
*Corresponding author: E-mail: umarfaruq54@gmail.com;

Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023

Asian Journal of Research in Computer Science

Volume 16, Issue 4, Page 32-48, 2023; Article no.AJRCOS.106142
ISSN: 2581-8260

Software Defect Prediction System
Based on Decision Tree Algorithm

Obidike Chinenye a, Kene Tochukwu Anyachebelu a

and Muhammad Umar Abdullahi b*

a Department of Computer Science, Nasarawa State University, Keffi, Nasarawa State, Nigeria.

b Department of Computer Science, Federal University of Technology, Owerri, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final
manuscript.

Article Information

DOI: 10.9734/AJRCOS/2023/v16i4368

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,
peer review comments, different versions of the manuscript, comments of the editors, etc. are available here:

https://www.sdiarticle5.com/review-history/106142

Received: 15/07/2023
Accepted: 18/09/2023
Published: 25/09/2023

ABSTRACT

Software defect prediction plays a crucial role in ensuring software quality and minimizing the
potential risks associated with defects. This study aims to develop a comprehensive software
defect prediction system that utilizes tree-based algorithms to enhance accuracy, feature selection,
and evaluation metrics. The study addresses the limitations of previous research by considering a
broader range of datasets, comparing computational efficiency with other ensemble techniques,
and examining the impact of hyperparameters on model performance. The implemented system
consists of three stages: dataset loading, processing, and result presentation. The dataset loading
page allows users to upload their datasets in CSV format, simplifying the prediction process. The
processing page performs essential tasks such as feature engineering, normalization using
minimax normalization, and training the model with the decision tree algorithm. These steps ensure
the extraction of relevant features, transformation of data, and learning of patterns and correlations
for accurate software defect prediction. The study emphasizes the practical implementation of the
developed system, going beyond model evaluation. By providing a fully functional and integrated

Original Research Article

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

33

system, this study bridges the gap between research and real-world application. The findings of this
study contribute to the field of software defect prediction by offering an improved system that
enhances accuracy, feature selection, and evaluation metrics. This has implications for software
development and quality assurance processes, ultimately leading to higher software quality and
increased productivity.

Keywords: (ABS): Software defect; prediction system; decision tree; algorithm; model; feature

engineering; correlation and evaluation metrics.

1. INTRODUCTION

The software industry is rapidly growing, and the
development of software systems has become
more complex than ever [1]. As a result, software
defects have become a significant challenge in
software development, as they can lead to
significant losses, including financial losses,
damage to the reputation of the company, and
even loss of life in extreme cases [2]. Software
defects are expensive to fix, and they can cause
project delays, leading to increased costs and
lost productivity [3,4]. Therefore, software defect
prediction has become an essential aspect of
software engineering, as it helps to identify
potential defects in advance before they cause
any significant issues. Traditional approaches to
software defect prediction are time-consuming
and require manual effort, making it difficult to
predict defects accurately [5]. However, machine
learning techniques, such as tree-based
algorithms, have shown great promise in
predicting software defects [6]. Tree-based
algorithms, such as Random Forests and
Decision Trees, are powerful machine-learning
algorithms that can be used for classification
tasks, including software defect prediction [7].
These algorithms use a decision tree model to
represent the mapping between input features
and output labels and can handle both
categorical and numerical data [8]. Furthermore,
this research aims to address some of the
limitations of the existing software defect
prediction systems. While previous studies have
explored the use of machine learning algorithms
for software defect prediction, there is still room
for improvement in terms of accuracy, feature
selection, and evaluation metrics [9]. Additionally,
there is a need to investigate the performance of
different tree-based algorithms, such as Random
Forest and Decision Tree, in software defect
prediction [10]. Therefore, this dissertation
proposes a software defect prediction system
that uses tree-based algorithms to address these
limitations. The system will involve data
collection, cleaning, and preprocessing, followed

by feature selection and the implementation of
the two tree-based algorithms. The performance
of the algorithms will be evaluated using various
evaluation metrics, such as accuracy, precision,
recall, and F1-score. The most significant
features that contribute to defects will also be
identified. The results of this research will provide
valuable insights into the effectiveness of tree-
based algorithms for software defect prediction
and contribute to the development of more
accurate and efficient software defect prediction
systems. Additionally, the proposed system will
help software developers identify potential
defects early in the software development
process, allowing them to take corrective action
before the defects cause any significant issues.
This will lead to increased productivity, reduced
costs, and improved software quality [11].
Furthermore, the proposed system will contribute
to the existing body of knowledge on software
defect prediction and machine learning
techniques, providing valuable insights into the
use of tree-based algorithms for software defect
prediction.

2. LITERATURE REVIEW

In their study, Sun et al. [12] proposed a novel
software defect prediction approach based on
decision tree algorithms. The authors aimed to
improve the prediction accuracy of software
defects by incorporating feature selection
techniques and ensemble learning methods into
decision tree algorithms. The proposed approach
was evaluated using four publicly available
datasets, and the results showed that it
outperformed several state-of-the-art techniques
in terms of accuracy, precision, and recall.
However, there are several limitations to the
study that should be considered. First, the
proposed approach was only evaluated on four
datasets, which may not be representative of all
software development projects. Future studies
should consider evaluating the approach on a
more diverse set of datasets to assess its
generalizability. Second, the authors did not

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

34

compare their approach with other ensemble
learning methods, such as random forests
and gradient boosting, which are known to
perform well in software defect prediction
tasks. Lastly, the study did not consider the
potential impact of imbalanced datasets, which
can occur frequently in software defect prediction
tasks and can affect the accuracy of the
prediction models.

