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ABSTRACT 
 

Software defect prediction plays a crucial role in ensuring software quality and minimizing the 
potential risks associated with defects. This study aims to develop a comprehensive software 
defect prediction system that utilizes tree-based algorithms to enhance accuracy, feature selection, 
and evaluation metrics. The study addresses the limitations of previous research by considering a 
broader range of datasets, comparing computational efficiency with other ensemble techniques, 
and examining the impact of hyperparameters on model performance. The implemented system 
consists of three stages: dataset loading, processing, and result presentation. The dataset loading 
page allows users to upload their datasets in CSV format, simplifying the prediction process. The 
processing page performs essential tasks such as feature engineering, normalization using 
minimax normalization, and training the model with the decision tree algorithm. These steps ensure 
the extraction of relevant features, transformation of data, and learning of patterns and correlations 
for accurate software defect prediction. The study emphasizes the practical implementation of the 
developed system, going beyond model evaluation. By providing a fully functional and integrated 
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system, this study bridges the gap between research and real-world application. The findings of this 
study contribute to the field of software defect prediction by offering an improved system that 
enhances accuracy, feature selection, and evaluation metrics. This has implications for software 
development and quality assurance processes, ultimately leading to higher software quality and 
increased productivity. 

 

 
Keywords: (ABS):  Software defect; prediction system; decision tree; algorithm; model; feature 

engineering; correlation and evaluation metrics. 

 
1. INTRODUCTION 
 
The software industry is rapidly growing, and the 
development of software systems has become 
more complex than ever [1]. As a result, software 
defects have become a significant challenge in 
software development, as they can lead to 
significant losses, including financial losses, 
damage to the reputation of the company, and 
even loss of life in extreme cases [2]. Software 
defects are expensive to fix, and they can cause 
project delays, leading to increased costs and 
lost productivity [3,4]. Therefore, software defect 
prediction has become an essential aspect of 
software engineering, as it helps to identify 
potential defects in advance before they cause 
any significant issues. Traditional approaches to 
software defect prediction are time-consuming 
and require manual effort, making it difficult to 
predict defects accurately [5]. However, machine 
learning techniques, such as tree-based 
algorithms, have shown great promise in 
predicting software defects [6]. Tree-based 
algorithms, such as Random Forests and 
Decision Trees, are powerful machine-learning 
algorithms that can be used for classification 
tasks, including software defect prediction [7]. 
These algorithms use a decision tree model to 
represent the mapping between input features 
and output labels and can handle both 
categorical and numerical data [8]. Furthermore, 
this research aims to address some of the 
limitations of the existing software defect 
prediction systems. While previous studies have 
explored the use of machine learning algorithms 
for software defect prediction, there is still room 
for improvement in terms of accuracy, feature 
selection, and evaluation metrics [9]. Additionally, 
there is a need to investigate the performance of 
different tree-based algorithms, such as Random 
Forest and Decision Tree, in software defect 
prediction [10]. Therefore, this dissertation 
proposes a software defect prediction system 
that uses tree-based algorithms to address these 
limitations. The system will involve data 
collection, cleaning, and preprocessing, followed 

by feature selection and the implementation of 
the two tree-based algorithms. The performance 
of the algorithms will be evaluated using various 
evaluation metrics, such as accuracy, precision, 
recall, and F1-score. The most significant 
features that contribute to defects will also be 
identified. The results of this research will provide 
valuable insights into the effectiveness of tree-
based algorithms for software defect prediction 
and contribute to the development of more 
accurate and efficient software defect prediction 
systems. Additionally, the proposed system will 
help software developers identify potential 
defects early in the software development 
process, allowing them to take corrective action 
before the defects cause any significant issues. 
This will lead to increased productivity, reduced 
costs, and improved software quality [11]. 
Furthermore, the proposed system will contribute 
to the existing body of knowledge on software 
defect prediction and machine learning 
techniques, providing valuable insights into the 
use of tree-based algorithms for software defect 
prediction.  
 

2. LITERATURE REVIEW  
 
In their study, Sun et al. [12] proposed a novel 
software defect prediction approach based on 
decision tree algorithms. The authors aimed to 
improve the prediction accuracy of software 
defects by incorporating feature selection 
techniques and ensemble learning methods into 
decision tree algorithms. The proposed approach 
was evaluated using four publicly available 
datasets, and the results showed that it 
outperformed several state-of-the-art techniques 
in terms of accuracy, precision, and recall. 
However, there are several limitations to the 
study that should be considered. First, the 
proposed approach was only evaluated on four 
datasets, which may not be representative of all 
software development projects. Future studies 
should consider evaluating the approach on a 
more diverse set of datasets to assess its 
generalizability. Second, the authors did not 
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compare their approach with other ensemble 
learning methods, such as random forests           
and gradient boosting, which are known to 
perform well in software defect prediction               
tasks. Lastly, the study did not consider the 
potential impact of imbalanced datasets, which 
can occur frequently in software defect prediction 
tasks and can affect the accuracy of the 
prediction models. 
 
