194 
Nos.) by incorporating the stratified random 
sampling procedure. The environmental 
covariates representing the SCORPAN                    
factors that were derived from the remote 
sensing variables were mentioned in the Table 1 
and the methodology flowchart have been 
incorporated in the Fig. 2. SCORPAN here 
stands for: 
 
S: Soil at a specific point in space and time (Sc-
Soil Classes; Sa-Soil attributes) 
C: Climate 
O: Organisms 
R: Relief 
P: Parent Material 
A: Age, Time 
N: Spatial Position 
 
The climate information representing the 
temperature and rainfall parameters has been 
downloaded from the WorldClim 2.1 website 
(https://www.worldclim.org/data/worldclim21.html
) and the cloud-free Landsat -8 spectral 
information have been downloaded as a 3- 
month composite from March to May of 2022 
from Google Earth Engine Platform. The 
secondary terrain/relief attributes derived from 
the SRTM DEM (primary attribute) utilizing the 
SAGA terrain model were implicated to represent 
the geomorphological and hydrological 
parameters. Further, the parent material 

https://www.worldclim.org/data/worldclim21.html
https://www.worldclim.org/data/worldclim21.html
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covariates indicating the origin of the soil is 
represented through the spectral derivatives [29] 
depicted in Table 1, besides the geomorphology 
layer obtained from the NRSC, Hyderabad. The 

derived covariates were reprojected and 
resampled to the 100 m resolution using ArcGIS 
10.8 software. The flowchart of the study has 
been depicted in the Fig. 2. 

 
Table 1. List of environmental covariates 

 

Covariate Parameter Source/Description  Type 

Climate Mean Annual Temperature Mean of 30 year (1970 to 2000) N 

Mean Annual Rainfall Mean of 30 year (1970 to 2000) N 

Organisms Land Use & Land Cover map NRSC (22 – fold classification) C 

Landsat 8 – Band 1 Coastal aerosol (0.43-0.45) N 

Landsat 8 – Band 2 Blue (0.450-0.51 µm) N 

Landsat 8 – Band 3 Green (0.53-0.59 µm) N 

Landsat 8 – Band 4 Red (0.64-0.67 µm) N 

Landsat 8 – Band 5 Near – Infrared (0.85-0.88 µm) N 

Landsat 8 – Band 6 SWIR (1.57-1.65 µm) N 

Normalised Difference 
Vegetation Index (NDVI) 

(ρNIR−ρRED)/(ρNIR+ρRED), where ρ represents the 
spectral reflectance. 

N 

Relief Elevation (SRTM DEM) Homogenous terrain relief N 

Slope Gradient Hydraulic gradient acting upon overland N 

Profile Curvature Rate at which a slope changes down a slope line N 

Tangential Curvature Curvature perpendicular to slope gradient depicting 
flow convergence 

N 

Catchment Area Area in which water is collected by the natural 
landscape 

N 

Modified Catchment Area Amount of flow that accumulates in the unit area N 

Catchment Slope Depicted to distinguish the active and stable land 
elements 

N 

Multiresolution Index of Valley 
Bottom Flatness 

To measure flatness and lowness depicting 
depositional areas 

N 

Multiresolution Index of Ridge 
Top Flatness 

To measure flatness and lowness in stable upland 
areas 

N 

Topographic Position Index Distance from the top to the valley, ranging from 0 to 
1 

N 

Mid Slope Position Represents the distance from the top to the valley, 
ranging from 0 to 1 

N 

Terrain Surface Texture Number of pits and peaks within a specified 
neighbourhood, Terrain Surface Texture defines the 
fine(many) versus coarse(few) topographic spacing. 

N 

Valley Depth Vertical distance from the base level of a channel 
network. 

N 

Slope Height Slope Height is the relative height above the closest 
modelled drainage accumulation. 

N 

Normalised Height Normalized difference between slope height and 
valley depth, referred to as relative position. 

N 

Standardised Height The vertical distance between the base and the 
standardized slope index 

N 

Topographic Wetness Index An estimate of the topographic influence on soil 
moisture. 

N 

Slope Length Measure of distance from the origin of overland flow 
along its flow path to either concentrated flow or 
deposition location. 

N 

Fuzzy Landform Element Using a linear semantic import model, terrain C 
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Covariate Parameter Source/Description  Type 

Classification parameters are characterized using a landform 
classification technique. The classification is made 
according to the properties of the slope, maximum, 
minimum, profile, and tangential curvatures 

Geomorphons Represents soil erosion estimated based on specific 
catchment area and local slope gradient 

C 

Physiography Map showing the physical patterns and processes C 

Parent 
Material 

Carbonate Difference Ratio Differentiate carbonate-rich areas: (Band 4 - Band 
3)/(Band 4 + Band 3) 

N 

Clay Difference Ratio Differentiate areas of high clay hydroxyl influence: 
(Band 6 - Band 7)/(Band 6 + Band 7) 

N 

Ferrous Minerals Difference 
Ratio 

Differentiate areas of higher ferrous mineral 
influence: (Band 6 - Band 5)/(Band 6 + Band 5) 

N 

Iron Difference Ratio 

 