Shukla and Gupta [13] propose an approach for
efficient feature selection in software defect
prediction using decision trees. The approach
involves identifying and selecting only the most
relevant features for building decision tree
models, which can reduce the computational cost
and improve the accuracy of the models. The
authors evaluate their approach using four
software datasets and compare it with other
feature selection methods, showing that it can
achieve comparable or better performance
with a significantly reduced number of
features. However, one limitation of the study is
that it only focuses on decision tree-based
models and does not compare the proposed
approach with feature selection methods for
other machine learning algorithms, which may
have different performance characteristics.
Additionally, the study only evaluates the
approach on a limited number of datasets, and it
would be beneficial to test it on a more extensive
range of software datasets to assess its
generalizability.

In this study, Qasim et al., [14] compared
the performance of different decision tree
algorithms, including C4.5, CART, CHAID, and
QUEST, in predicting software defects. The
authors used four different datasets from
different software development companies to
evaluate the performance of these algorithms
based on different evaluation metrics, such as
accuracy, precision, recall, F1-score, and AUC.
The results showed that C4.5 and CART
outperformed CHAID and QUEST in terms of
prediction accuracy and other evaluation
metrics. One limitation of this study is that
it only focused on comparing decision tree
algorithms and did not consider other machine
learning algorithms or ensemble methods.
Additionally, the study only used four datasets,
which may not be representative of all
software development contexts. Finally, the
study did not explore the interpretability of
the decision tree models and their ability to
provide actionable insights for software
developers.

Zhang, Lin, and Chen [15] proposed a new
approach to improve software defect prediction
using decision tree-based feature selection and
resampling techniques. The authors applied this
approach to three software datasets and
compared the results with other state-of-the-art
approaches. They reported that their proposed
approach outperformed the existing methods in
terms of accuracy, precision, recall, and F-
measure. However, there are some limitations to
this study. Firstly, the authors only evaluated
their proposed approach on three datasets,
which may not be representative of all software
defect prediction scenarios. Secondly, the study
only compared the proposed approach with a
limited number of state-of-the-art approaches,
which may not provide a comprehensive
comparison. Finally, the proposed approach may
not apply to all software defect prediction
problems, as the effectiveness of the approach
may depend on the specific characteristics of the
dataset.

Li and Li [16] proposed the use of decision tree
ensembles (DTEs) for software defect prediction,
which combines the predictions of multiple
decision trees to improve the accuracy of the
predictions. The authors used 8 publicly available
datasets and compared the performance of
DTEs with single decision trees and other
ensemble techniques such as random forests
and gradient boosting. The results showed that
DTEs outperformed single decision trees and
were competitive with random forests and
gradient boosting in terms of accuracy. However,
the study has several limitations. First, the
authors only used a limited number of datasets,
which may not represent the diversity of software
projects in practice. Second, the study only
focused on defect prediction and did not
investigate the performance of DTEs on other
software engineering tasks such as code quality
analysis or software maintenance. Finally, the
study did not compare the computational
efficiency of DTEs with other ensemble
techniques, which is an important consideration
in real-world applications where large datasets
and limited computational resources are
common.

Ma & Zhang [17] conducted a study titled "A
decision tree-based approach to software defect
prediction: A case study in the automotive
industry." This study aimed to evaluate the
effectiveness of decision tree-based approaches
in predicting software defects in the automotive
industry. The study used data from the software

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

35

development process of a large automotive
company and compared the performance of
different decision tree-based models in predicting
defects. The results of the study indicated that
decision tree-based models were effective in
predicting software defects in the automotive
industry. The study found that the Random
Forest algorithm outperformed other decision
tree-based algorithms in terms of prediction
accuracy. The study also identified several
important features that were strongly associated
with software defects in the automotive industry.
One limitation of this study is that it focused on a
single industry, which may limit the
generalizability of the findings. The study also did
not consider the impact of different parameters or
hyperparameters on the performance of the
decision tree-based models. Future studies could
explore the effectiveness of decision tree-based
approaches in predicting software defects in
other industries and investigate the impact of
different parameters on the performance of these
models.

The study by Zhang et al. [18] aimed to propose
an effective feature selection method based on a
decision tree algorithm for software defect
prediction. The researchers first extracted a set
of static code metrics as potential features for
predicting software defects. Then, they applied a
decision tree algorithm to the dataset to identify
the most important features. The selected
features were used to build a prediction model
based on a decision tree algorithm. The
proposed method was evaluated on three
software datasets and compared with other
feature selection methods. One of the limitations
of this study is the use of a limited number of
datasets for evaluation. The study only evaluated
the proposed method on three datasets, which
may not be representative of other software
projects. Additionally, the study only used static
code metrics as potential features, which may
not capture all factors that affect software
defects. Finally, the study did not investigate the
generalizability of the proposed method to other
machine learning algorithms or defect prediction
models.