Shukla and Gupta [13] propose an approach for 
efficient feature selection in software defect 
prediction using decision trees. The approach 
involves identifying and selecting only the most 
relevant features for building decision tree 
models, which can reduce the computational cost 
and improve the accuracy of the models. The 
authors evaluate their approach using four 
software datasets and compare it with other 
feature selection methods, showing that it can 
achieve comparable or better performance                
with a significantly reduced number of              
features. However, one limitation of the study is 
that it only focuses on decision tree-based 
models and does not compare the proposed 
approach with feature selection methods for 
other machine learning algorithms, which may 
have different performance characteristics. 
Additionally, the study only evaluates the 
approach on a limited number of datasets, and it 
would be beneficial to test it on a more extensive 
range of software datasets to assess its 
generalizability. 
 
In this study, Qasim et al., [14] compared                  
the performance of different decision tree 
algorithms, including C4.5, CART, CHAID, and 
QUEST, in predicting software defects. The 
authors used four different datasets from 
different software development companies to 
evaluate the performance of these algorithms 
based on different evaluation metrics, such as 
accuracy, precision, recall, F1-score, and AUC. 
The results showed that C4.5 and CART 
outperformed CHAID and QUEST in terms of 
prediction accuracy and other evaluation  
metrics. One limitation of this study is that                   
it only focused on comparing decision tree 
algorithms and did not consider other machine 
learning algorithms or ensemble methods. 
Additionally, the study only used four datasets, 
which may not be representative of all                 
software development contexts. Finally, the  
study did not explore the interpretability of                  
the decision tree models and their ability to 
provide actionable insights for software 
developers. 

Zhang, Lin, and Chen [15] proposed a new 
approach to improve software defect prediction 
using decision tree-based feature selection and 
resampling techniques. The authors applied this 
approach to three software datasets and 
compared the results with other state-of-the-art 
approaches. They reported that their proposed 
approach outperformed the existing methods in 
terms of accuracy, precision, recall, and F-
measure. However, there are some limitations to 
this study. Firstly, the authors only evaluated 
their proposed approach on three datasets, 
which may not be representative of all software 
defect prediction scenarios. Secondly, the study 
only compared the proposed approach with a 
limited number of state-of-the-art approaches, 
which may not provide a comprehensive 
comparison. Finally, the proposed approach may 
not apply to all software defect prediction 
problems, as the effectiveness of the approach 
may depend on the specific characteristics of the 
dataset. 
 
Li and Li [16] proposed the use of decision tree 
ensembles (DTEs) for software defect prediction, 
which combines the predictions of multiple 
decision trees to improve the accuracy of the 
predictions. The authors used 8 publicly available 
datasets and compared the performance of 
DTEs with single decision trees and other 
ensemble techniques such as random forests 
and gradient boosting. The results showed that 
DTEs outperformed single decision trees and 
were competitive with random forests and 
gradient boosting in terms of accuracy. However, 
the study has several limitations. First, the 
authors only used a limited number of datasets, 
which may not represent the diversity of software 
projects in practice. Second, the study only 
focused on defect prediction and did not 
investigate the performance of DTEs on other 
software engineering tasks such as code quality 
analysis or software maintenance. Finally, the 
study did not compare the computational 
efficiency of DTEs with other ensemble 
techniques, which is an important consideration 
in real-world applications where large datasets 
and limited computational resources are 
common. 
 
Ma & Zhang [17] conducted a study titled "A 
decision tree-based approach to software defect 
prediction: A case study in the automotive 
industry." This study aimed to evaluate the 
effectiveness of decision tree-based approaches 
in predicting software defects in the automotive 
industry. The study used data from the software 
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development process of a large automotive 
company and compared the performance of 
different decision tree-based models in predicting 
defects. The results of the study indicated that 
decision tree-based models were effective in 
predicting software defects in the automotive 
industry. The study found that the Random 
Forest algorithm outperformed other decision 
tree-based algorithms in terms of prediction 
accuracy. The study also identified several 
important features that were strongly associated 
with software defects in the automotive industry. 
One limitation of this study is that it focused on a 
single industry, which may limit the 
generalizability of the findings. The study also did 
not consider the impact of different parameters or 
hyperparameters on the performance of the 
decision tree-based models. Future studies could 
explore the effectiveness of decision tree-based 
approaches in predicting software defects in 
other industries and investigate the impact of 
different parameters on the performance of these 
models. 
 