Differentiate areas of higher iron mineral influence: 
(Band 4 – Band 7)/(Band 4 + Band 7) 

N 

Rock Outcrop Difference Ratio 

 

Differentiate sedimentary rock (lime/dolostone) from 
igneous rock: (Band 6 - Band 3)/(Band 6 + Band 3) 

N 

Geomorphology Study of physical and Morphological features of the 
Earth's landform 

C 

(Note: N- numerical; C- Categorical) 
 

 
 

Fig. 1. a) Locational information of the study area; b) Tamil Nadu Study Area Map 
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Fig. 2. Graphical abstract of the study 
 

2.1 Feature Selection Methods 
 
The most implemented feature selection 
methods have been classified into (1) Filter 
Methods, (2) Wrapper Methods, (3) Embedded 
Methods, (4) Ensemble Methods. The filter 
method of feature section methods includes 
several of the statistical measures and the 
covariates that yields the lowest measure will be 
retained and other will be eliminated. In contrast 
to the filter methods, wrapper methods typically 
involve determining an optimal subset or ranks a 
set of initial covariates generally based on the 
metrices defined (RMSE (continuous); Overall 
Accuracy (categorical)) and the highly influential 
subsets were selected for the actual prediction. 
Embedded methods generally entail in-situ 
derivation of the variable/predictor importance, 
during model calibration and the ensemble 
methods includes confluence of various 
algorithms of the filter, wrapper and embedded 
methods in order to provide rankings for the 
covariates. The orthogonal transformation of the 
principal component analysis provides exclusive 
projection of the covariates in the dimensional 
space and the covariates are transformed with 
components having high variability thereby 
reducing the high dimensionality of the 
covariates.  The recursive feature elimination 
was incorporated in R environment                          
using the ‘caret’ package[30]. Feature                  
selection methods that were incorporated in 
other studies have been detailed in the                 
Table 2.   

 
3. RESULTS AND DISCUSSION  
 
The derivation of the environmental covariates 
based on the SCORPAN factors were facilitated 
based on the topographical and landform 
characteristics and the required information must 
be implemented at a larger spatial arrangement. 
The environmental covariates that were 
subjected to the feature selection have been 
depicted in the Fig. 3. Climate parameter 
considered as the primary agent of the soil 
forming process next to terrain and organisms 
were imparted as the mean annual rainfall and 
temperature. The climatic variables majorly 
influence the organic matter decomposition and 

its associated mineral depositions. The mean 
annual rainfall of the state as a 30-year average 
ranged from 787.45 to 2488.6 mm with the 
temperature parameter ranged from 12.7 to 
30.06 °C. The influence of the organisms was 
imparted through the spectral information from 
the Landsat -8 images and its derived NDVI 
layer. The NDVI value of the state after scaling 
varied from 0.995 to 0.993. Further,                            
the land use and land cover depicting the 
distribution of the LULC elements were also 
included to better depict the importance of the 
vegetation and forest biomass on the soil 
formation. 
 

The relief attributes depicting the topographical 
characteristics have been considered influential 
as it alters the prevailing microclimatic 
conditions. The Digital Elevation Model (DEM) 
defining the sea-land elevations ranged from 0 to 
2634 m with the slope degree increased at 82.29 
degrees representing the hydraulic gradient and 
gravity influence in sub surface water flow. 
Further, the profile and tangential curvature 
representing the vertical plane slope gradient 
and flow convergence ranged from -0.05 to 0.08 
and -0.11 to 0.08, respectively. The 
Multiresolution Index of Valley Bottom Flatness 
ranged from 0 to 8.9 and is utilized for assessing 
the areas of sedimented minerals. Further, 
Multiresolution Index of Ridge Top Flatness 
determining the areas of high flatness ranged 
from 0 to 7.0. The discrimination of the valleys 
(smaller value) and the ridge or top of hills (larger 
value) can be defined by the Topographic 
Position Index ranging from -154.9 to 147.64 and 
the terrain surface texture had the highest range 
observed at 75.47. The sediment deposits 
segregating the valley bottoms from hillslopes 
can be assessed by determining the valley 
depth, which ranges from 0 to 8.33.8. Similarly, 
Slope length and slope height of the study area 
ranged from 0 to 2972.5mand 0 to 1048 m, 
respectively. Catchment area and its associated 
slope parameters were implemented in order to 
represent the hydrogeological characteristics. 
Topographic Wetness Index confluence the 
water supply from the upslope catchment area 
and the water drainage downslope for target 
location in DEM ranged from 1.830 to 13.24, and 
were used as an alternative for the soil moisture 
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Table 2. Variable selection techniques employed in various studies 
 

Selection 
Method 

Algorithms  References 

Filter Method Chi-square test (McHugh, 2013) 
Theory of information entropy (Gilad-Bachrach, Navot, & Tishby, 2004) 
Correlation coefficient (L. Chen, Wang, Ren, Zhang, & Wang, 2019) 
Linear Discriminant Analysis (Xiao-Lin et al., 2011) 
ANOVA (Schmidt, Behrens, & Scholten, 2008) 