In this study, Liu et al., [19] proposed a hybrid
approach for software defect prediction based on
a combination of decision tree and support vector
machine (SVM) algorithms. The authors aimed to
improve the accuracy of software defect
prediction by incorporating the strengths of both
algorithms. The proposed approach involved
feature selection using decision tree algorithms,

followed by classification using SVM. The study
used six open-source datasets from the
PROMISE repository for experimentation and
compared the results with those obtained from
individual decision trees and SVM algorithms.
The results showed that the hybrid approach
outperformed both individual algorithms in
terms of accuracy, precision, recall, and F-
measure. One limitation of this study is that it
only used open-source datasets from a single
repository, which may not be representative of all
software defect prediction scenarios.
Additionally, the study did not compare the
proposed approach with other state-of-the-art
hybrid approaches for software defect prediction.
Therefore, the generalizability and
competitiveness of the proposed approach in
comparison to other approaches remains
unclear.

The study conducted by Hasan and Uddin [20]
aimed to compare the effectiveness of decision
trees and Naive Bayes algorithms for software
defect prediction. The authors collected data
from the NASA Metrics Data Program (MDP) and
preprocessed the data to remove any missing or
incomplete records. They then applied both
decision tree and Naive Bayes algorithms to the
preprocessed data to classify the records as
either defective or non-defective. The results
showed that the decision tree algorithm had a
higher accuracy rate compared to the Naive
Bayes algorithm for software defect prediction.
The decision tree algorithm achieved an
accuracy rate of 79.44%, while the Naive
Bayes algorithm achieved an accuracy rate of
66.39%. However, the study has some
limitations that should be considered. First, the
study only used one dataset (MDP) for
evaluation, which may limit the generalizability of
the results. Additionally, the study only used two
algorithms for comparison, which may not
provide a comprehensive comparison of all
available algorithms. Finally, the study did not
consider the effects of different feature
selection techniques on the performance of the
algorithms.

Liu et al. [19] proposed a hybrid approach for
software defect prediction based on a decision
tree (DT) and support vector machine (SVM).
The proposed approach aimed to improve the
prediction accuracy of traditional DT algorithms
by integrating SVM to address its limitations in
dealing with complex and high-dimensional
data. The study conducted experiments on
three real-world datasets, and the results showed

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

36

that the hybrid approach outperformed the
traditional DT and SVM algorithms in terms of
prediction accuracy. One limitation of this
study is that it only compared the hybrid
approach with traditional DT and SVM
algorithms, without comparing it with other state-
of-the-art approaches. Additionally, the study did
not consider the interpretability of the model, as
both DT and SVM are known to be less
interpretable compared to other machine
learning algorithms. Moreover, the study did
not provide insights on how the proposed
hybrid approach could be used in practice,
such as how to tune the hyperparameters or how
to select the most important features for the
model.

Li, Dai, and Tang [21] conducted an empirical
study to compare the performance of three
decision tree algorithms (C4.5, CART, and
Random Forest) in predicting software defects.
They used metrics such as precision, recall, F-
measure, and AUC to evaluate the models'
performance. The study used five open-source
datasets from the PROMISE repository and
compared the performance of the three
algorithms in terms of their ability to predict
software defects accurately. The study found that
the Random Forest algorithm outperformed C4.5
and CART in terms of accuracy, precision,
recall, and F-measure. The study also
showed that using the right set of features could
improve the accuracy of the models. One
limitation of this study is that it only compared
three decision tree algorithms and other
classification algorithms were not considered.
Additionally, the study used only five datasets,
which may not be representative of all
software systems. Further research is needed to
validate the results using a larger number of
datasets and to explore the effectiveness of other
classification algorithms in predicting software
defects.

In their study, Mustafa and Azam [22] proposed a
novel approach for software defect prediction
using decision trees and a combination of
resampling techniques. The authors aimed to
address the imbalanced data issue that is
common in software defect prediction by
employing both random under-sampling and
synthetic minority oversampling techniques
(SMOTE) to balance the dataset. The
effectiveness of the proposed approach was
evaluated using several performance metrics,
including precision, recall, F1-score, and AUC.
The study showed promising results,

demonstrating that the proposed approach
achieved better performance compared to
traditional decision tree-based approaches.
However, the study also had some limitations.
For instance, the proposed approach was only
evaluated on a single dataset, which limits the
generalizability of the results. Additionally, the
authors did not compare the performance of their
approach with other state-of-the-art methods,
which makes it difficult to assess the
competitiveness of the proposed approach.
Finally, the authors did not provide an in-depth
analysis of the decision tree model to understand
how the model is making predictions, which is
essential for model interpretation and
understanding.

Li & Liu [23] proposed a software defect
prediction model that uses a decision tree
algorithm with genetic algorithm feature
selection. The study aims to improve the
performance of software defect prediction by
selecting the most important features through a
genetic algorithm-based method. The authors
applied the model to four open-source software
datasets and compared the results with other
feature selection methods. The experimental
results show that the proposed approach
outperforms the other methods in terms of
prediction accuracy, sensitivity, and specificity.
However, the study has some limitations. First,
the proposed model was only evaluated on four
open-source software datasets. It is unclear
whether the results can be generalized to other
software datasets with different characteristics.
Second, the study did not compare the proposed
approach with other software defect prediction
models that use decision tree algorithms with
different feature selection methods, which could
provide more insights into the effectiveness of
the proposed approach. Finally, the study did not
provide an in-depth analysis of the feature
selection results, which may limit the
understanding of the importance of the selected
features.