The study by Zhang et al. [18] aimed to propose 
an effective feature selection method based on a 
decision tree algorithm for software defect 
prediction. The researchers first extracted a set 
of static code metrics as potential features for 
predicting software defects. Then, they applied a 
decision tree algorithm to the dataset to identify 
the most important features. The selected 
features were used to build a prediction model 
based on a decision tree algorithm. The 
proposed method was evaluated on three 
software datasets and compared with other 
feature selection methods. One of the limitations 
of this study is the use of a limited number of 
datasets for evaluation. The study only evaluated 
the proposed method on three datasets, which 
may not be representative of other software 
projects. Additionally, the study only used static 
code metrics as potential features, which may 
not capture all factors that affect software 
defects. Finally, the study did not investigate the 
generalizability of the proposed method to other 
machine learning algorithms or defect prediction 
models. 
 
In this study, Liu et al., [19] proposed a hybrid 
approach for software defect prediction based on 
a combination of decision tree and support vector 
machine (SVM) algorithms. The authors aimed to 
improve the accuracy of software defect 
prediction by incorporating the strengths of both 
algorithms. The proposed approach involved 
feature selection using decision tree algorithms, 

followed by classification using SVM. The study 
used six open-source datasets from the 
PROMISE repository for experimentation and 
compared the results with those obtained from 
individual decision trees and SVM algorithms. 
The results showed that the hybrid approach 
outperformed both individual algorithms in             
terms of accuracy, precision, recall, and F-
measure. One limitation of this study is that it 
only used open-source datasets from a single 
repository, which may not be representative of all 
software defect prediction scenarios. 
Additionally, the study did not compare the 
proposed approach with other state-of-the-art 
hybrid approaches for software defect prediction. 
Therefore, the generalizability and 
competitiveness of the proposed approach in 
comparison to other approaches remains 
unclear. 
 
The study conducted by Hasan and Uddin [20] 
aimed to compare the effectiveness of decision 
trees and Naive Bayes algorithms for software 
defect prediction. The authors collected data 
from the NASA Metrics Data Program (MDP) and 
preprocessed the data to remove any missing or 
incomplete records. They then applied both 
decision tree and Naive Bayes algorithms to the 
preprocessed data to classify the records as 
either defective or non-defective. The results 
showed that the decision tree algorithm had a 
higher accuracy rate compared to the Naive 
Bayes algorithm for software defect prediction. 
The decision tree algorithm achieved an 
accuracy rate of 79.44%, while the Naive              
Bayes algorithm achieved an accuracy rate of 
66.39%. However, the study has some  
limitations that should be considered. First, the 
study only used one dataset (MDP) for 
evaluation, which may limit the generalizability of 
the results. Additionally, the study only used two 
algorithms for comparison, which may not 
provide a comprehensive comparison of all 
available algorithms. Finally, the study did not 
consider the effects of different feature          
selection techniques on the performance of the 
algorithms.  
 
Liu et al. [19] proposed a hybrid approach for 
software defect prediction based on a decision 
tree (DT) and support vector machine (SVM). 
The proposed approach aimed to improve the 
prediction accuracy of traditional DT algorithms 
by integrating SVM to address its limitations in 
dealing with complex and high-dimensional            
data. The study conducted experiments on          
three real-world datasets, and the results showed 
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that the hybrid approach outperformed the 
traditional DT and SVM algorithms in terms of 
prediction accuracy. One limitation of this             
study is that it only compared the hybrid 
approach with traditional DT and SVM 
algorithms, without comparing it with other state-
of-the-art approaches. Additionally, the study did 
not consider the interpretability of the model, as 
both DT and SVM are known to be less 
interpretable compared to other machine  
learning algorithms. Moreover, the study did              
not provide insights on how the proposed              
hybrid approach could be used in practice,               
such as how to tune the hyperparameters or how 
to select the most important features for the 
model. 
 