Wrapper 
Method 

Natural selection/Genetic Algorithm  (Maynard & Levi, 2017) 
Recursive Feature Elimination  (Paul, Heung, & Lynch, 2022) 
Simulated Annealing  (Xiong et al., 2014) 
Stepwise AIC  (Sun et al., 2019) 
Stepwise Regression  (Hitziger & Ließ, 2014) 

Embedded 
Methods 

Boruta (Dasgupta et al., 2023) 
LASSO and RIDGE regression  (Flynn, Rozanov, Ellis, de Clercq, & Clarke, 

2022) 
Z – score (Xiong et al., 2014) 
Random Forest based variable selection (Dornik et al., 2022) 

Ensemble 
Method 

Integrated multiple selectors (Bolón-Canedo & Alonso-Betanzos, 2019) 
Robust Rank Aggregate (RRA) (Kolde, Laur, Adler, & Vilo, 2012) 
Natural Breaks Approach  (North, 2009) 

 

Table 3. Covariate ranked through recursive feature elimination (RFE) 
 

Rank Covariate List 

1 Physiography 
2 Mean Rainfall 
3 Rock Outcrop Difference Ration 
4 Elevation 
5 Mean Temperature 
6 Geomorphology 
7 Standardized Height 
8 Iron Difference Ratio 
9 Carbonate Difference Ratio 
10 Landsat Band -6 
11 Clay Difference Ratio 
12 Multi resolution Valley Bottom Flatness 
13 Ferrous Mineral Difference Ratio 
14 Normalized Height 
15 Landsat Band -1 
16 Terrain Surface Texture 
17 Landsat Band -3 
18 Slope Height 
19 Valley Depth 
20 Topographic Position Index 
21 Normalized Difference Vegetation Index 
22 Mid Slope Position 
23 Catchment Area 
24 Landsat Band -2 
25 Landsat Band -4 
26 Multi resolution Ridge top Flatness 
27 Landsat Band -5 
28 Catchment Slope 
29 Modified Catchment Area 
30 Topographic Wetness Index 
31 Land Use and Land Cover 
32 Geomorphons 
33 Slope Degree 
34 Tangential Curvature 
35 Slope Length 
36 Fuzzy Landform Element Classification 
37 Profile Curvature 
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Fig. 3. Some of the environmental covariates generated and utilized for the variable selection techniques 
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Fig.  4. Correlation plot of the environmental covariates 
 
layer in several studies. Further, Normalized 
Height provides the normalized difference 
between the slope height and valley depth and 
the standardised height provides the vertical 
distance between the base and the standardised 
slope index.  Mid Slope Position determines the 
distribution of the target cell with respect to the 
ridge or a valley position varied from 0 to 1 for 
the study area. The categorical terrain 
parameters (i.e.) Fuzzy Landform Element 
Classification (FLEC), Physiography, 
geomorphons were also subjected to the variable 
selection techniques. Parent materials 
determines the underlying sediments and 
bedrock of the topography and the parent 
material information in the spectral context were 
imparted through the spectral derived indices 
with scales ranging from -1 to +1. 
 

The environmental covariates subjected to the 
wrapper based recursive feature elimination 

(RFE) ranked the environmental covariates and 
the ranks were depicted in the Table 3. Further, a 
correlation analysis (Fig. 4) has been performed 
to discriminate the variability among the 
covariates considered ranking procedure. Based 
on the ranks provided by the recursive feature 
elimination, the covariates can be eliminated if 
needed and the most important covariate for 
each of the SCORPAN parameters can be 
discriminated for further analysis. 

 

Of the covariates considered for the analysis, 
Physiography, Rainfall, Rock Outcrop Difference 
Index, Elevation, and Mean Temperature ranked 
first followed by other covariates for the soil pH 
attribute prediction for the study area and it might 
with respect to the soil attribute and location. The 
inclusion of  all-climatic parameters considered 
substantiates importance of the climatic 
parameters for the soil formation. Based on the 
correlation analysis and the ranking of the 
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covariates, the redundant information followed by 
the selection based on ranking can be facilitated. 
Further, the contribution of the covariates after 
prediction can be provided through the several of 
the global agnostic tools. 
 

4. CONCLUSION 
 

In this paper, a preliminary analysis for selecting 
the covariate information for digital soil mapping 
have been performed and the ranking of the 
covariates was facilitated by the recursive feature 
elimination procedure. From the facilitated 
review, most of the variable selection methods 
considered only the covariate information and 
neglected the response variable to be predicted. 
Since the recursive feature elimination included 
the weightages of the soil attribute in the variable 
selection, method have been implemented for 
ranking the covariates. From the ranking, the 
covariates that can contribute the most for the 
prediction can be included determinately. The 
major limitations of the learning algorithms 
include its “black-box” characteristics and its 
requirement of other exclusive variable selection 
algorithms. With the implications of several 
algorithms for performing the variable selection, 
suitable covariates for the prediction models can 
be matched. Thus, the high dimensionality of the 
covariate datasets can be substantially reduced 
and the model prediction results can be 
sufficiently increased. Further, the accuracy of 
the variable selection methods can be further 
facilitated based on the prediction results from 
the learning models.  
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