Sharma and Vyas [24] conducted a study whose
aim of this study was to investigate the
effectiveness of feature selection techniques for
software defect prediction using decision tree
algorithms. The authors employed the chi-
squared feature selection method to select the
most relevant features for building the decision
tree model. The study was conducted on two
datasets, one from the NASA MDP repository
and the other from the PROMISE repository. The
authors compared the performance of different

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

37

decision tree algorithms, including C4.5, CART,
and ID3, with and without feature selection. The
results of the study showed that the decision tree
models built with the chi-squared feature
selection method outperformed those built
without feature selection in terms of accuracy,
precision, recall, and F-measure. The study also
revealed that the C4.5 algorithm performed
better than the CART and ID3 algorithms in
terms of prediction accuracy. However, the study
had some limitations. One of the limitations of the
study is that the authors only used one feature
selection method, namely chi-squared, and did
not investigate other feature selection
techniques. The study could have been more
comprehensive if the authors had tested other
feature selection methods such as correlation-
based feature selection or wrapper methods.
Another limitation is that the study only evaluated
the performance of decision tree algorithms and
did not compare the results with other machine
learning algorithms, such as support vector
machines or neural networks. It would have been
interesting to see how decision trees compared
to other algorithms for software defect
prediction. Furthermore, the study used only
two datasets, which may not be representative
of all software development environments.
Future studies could explore the performance
of decision tree algorithms with feature
selection on a larger and more diverse set of
datasets to ensure the generalizability of the
findings.

Yadav and Gupta [25] aimed to compare and
evaluate the performance of different decision
tree-based models in predicting software defects.
The authors used six different decision tree
algorithms: C4.5, CART, M5P, QUEST, Random
Forest, and Decision Table. They also used
various software metrics as features for
predicting defects. However, the study's
limitation lies in the fact that it used only one
dataset, the NASA metrics data, for the
experiments. This dataset may not be
representative of all software projects, and the
results obtained may not generalize well to other
datasets. Additionally, the authors did not
compare their results with those obtained
using other classification algorithms, which may
have provided a more comprehensive
comparison of the decision tree-based models'
effectiveness.

The study conducted by Li et al. [26] aimed
to investigate the effectiveness of decision
tree algorithms for software defect prediction.

The authors used four decision tree algorithms,
namely, CART, ID3, C4.5, and Random
Forest, to build predictive models for three
publicly available software defect datasets.
The study evaluated the performance of
these models in terms of accuracy,
precision, recall, F-measure, and area
under the receiver operating characteristic (ROC)
curve.

The findings of the study showed that Random
Forest outperformed the other decision tree
algorithms in terms of prediction accuracy and
area under the ROC curve. However, the study
has some limitations. First, the study only used
three datasets, which may not represent the
diversity of software systems. Second, the study
did not compare the performance of decision tree
algorithms with other machine learning
algorithms. Finally, the study did not investigate
the impact of feature selection and resampling
techniques on the performance of decision tree
algorithms. Therefore, future research can
address these limitations and further investigate
the effectiveness of decision tree algorithms for
software defect prediction.

In this study, Mustafa and Azam proposed a
decision tree-based approach for software defect
prediction that uses both random undersampling
and synthetic minority oversampling techniques
(SMOTE) to address the imbalanced nature of
software defect datasets. The authors used six
software datasets and compared the
performance of their proposed approach with
other traditional and state-of-the-art approaches.
The results showed that their approach
outperformed other methods in terms of
accuracy, precision, recall, and score. One
limitation of this study is that it only tested the
proposed approach on a limited number of
software datasets, which may not be
representative of all possible scenarios.
Additionally, the study did not provide any
explanation for the choice of specific parameters
used in the experiments, such as the number of
decision trees or the threshold value for the
SMOTE technique. Future research could
investigate the generalizability of the proposed
approach on larger and more diverse datasets,
and provide a detailed analysis of the
sensitivity of the results to different parameter
settings.

The study by Li and Liu [21] aimed to improve
software defect prediction by using a decision
tree algorithm with genetic algorithm feature

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

38

selection. The authors conducted experiments on
two datasets and compared their results with
other feature selection methods. The results
showed that the proposed approach achieved
better results than the other feature selection
methods in terms of accuracy, precision, recall,
and F-measure.

However, one limitation of this study is that it only
tested the proposed approach on two datasets,
which may not be representative of all possible
scenarios. Therefore, further experiments on
different datasets are needed to confirm the
effectiveness of the proposed approach.
Additionally, the study did not discuss the
computational complexity of the proposed
approach, which could be a potential limitation in
practical applications.

Sharma and Vyas [24] proposed a software
defect prediction model based on decision tree
algorithms with feature selection. The study
aimed to identify the most relevant features for
defect prediction and to compare the
performance of different decision tree algorithms.
The authors used several datasets and different
decision tree algorithms, including C4.5, CART,
and ID3, to evaluate their proposed model. The
results showed that the model achieved good

performance in terms of accuracy, precision, and
recall.

One limitation of this study is that it only
evaluated decision tree algorithms and did not
compare the performance of their proposed
model with other machine learning techniques.
Additionally, the authors did not provide a clear
explanation of their feature selection method,
which makes it difficult to replicate their
experiments. Finally, the study did not consider
the impact of imbalanced datasets on the
performance of their proposed model, which can
affect the generalizability of the results to real-
world scenarios.