Li, Dai, and Tang [21] conducted an empirical 
study to compare the performance of three 
decision tree algorithms (C4.5, CART, and 
Random Forest) in predicting software defects. 
They used metrics such as precision, recall, F-
measure, and AUC to evaluate the models' 
performance. The study used five open-source 
datasets from the PROMISE repository and 
compared the performance of the three 
algorithms in terms of their ability to predict 
software defects accurately. The study found that 
the Random Forest algorithm outperformed C4.5 
and CART in terms of accuracy, precision,  
recall, and F-measure. The study also              
showed that using the right set of features could 
improve the accuracy of the models. One 
limitation of this study is that it only compared 
three decision tree algorithms and other 
classification algorithms were not considered. 
Additionally, the study used only five datasets, 
which may not be representative of all            
software systems. Further research is needed to 
validate the results using a larger number of 
datasets and to explore the effectiveness of other 
classification algorithms in predicting software 
defects. 
 
In their study, Mustafa and Azam [22] proposed a 
novel approach for software defect prediction 
using decision trees and a combination of 
resampling techniques. The authors aimed to 
address the imbalanced data issue that is 
common in software defect prediction by 
employing both random under-sampling and 
synthetic minority oversampling techniques 
(SMOTE) to balance the dataset. The 
effectiveness of the proposed approach was 
evaluated using several performance metrics, 
including precision, recall, F1-score, and AUC. 
The study showed promising results, 

demonstrating that the proposed approach 
achieved better performance compared to 
traditional decision tree-based approaches. 
However, the study also had some limitations. 
For instance, the proposed approach was only 
evaluated on a single dataset, which limits the 
generalizability of the results. Additionally, the 
authors did not compare the performance of their 
approach with other state-of-the-art methods, 
which makes it difficult to assess the 
competitiveness of the proposed approach. 
Finally, the authors did not provide an in-depth 
analysis of the decision tree model to understand 
how the model is making predictions, which is 
essential for model interpretation and 
understanding. 
 
Li & Liu [23] proposed a software defect 
prediction model that uses a decision tree 
algorithm with genetic algorithm feature 
selection. The study aims to improve the 
performance of software defect prediction by 
selecting the most important features through a 
genetic algorithm-based method. The authors 
applied the model to four open-source software 
datasets and compared the results with other 
feature selection methods. The experimental 
results show that the proposed approach 
outperforms the other methods in terms of 
prediction accuracy, sensitivity, and specificity. 
However, the study has some limitations. First, 
the proposed model was only evaluated on four 
open-source software datasets. It is unclear 
whether the results can be generalized to other 
software datasets with different characteristics. 
Second, the study did not compare the proposed 
approach with other software defect prediction 
models that use decision tree algorithms with 
different feature selection methods, which could 
provide more insights into the effectiveness of 
the proposed approach. Finally, the study did not 
provide an in-depth analysis of the feature 
selection results, which may limit the 
understanding of the importance of the selected 
features. 
 
Sharma and Vyas [24] conducted a study whose 
aim of this study was to investigate the 
effectiveness of feature selection techniques for 
software defect prediction using decision tree 
algorithms. The authors employed the chi-
squared feature selection method to select the 
most relevant features for building the decision 
tree model. The study was conducted on two 
datasets, one from the NASA MDP repository 
and the other from the PROMISE repository. The 
authors compared the performance of different 
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decision tree algorithms, including C4.5, CART, 
and ID3, with and without feature selection. The 
results of the study showed that the decision tree 
models built with the chi-squared feature 
selection method outperformed those built 
without feature selection in terms of accuracy, 
precision, recall, and F-measure. The study also 
revealed that the C4.5 algorithm performed 
better than the CART and ID3 algorithms in 
terms of prediction accuracy. However, the study 
had some limitations. One of the limitations of the 
study is that the authors only used one feature 
selection method, namely chi-squared, and did 
not investigate other feature selection 
techniques. The study could have been more 
comprehensive if the authors had tested other 
feature selection methods such as correlation-
based feature selection or wrapper methods. 
Another limitation is that the study only evaluated 
the performance of decision tree algorithms and 
did not compare the results with other machine 
learning algorithms, such as support vector 
machines or neural networks. It would have been 
interesting to see how decision trees compared 
to other algorithms for software defect  
prediction. Furthermore, the study used only               
two datasets, which may not be representative  
of all software development environments. 
Future studies could explore the performance              
of decision tree algorithms with feature           
selection on a larger and more diverse set of 
datasets to ensure the generalizability of the 
findings. 
 

Yadav and Gupta [25] aimed to compare and 
evaluate the performance of different decision 
tree-based models in predicting software defects. 
The authors used six different decision tree 
algorithms: C4.5, CART, M5P, QUEST, Random 
Forest, and Decision Table. They also used 
various software metrics as features for 
predicting defects. However, the study's 
limitation lies in the fact that it used only one 
dataset, the NASA metrics data, for the 
experiments. This dataset may not be 
representative of all software projects, and the 
results obtained may not generalize well to other 
datasets. Additionally, the authors did not 
compare their results with those obtained              
using other classification algorithms, which may 
have provided a more comprehensive 
comparison of the decision tree-based models' 
effectiveness. 
 