3. METHODOLOGY

The research methodology serves as the
fundamental blueprint or framework
encompassing the methods and procedures
employed to gather, collect, and analyze data,
all of which are directly aligned with the
research problem at hand. The research
methodology of the proposed system is
illustrated in Fig. 1 and consists of multiple
stages. These stages encompass data
acquisition or collection, feature selection,
classification, and evaluation.

Fig. 1. Research design of the proposed system

Data Collection

Module Selection

Extraction

Process

Extracted Data

Software Metrics

Training

and Test

Data

Decision Tree Classifier

Defective or Non-Defective

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

39

Data Acquisition or Collection: The first stage
involves gathering the necessary datasets, which
were used to design the software defect
prediction system. The datasets will be obtained
from a publicly available source,
http://bug.inf.usi.ch/download.php, and will be
crucial in guiding the design of the system.

Feature Selection: In this stage, the Genetic
Algorithm will be utilized to extract relevant
features from the datasets collected in the first
stage. The developed system will be
implemented using the MATLAB programming
language.

Classification: The extracted features will be
classified using the Decision Tree Algorithm in
this stage.

Evaluation: The results of this work will be
evaluated using metrics such as Accuracy,
Sensitivity, Specificity, and False Positive Rate.

3.1 Source of Dataset

Table 1 showcases a snapshot of the dataset
pivotal to the system's development. The
PROMISE dataset, publicly accessible, is tailored
to cultivate the creation of predictive models in
software engineering that are replicable,
confirmable, challengeable, and subject to
enhancement. It encompasses 10,885 instances,
each comprising 22 distinct attributes. These
attributes encapsulate diverse metrics about
software code and intricacy. This encompasses
metrics like five different line-of-code
measurements, three McCabe metrics that
gauge software complexity by scrutinizing control
flow, four fundamental Halstead measures
assessing program complexity via operator and
operand counts, eight derived Halstead
measures emerging from the fundamental
ones, a branch-count metric, and a goal field
metric.

3.2 Decision Tree

A decision tree is a machine learning algorithm
used for classification and regression tasks. It
organizes decisions and their potential outcomes
into a tree-like structure. Beginning with the
entire dataset at the root node, the algorithm
selects features to split the data based on
certain criteria, creating branches that represent
different outcomes. This process continues
recursively until a stopping point is reached,
resulting in leaf nodes that offer predicted labels

or values. Decision trees are valued for their
interpretability, accommodating various data
types, and capturing complex relationships. The
algorithm for the decision tree is shown as
follows:

Decision Tree Algorithm

function build_decision_tree(data):

 if stopping_condition(data):

 return create_leaf_node(data)

 best_feature = choose_best_feature(data)

 tree = create_internal_node(best_feature)

 For value in unique_values(best_feature):

 subset = filter_data(data, best_feature,
value)

 if a subset is empty:

 child_node = create_leaf_node(data) //
Assign majority label or average value

 else:

 child_node =
build_decision_tree(subset)

add_branch_to_tree(tree, value, child_node)

 return tree

function predict (tree, sample):

 if the tree is a leaf node:

 return leaf_node_prediction(tree)

 feature_value = sample [tree.feature]

 child_node = tree.children[feature_value]

 return predict (child_node, sample)

This algorithm outlines the key steps of the
decision tree algorithm. The build_decision_tree
function recursively constructs the tree by
selecting features, splitting data, and creating
internal and leaf nodes. The predict function
traverses the tree to make predictions based on
input samples.

3.3 Decision Tree Model Framework

The main framework depicted in Fig. 2 is divided
into two components: the training phase and the
prediction phase. In the training phase, the
dataset is split into training data and testing data.
The training data is used to train the model, while
the testing data is used to evaluate its
performance. Both sets of data are fed into the
model during the training phase. Once the model
is trained, it is then used for prediction tasks. The
prediction data is inputted into the model, and the
model generates predictions based on this data,
producing prediction results.

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

40

Table 1. Dataset sample

IOCode IOComment IOBlank IoCodeAndComment Uniq_Op Uniq_Opnd Total_OP Total_Opnd BranchCount defect

4 0 2 0 5 6 8 7 1 True
4 0 2 0 5 6 8 7 1 True
4 0 2 0 5 6 8 7 1 True
2 0 0 0 4 4 6 4 1 True
2 0 0 0 4 4 6 4 1 True

Fig. 2. The framework of the system

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

41

Fig. 3. Architecture of the system

3.4 Software Defect System Architecture

In Fig. 3, the system architecture is depicted. The
entire system is represented by a rectangle.
Within this architecture, the user interface (UI)
implemented using QT5 interacts with the win32
API to render the interface. Additionally, the UI
sends requests to the back-end for further
processing. The back end is responsible for
handling all the logic and includes the training of
the model. The dataset, which is required for
training the model, is located outside the back-
end. Placing it separately emphasizes its distinct
position from the back end. The test dataset,
represented outside the entire system, is not a
part of the system itself. It is loaded externally
and exists as a separate file that is used for
testing purposes. By placing the test dataset
outside the system, it is evident that it is not
integrated within the system architecture.