The study conducted by Li et al. [26] aimed             
to investigate the effectiveness of decision            
tree algorithms for software defect prediction. 

The authors used four decision tree algorithms, 
namely, CART, ID3, C4.5, and Random              
Forest, to build predictive models for three 
publicly available software defect datasets.              
The study evaluated the performance of                 
these models in terms of accuracy,                  
precision, recall, F-measure, and area                    
under the receiver operating characteristic (ROC) 
curve. 
 

The findings of the study showed that Random 
Forest outperformed the other decision tree 
algorithms in terms of prediction accuracy and 
area under the ROC curve. However, the study 
has some limitations. First, the study only used 
three datasets, which may not represent the 
diversity of software systems. Second, the study 
did not compare the performance of decision tree 
algorithms with other machine learning 
algorithms. Finally, the study did not investigate 
the impact of feature selection and resampling 
techniques on the performance of decision tree 
algorithms. Therefore, future research can 
address these limitations and further investigate 
the effectiveness of decision tree algorithms for 
software defect prediction. 
 

In this study, Mustafa and Azam proposed a 
decision tree-based approach for software defect 
prediction that uses both random undersampling 
and synthetic minority oversampling techniques 
(SMOTE) to address the imbalanced nature of 
software defect datasets. The authors used six 
software datasets and compared the 
performance of their proposed approach with 
other traditional and state-of-the-art approaches. 
The results showed that their approach 
outperformed other methods in terms of 
accuracy, precision, recall, and score. One 
limitation of this study is that it only tested the 
proposed approach on a limited number of 
software datasets, which may not be 
representative of all possible scenarios. 
Additionally, the study did not provide any 
explanation for the choice of specific parameters 
used in the experiments, such as the number of 
decision trees or the threshold value for the 
SMOTE technique. Future research could 
investigate the generalizability of the proposed 
approach on larger and more diverse datasets, 
and provide a detailed analysis of the          
sensitivity of the results to different parameter 
settings. 
 

The study by Li and Liu [21] aimed to improve 
software defect prediction by using a decision 
tree algorithm with genetic algorithm feature 
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selection. The authors conducted experiments on 
two datasets and compared their results with 
other feature selection methods. The results 
showed that the proposed approach achieved 
better results than the other feature selection 
methods in terms of accuracy, precision, recall, 
and F-measure. 
 
However, one limitation of this study is that it only 
tested the proposed approach on two datasets, 
which may not be representative of all possible 
scenarios. Therefore, further experiments on 
different datasets are needed to confirm the 
effectiveness of the proposed approach. 
Additionally, the study did not discuss the 
computational complexity of the proposed 
approach, which could be a potential limitation in 
practical applications. 

 
Sharma and Vyas [24] proposed a software 
defect prediction model based on decision tree 
algorithms with feature selection. The study 
aimed to identify the most relevant features for 
defect prediction and to compare the 
performance of different decision tree algorithms. 
The authors used several datasets and different 
decision tree algorithms, including C4.5, CART, 
and ID3, to evaluate their proposed model. The 
results showed that the model achieved good 

performance in terms of accuracy, precision, and 
recall. 
 
One limitation of this study is that it only 
evaluated decision tree algorithms and did not 
compare the performance of their proposed 
model with other machine learning techniques. 
Additionally, the authors did not provide a clear 
explanation of their feature selection method, 
which makes it difficult to replicate their 
experiments. Finally, the study did not consider 
the impact of imbalanced datasets on the 
performance of their proposed model, which can 
affect the generalizability of the results to real-
world scenarios. 
 

3. METHODOLOGY  
 
The research methodology serves as the 
fundamental blueprint or framework 
encompassing the methods and procedures 
employed to gather, collect, and analyze data,  
all of which are directly aligned with the            
research problem at hand. The research 
methodology of the proposed system is 
illustrated in Fig. 1 and consists of multiple 
stages. These stages encompass data 
acquisition or collection, feature selection, 
classification, and evaluation.  
 

 

 
 

Fig. 1. Research design of the proposed system 
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Data Acquisition or Collection: The first stage 
involves gathering the necessary datasets, which 
were used to design the software defect 
prediction system. The datasets will be obtained 
from a publicly available source, 
http://bug.inf.usi.ch/download.php, and will be 
crucial in guiding the design of the system. 
 
Feature Selection: In this stage, the Genetic 
Algorithm will be utilized to extract relevant 
features from the datasets collected in the first 
stage. The developed system will be 
implemented using the MATLAB programming 
language. 
 