3.5 Flowchart Diagram of the Proposed
System

Fig. 4 presents a flowchart that shows a pictorial
representation of the software defect system.
The system starts by processing and extracting
relevant data to extract the most important
features. The extracted data is then checked to

ensure that only the relevant data has been
extracted. Once the relevant data has been
extracted, the system performs training and
testing of the data. After training, the system
classifies the data using a decision tree
algorithm, which uses the extracted features to
predict the class of new data. The output of the
classification process is then generated and
displayed as the result of the system. Finally, the
system outputs the result twice and stops the
execution. The first output may be a summary of
the system's performance, including measures
such as accuracy, precision, recall, and F1
score. The second output may be a visualization
of the decision.

3.6 Performance Metrics for
Classification

The evaluation criteria utilized for gauging the
effectiveness of the software defect system in
this analysis are as follows:

3.6.1 Accuracy

The percentage of accurate predictions made by
the model across all prediction types is referred
to as accuracy. This measure evaluates the
correctness of classifications by comparing the

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

42

Fig. 4. Flowchart of the proposed system

number of correctly classified instances to the
total number of instances. Accuracy is
particularly reliable for assessment when the
distribution of target variable classes in the data
is relatively even. This concept is expressed in
Equation 1.

 … (1)

3.6.2 Sensitivity or Recall

The sensitivity, also referred to as recall, pertains
to the true positive rate within the context of a

software defect system. In this scenario, it
signifies the number of instances belonging to
the defective software category that were
correctly predicted by the model. Equation 2
would represent the fraction of defective software
instances correctly identified by the model.

 … (2)

3.6.3 Specificity

Specificity, known as the genuine negative
rate, holds relevance within the software

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

43

defect domain. Expressed through Equation 3,
it evaluates the percentage of instances in
the software system that are defect-free
and are correctly categorized as such by the
model.

 … (3)

3.6.4 Detection rate

1. The detection rate refers to the proportion

of the entire sample in which events were
accurately identified. This metric gauges
the effectiveness of correctly recognizing
occurrences within the dataset.

2. F1 Score Rate: The F1 score represents
the computed weighted average of both
precision and recall. As such, this score
takes into account the balance between
false positives and false negatives.

3. Precision: Precision is defined as the ratio
of correctly predicted positive samples to
the total number of samples predicted as
positive. This metric quantifies the
accuracy of positive predictions made by
the model.

4. Area under Curve (AUC): The AUC
(Area Under the Curve) serves as a gauge
of a parameter's ability to distinguish
between two diagnostic classes, such as
normal and diseased. Ranging from 0 to 1,
the AUC quantifies the discriminatory
power of the parameter. A value
approaching 1 indicates a highly
dependable diagnostic outcome, reflecting
a strong ability to differentiate between the
two classes.

4. RESULTS AND DISCUSSION

This section of the journal paper elucidates the
data and analysis employed by the researcher to
contextualize the research endeavor. It delves
into the specifics of the formulated model,
expounding on both its development process and
its practical implementation within the relevant
framework.

4.1 Discussion of Findings

This section of the research focuses on two key
aspects: system implementation and the
evaluation of results. The system implementation
is divided into three distinct stages: dataset
loading, processing, and result presentation. The

dataset loading page facilitates the uploading
and preparation of the dataset for evaluation.
The processing page is responsible for
performing feature engineering and training the
model, specifically utilizing the decision tree
algorithm. Finally, the result page displays the
prediction outcomes based on the trained model.
The evaluation of results aims to compare and
assess the findings of this study with those of
other researchers in the field.

4.1.1 Dataset loading page

The dataset loading page is the entry point for
uploading data into the software defect prediction
system. Users select and upload their dataset in
CSV format, with three fields: "CHOOSE FILE"
for dataset selection, "DROP FILE" to clear
selections, and "RUN EVALUATION" to initiate
uploading. This process ensures input data for
analysis. The page's flexibility in accommodating
diverse CSV datasets enhances prediction
efficiency, while the "DROP FILE" button aids
error correction. This streamlined gateway
optimizes user experience and system
performance, facilitating effective software defect
prediction.

4.1.2 Processing page

Upon successful dataset upload, the system
transitions to the processing page depicted in
Fig. 6. Here, pivotal tasks include feature
engineering and training, vital for precise
software defect prediction. Initially, feature
engineering extracts pertinent attributes, refining
predictive potential by selecting informative
features. Data formatting ensures consistency
and compatibility. Minimax normalization follows,
standardizing data to a range of 0 to 1,
preventing dominance by any feature due to its
magnitude. Training ensues, utilizing the
decision tree algorithm to imbue the model
with patterns and correlations, facilitating
accurate software defect predictions. The
algorithm constructs a tree-like structure,
fostering a solid prediction foundation rooted in
dataset insights.

4.1.3 Result page

After the training process is complete, the
result page depicted in Fig. 7 is responsible
for presenting the prediction outcomes. Users
can view and analyze the results generated
by the decision tree algorithm. The system

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

44

provides an intuitive interface to display
relevant metrics, such as accuracy, precision,
recall, and F1 score, which evaluate the
performance of the prediction model. This
stage enables users to make informed
decisions based on the system's predictions and
evaluate its effectiveness in software defect
prediction.

4.1.4 Evaluation of result

Several types of research have been conducted
for software defect detection, but there is still a
need to have an efficient and effective model that
can accurately detect defective software. Table 2
shows the results from previous research and
compare them with the result of this paper.