Classification: The extracted features will be 
classified using the Decision Tree Algorithm in 
this stage. 
 
Evaluation: The results of this work will be 
evaluated using metrics such as Accuracy, 
Sensitivity, Specificity, and False Positive Rate. 
 

3.1 Source of Dataset  
 
Table 1 showcases a snapshot of the dataset 
pivotal to the system's development. The 
PROMISE dataset, publicly accessible, is tailored 
to cultivate the creation of predictive models in 
software engineering that are replicable, 
confirmable, challengeable, and subject to 
enhancement. It encompasses 10,885 instances, 
each comprising 22 distinct attributes. These 
attributes encapsulate diverse metrics about 
software code and intricacy. This encompasses 
metrics like five different line-of-code 
measurements, three McCabe metrics that 
gauge software complexity by scrutinizing control 
flow, four fundamental Halstead measures 
assessing program complexity via operator and 
operand counts, eight derived Halstead 
measures emerging from the fundamental          
ones, a branch-count metric, and a goal field 
metric. 
 

3.2 Decision Tree  
 
A decision tree is a machine learning algorithm 
used for classification and regression tasks. It 
organizes decisions and their potential outcomes 
into a tree-like structure. Beginning with the 
entire dataset at the root node, the algorithm 
selects features to split the data based on  
certain criteria, creating branches that represent 
different outcomes. This process continues 
recursively until a stopping point is reached, 
resulting in leaf nodes that offer predicted labels 

or values. Decision trees are valued for their 
interpretability, accommodating various data 
types, and capturing complex relationships. The 
algorithm for the decision tree is shown as 
follows: 

 

Decision Tree Algorithm  

function build_decision_tree(data): 

    if stopping_condition(data): 

        return create_leaf_node(data) 

     

    best_feature = choose_best_feature(data) 

    tree = create_internal_node(best_feature) 

     

 For value in unique_values(best_feature): 

        subset = filter_data(data, best_feature, 
value) 

        if a subset is empty: 

             child_node = create_leaf_node(data) // 
Assign majority label or average value 

        else: 

             child_node = 
build_decision_tree(subset) 

add_branch_to_tree(tree, value, child_node) 

       return tree 
 

function predict (tree, sample): 

    if the tree is a leaf node: 

        return leaf_node_prediction(tree) 

        feature_value = sample [tree.feature] 

    child_node = tree.children[feature_value] 

    return predict (child_node, sample) 

 
This algorithm outlines the key steps of the 
decision tree algorithm. The build_decision_tree 
function recursively constructs the tree by 
selecting features, splitting data, and creating 
internal and leaf nodes. The predict function 
traverses the tree to make predictions based on 
input samples. 

 
3.3 Decision Tree Model Framework 
 
The main framework depicted in Fig. 2 is divided 
into two components: the training phase and the 
prediction phase. In the training phase, the 
dataset is split into training data and testing data. 
The training data is used to train the model, while 
the testing data is used to evaluate its 
performance. Both sets of data are fed into the 
model during the training phase. Once the model 
is trained, it is then used for prediction tasks. The 
prediction data is inputted into the model, and the 
model generates predictions based on this data, 
producing prediction results. 
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Table 1. Dataset sample 

 

IOCode IOComment IOBlank IoCodeAndComment Uniq_Op Uniq_Opnd Total_OP Total_Opnd BranchCount defect 

4 0 2 0 5 6 8 7 1 True  
4 0 2 0 5 6 8 7 1 True 
4 0 2 0 5 6 8 7 1 True 
2 0 0 0 4 4 6 4 1 True 
2 0 0 0 4 4 6 4 1 True 

 

 
 

Fig. 2. The framework of the system 
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Fig. 3. Architecture of the system 
 

3.4 Software Defect System Architecture  
 
In Fig. 3, the system architecture is depicted. The 
entire system is represented by a rectangle. 
Within this architecture, the user interface (UI) 
implemented using QT5 interacts with the win32 
API to render the interface. Additionally, the UI 
sends requests to the back-end for further 
processing. The back end is responsible for 
handling all the logic and includes the training of 
the model. The dataset, which is required for 
training the model, is located outside the back-
end. Placing it separately emphasizes its distinct 
position from the back end. The test dataset, 
represented outside the entire system, is not a 
part of the system itself. It is loaded externally 
and exists as a separate file that is used for 
testing purposes. By placing the test dataset 
outside the system, it is evident that it is not 
integrated within the system architecture. 
 

3.5 Flowchart Diagram of the Proposed 
System 

 
Fig. 4 presents a flowchart that shows a pictorial 
representation of the software defect system. 
The system starts by processing and extracting 
relevant data to extract the most important 
features. The extracted data is then checked to 

ensure that only the relevant data has been 
extracted. Once the relevant data has been 
extracted, the system performs training and 
testing of the data. After training, the system 
classifies the data using a decision tree 
algorithm, which uses the extracted features to 
predict the class of new data. The output of the 
classification process is then generated and 
displayed as the result of the system. Finally, the 
system outputs the result twice and stops the 
execution. The first output may be a summary of 
the system's performance, including measures 
such as accuracy, precision, recall, and F1 
score. The second output may be a visualization 
of the decision. 
 

3.6 Performance Metrics for 
Classification 

 
The evaluation criteria utilized for gauging the 
effectiveness of the software defect system in 
this analysis are as follows: 
 
3.6.1 Accuracy  
 
The percentage of accurate predictions made by 
the model across all prediction types is referred 
to as accuracy. This measure evaluates the 
correctness of classifications by comparing the
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Fig. 4. Flowchart of the proposed system 

 
number of correctly classified instances to the 
total number of instances. Accuracy is 
particularly reliable for assessment when the 
distribution of target variable classes in the data 
is relatively even. This concept is expressed in 
Equation 1. 

 

 … (1) 

 
3.6.2 Sensitivity or Recall  

 
The sensitivity, also referred to as recall, pertains 
to the true positive rate within the context of a 

software defect system. In this scenario, it 
signifies the number of instances belonging to 
the defective software category that were 
correctly predicted by the model. Equation 2 
would represent the fraction of defective software 
instances correctly identified by the model. 
 

 … (2) 
 

3.6.3 Specificity  
 
Specificity, known as the genuine negative             
rate, holds relevance within the software              
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defect domain. Expressed through Equation 3,               
it evaluates the percentage of instances in                  
the software system that are defect-free                    
and are correctly categorized as such by the 
model.  

 

     … (3) 
 

3.6.4 Detection rate  

 
1. The detection rate refers to the proportion 

of the entire sample in which events were 
accurately identified. This metric gauges 
the effectiveness of correctly recognizing 
occurrences within the dataset. 

2. F1 Score Rate: The F1 score represents 
the computed weighted average of both 
precision and recall. As such, this score 
takes into account the balance between 
false positives and false negatives. 

3. Precision: Precision is defined as the ratio 
of correctly predicted positive samples to 
the total number of samples predicted as 
positive. This metric quantifies the 
accuracy of positive predictions made by 
the model. 

4. Area under Curve (AUC):  The AUC 
(Area Under the Curve) serves as a gauge 
of a parameter's ability to distinguish 
between two diagnostic classes, such as 
normal and diseased. Ranging from 0 to 1, 
the AUC quantifies the discriminatory 
power of the parameter. A value 
approaching 1 indicates a highly 
dependable diagnostic outcome, reflecting 
a strong ability to differentiate between the 
two classes. 

 
4. RESULTS AND DISCUSSION 
 
This section of the journal paper elucidates the 
data and analysis employed by the researcher to 
contextualize the research endeavor. It delves 
into the specifics of the formulated model, 
expounding on both its development process and 
its practical implementation within the relevant 
framework. 
 

4.1 Discussion of Findings 
 
This section of the research focuses on two key 
aspects: system implementation and the 
evaluation of results. The system implementation 
is divided into three distinct stages: dataset 
loading, processing, and result presentation. The 

dataset loading page facilitates the uploading 
and preparation of the dataset for evaluation. 
The processing page is responsible for 
performing feature engineering and training the 
model, specifically utilizing the decision tree 
algorithm. Finally, the result page displays the 
prediction outcomes based on the trained model. 
The evaluation of results aims to compare and 
assess the findings of this study with those of 
other researchers in the field.  
 
4.1.1 Dataset loading page 

 
The dataset loading page is the entry point for 
uploading data into the software defect prediction 
system. Users select and upload their dataset in 
CSV format, with three fields: "CHOOSE FILE" 
for dataset selection, "DROP FILE" to clear 
selections, and "RUN EVALUATION" to initiate 
uploading. This process ensures input data for 
analysis. The page's flexibility in accommodating 
diverse CSV datasets enhances prediction 
efficiency, while the "DROP FILE" button aids 
error correction. This streamlined gateway 
optimizes user experience and system 
performance, facilitating effective software defect 
prediction.  