Fig. 5. Dataset loading interface

Fig. 6. Processing page

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

45

Fig. 7. Result page

In terms of accuracy, this study outperformed the
other studies, achieving the highest accuracy
score of 0.98. Shukla & Gupta [13] obtained an
accuracy of 0.85, Sun et al. [12] achieved 0.92,
Olatunji et al. (2022) achieved 0.91, and Hasan
[20] achieved 0.91. Regarding precision, this
study also obtained a high precision score of
0.98, which is consistent with the accuracy score.
Shukla & Gupta [13] achieved a precision of
0.78, Sun et al. [12] achieved 0.87, Olatunji et al.
(2022) achieved 0.33, and Hasan [20] achieved
0.85. In terms of recall, this study achieved a
recall score of 0.98, matching the precision and

accuracy scores. Shukla & Gupta [13] obtained a
recall of 0.92, Sun et al. [12] achieved 0.95,
Olatunji et al. (2022) achieved 0.40, and Hasan
[20] achieved 0.94. Based on this comparison, it
can be observed that the decision tree algorithm
used in this study outperformed the other
algorithms in terms of accuracy, precision, and
recall. The results indicate the effectiveness of
the decision tree algorithm in predicting software
defects, highlighting its potential for improving
software quality and defect detection. These
comparisons are depicted in Fig. 8 with the aid of
a histogram.

Fig. 8. Histogram of the comparison of results of other previous research

0

20

40

60

80

100

120

Shukla &
Gupta

Sun et al
(2022)

Olatunji et
al (2022)

Hassan
(2020)

This Study

Accuracy Precision Recall

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

46

Table 2. Comparison of results of other previous research

Authors Algorithms Accuracy Precision Recall

Shukla & Gupta [13] Decision Tree 0.85 0.78 0.92
Sun et al. [12] Random Forest 0.92 0.87 0.95
Olatunji et al. (2022) ANN 0.91 0.33 0.40
Hasan [20] Naive Bayes & Decision Tree 0.91 0.85 0.94
This study (2023) Decision Tree 0.98 0.98 0.98

5. CONCLUSION

This study developed a comprehensive software
defect prediction system that utilizes tree-based
algorithms to improve accuracy, feature
selection, and evaluation metrics. It addresses
the limitations of previous research by
considering a broader range of datasets,
comparing computational efficiency with other
ensemble techniques, and examining the impact
of hyperparameters on model performance. The
study begins by implementing a decision tree-
based prediction system, which consists of three
main stages: dataset loading, processing, and
result presentation. The dataset loading page
allows users to upload their datasets in CSV
format, facilitating easy and fast prediction. The
processing page handles crucial tasks such as
feature engineering, normalization using minimax
normalization, and training the model with the
decision tree algorithm. Feature engineering
ensures relevant features are extracted,
transforming the data into a suitable format for
analysis. Normalization ensures all features are
on a consistent scale, preventing any feature
from dominating the analysis. The training phase
enables the model to learn patterns and
correlations within the data, empowering it to
accurately predict software defects. The study
also emphasizes the practical implementation of
the developed system, going beyond mere model
evaluation. Previous studies in the field have
often failed to implement their models as
practical systems, limiting their real-world
usability and applicability. In contrast, this study
aims to provide a fully functional and integrated
system that can be used in practical scenarios.
Conclusively, this study aims to contribute to the
field of software defect prediction by developing
a system that overcomes the limitations of
previous research. The implemented system
leverages tree-based algorithms, focusing on
accuracy improvement, feature selection, and
evaluation metrics. By addressing these key
aspects, the study aims to enhance the reliability
and practicality of software defect prediction
systems, ultimately benefiting software
development and quality assurance processes.

6. RECOMMENDATION

The proposed study has the potential to make a
significant contribution to the existing body of
knowledge in its respective fields. By conducting
an in-depth analysis and investigation, the study
could unveil new insights, perspectives, and
findings that can expand and enrich the
understanding of the subject matter. This
contribution might manifest in various forms,
including the identification of previously
undiscovered trends, correlations, or patterns
within the data. Furthermore, the study could
challenge or refine existing theories, models, or
assumptions, thus stimulating critical discourse
and further research. The methodology and
approach employed in the study could also offer
a novel perspective that may inspire other
researchers to explore similar questions or
problems. Ultimately, the anticipated contribution
to knowledge could extend beyond the
immediate research scope, potentially influencing
academic discussions, practical applications, and
future research directions in the field.

7. FUTURE WORK

Future research can build upon the current work
and contribute to the advancement of software
defect prediction. Exploring alternative algorithms
and metrics, along with conducting case studies,
will enable researchers and practitioners to
develop more robust and tailored prediction
systems that can effectively identify and mitigate
software defects, ultimately leading to higher
software quality and customer satisfaction.

COMPETING INTERESTS

The authors have declared that no competing
interests exist.

REFERENCES

1. Abdulkadir M, Kum C. Software defect
prediction with machine learning: A
systematic literature review. Journal of
Systems and Software. 2019;156:1-24.

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

47

2. Wang Z, Li J, Li Q, Li J, Li Y. A deep
learning-based approach for software
defect prediction. IEEE Access. 2018;6:
81109-81119.

3. Ma Y, Liu J. A review of software defect
prediction using machine learning
techniques. International Journal of
Software Engineering and Knowledge
Engineering. 2019;29(06):835-864.

4. Hall T, Beecham S, Bowes D, Gray D,
Counsell S. A systematic literature review
on fault prediction performance in software
engineering. IEEE Transactions on
Software Engineering. 2012;38(6):1276-
1304.

5. Ouni A, Kessentini M, Bechikh S. A
systematic review and meta-analysis of
machine learning techniques for software
fault prediction. Journal of Systems and
Software. 2014;108:24-32.

6. Costa CJ, Wainer J, Souza LR. A
systematic review of software defect
prediction studies. Expert Systems with
Applications. 2017;72:66-85.

7. Chen H, Li Y. A hybrid machine learning
approach to software defect prediction.
Journal of Systems and Software. 2018;
140:144-157.

8. Deng H, Zheng Z, Wang H, Zhao J.
Predicting software defects with decision
tree algorithms: A systematic literature
review. Information and Software
Technology. 2020;125:106337.

9. Panigrahi R, Khatua K, Tiwari, R. A
comprehensive review of software defect
prediction techniques. International Journal
of System Assurance Engineering and
Management, 2020;11(6):1394-1426.

10. Zhang C, Li X, He B, Zhang Z. A
comparative study of machine learning
models for software defect prediction.
Journal of Systems and Software. 2021;
175:110942.

11. Kaur S, Singh S. A systematic review of
software defect prediction using machine
learning techniques. Journal of King Saud
University-Computer and Information
Sciences. 2018;30(4):431-444.

12. Sun Y, Chen H, Lin J, Hu S, Cao J. A
novel software defect prediction approach
based on decision tree algorithms. Journal
of Systems and Software. 2022;183:
111098.

Available:https://doi.org/10.1016/j.jss.2021.
111098

13. Shukla S, Gupta A. Efficient feature
selection for software defect prediction
using decision trees. Journal of Systems
and Software. 2022;184:111290.
Available:https://doi.org/10.1016/j.jss.2021.
111290

14. Qasim M, Javaid MA, Batool S. A
comparative study of decision tree
algorithms for software defect prediction.
Journal of King Saud University -
Computer and Information Sciences. 2022;
34(1):101311.
Available:https://doi.org/10.1016/j.jksuci.20
21.101311

15. Zhang T, Li X, Li X. Improving software
defect prediction with decision tree-based
feature selection and resampling
techniques. Journal of Systems and
Software. 2021;174:110947.
Available:https://doi.org/10.1016/j.jss.2021.
110947

16. Li H, Li X. Software defect prediction using
decision tree algorithms: A systematic
literature review. Journal of Systems and
Software. 2021;173:110828.
Available:https://doi.org/10.1016/j.jss.2020.
110828

17. Ma H, Zhang J. A decision tree-based
approach to software defect prediction: A
case study in the automotive industry.
Journal of Ambient Intelligence and
Humanized Computing. 2021;12(6):6307–
6319.
Available:https://doi.org/10.1007/s12652-
020-02576-4

18. Zhang L, Xu L, Hu J. An effective feature
selection method for software defect
prediction based on a decision tree
algorithm. Journal of Ambient Intelligence
and Humanized Computing. 2021;12(7):
8093–8102.
Available:https://doi.org/10.1007/s12652-
020-02611-4

19. Liu Z, Wang W, Chen J, Chen Q. A hybrid
approach for software defect prediction
based on a decision tree and support
vector machine. Journal of Intelligent &
Fuzzy Systems. 2020;38(1): 81-91.
Available:https://doi.org/10.3233/JIFS-
179662

20. Hasan MR, Uddin MH. Comparative study
of software defect prediction using
decision tree and Naive Bayes algorithms.
In Proceedings of the 11th International
Conference on Ambient Systems,
Networks and Technologies. 2020;292-
299.

Chinenye et al.; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 32-48, 2023; Article no.AJRCOS.106142

48

Available:https://doi.org/10.1016/j.procs.20
20.05.035

21. Li R, Liu Y. Software defect prediction
based on decision tree algorithm with
genetic algorithm feature selection.
International Journal of Software
Engineering and Knowledge Engineering.
2019;29(05):647-667.
Available:https://doi.org/10.1142/S0218194
019500277

22. Mustafa N, Azam MS. A decision tree-
based approach for software defect
prediction using random undersampling
and synthetic minority oversampling
technique. International Journal of
Advanced Computer Science and
Applications. 2019;10(11):343-348.
Available:https://doi.org/10.14569/IJACSA.
2019.0101146

23. Li H, Li X. Using decision tree ensembles
for software defect prediction: An empirical
study. Information and Software
Technology. 2021;134:106618.

Available:https://doi.org/10.1016/j.infsof.20
21.106618

24. Sharma A, Vyas A. Software defect
prediction using decision tree algorithms
with feature selection. International Journal
of Computer Applications. 2019;182(29):
34-38.
Available:https://doi.org/10.5120/ijca20199
19102

25. Yadav SS, Gupta DV. A comparative
analysis of decision tree-based software
defect prediction models. In Proceedings
of the International Conference on
Inventive Computation Technologies.
2019;1606-1611.
Available:https://doi.org/10.1109/INVENTI
VE.2019.8987441

26. Li H, Jiang Y, Zhang Y. Software defect
prediction using decision tree algorithms:
An empirical study. IEEE Access. 2019;
7:167131-167144.
Available:https://doi.org/10.1109/ACCESS.
2019.2955635

© 2023 Chinenye et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/106142

about:blank