 
4.1.2 Processing page 

 
Upon successful dataset upload, the system 
transitions to the processing page depicted in 
Fig. 6. Here, pivotal tasks include feature 
engineering and training, vital for precise 
software defect prediction. Initially, feature 
engineering extracts pertinent attributes, refining 
predictive potential by selecting informative 
features. Data formatting ensures consistency 
and compatibility. Minimax normalization follows, 
standardizing data to a range of 0 to 1, 
preventing dominance by any feature due to its 
magnitude. Training ensues, utilizing the  
decision tree algorithm to imbue the model               
with patterns and correlations, facilitating 
accurate software defect predictions. The 
algorithm constructs a tree-like structure, 
fostering a solid prediction foundation rooted in 
dataset insights. 

 
4.1.3 Result page  

 
After the training process is complete, the             
result page depicted in Fig. 7 is responsible                 
for presenting the prediction outcomes. Users 
can view and analyze the results generated               
by the decision tree algorithm. The system 
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provides an intuitive interface to display              
relevant metrics, such as accuracy, precision, 
recall, and F1 score, which evaluate the 
performance of the prediction model. This              
stage enables users to make informed           
decisions based on the system's predictions and 
evaluate its effectiveness in software defect 
prediction. 

4.1.4 Evaluation of result  
 

Several types of research have been conducted 
for software defect detection, but there is still a 
need to have an efficient and effective model that 
can accurately detect defective software. Table 2 
shows the results from previous research and 
compare them with the result of this paper. 

 

 
 

Fig. 5. Dataset loading interface 
 

 
 

Fig. 6. Processing page 
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Fig. 7. Result page 
 
In terms of accuracy, this study outperformed the 
other studies, achieving the highest accuracy 
score of 0.98. Shukla & Gupta [13] obtained an 
accuracy of 0.85, Sun et al. [12] achieved 0.92, 
Olatunji et al. (2022) achieved 0.91, and Hasan 
[20] achieved 0.91. Regarding precision, this 
study also obtained a high precision score of 
0.98, which is consistent with the accuracy score. 
Shukla & Gupta [13] achieved a precision of 
0.78, Sun et al. [12] achieved 0.87, Olatunji et al. 
(2022) achieved 0.33, and Hasan [20] achieved 
0.85. In terms of recall, this study achieved a 
recall score of 0.98, matching the precision and 

accuracy scores. Shukla & Gupta [13] obtained a 
recall of 0.92, Sun et al. [12] achieved 0.95, 
Olatunji et al. (2022) achieved 0.40, and Hasan 
[20] achieved 0.94. Based on this comparison, it 
can be observed that the decision tree algorithm 
used in this study outperformed the other 
algorithms in terms of accuracy, precision, and 
recall. The results indicate the effectiveness of 
the decision tree algorithm in predicting software 
defects, highlighting its potential for improving 
software quality and defect detection. These 
comparisons are depicted in Fig. 8 with the aid of 
a histogram.  

 

 
 

Fig. 8. Histogram of the comparison of results of other previous research 
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Table 2. Comparison of results of other previous research 
 

Authors Algorithms Accuracy Precision Recall 

Shukla & Gupta [13] Decision Tree 0.85 0.78 0.92 
Sun et al. [12] Random Forest 0.92 0.87 0.95 
Olatunji et al. (2022) ANN 0.91 0.33 0.40 
Hasan [20] Naive Bayes & Decision Tree 0.91 0.85 0.94 
This study (2023) Decision Tree 0.98 0.98 0.98 

 

5. CONCLUSION  
 
This study developed a comprehensive software 
defect prediction system that utilizes tree-based 
algorithms to improve accuracy, feature 
selection, and evaluation metrics. It addresses 
the limitations of previous research by 
considering a broader range of datasets, 
comparing computational efficiency with other 
ensemble techniques, and examining the impact 
of hyperparameters on model performance. The 
study begins by implementing a decision tree-
based prediction system, which consists of three 
main stages: dataset loading, processing, and 
result presentation. The dataset loading page 
allows users to upload their datasets in CSV 
format, facilitating easy and fast prediction. The 
processing page handles crucial tasks such as 
feature engineering, normalization using minimax 
normalization, and training the model with the 
decision tree algorithm. Feature engineering 
ensures relevant features are extracted, 
transforming the data into a suitable format for 
analysis. Normalization ensures all features are 
on a consistent scale, preventing any feature 
from dominating the analysis. The training phase 
enables the model to learn patterns and 
correlations within the data, empowering it to 
accurately predict software defects. The study 
also emphasizes the practical implementation of 
the developed system, going beyond mere model 
evaluation. Previous studies in the field have 
often failed to implement their models as 
practical systems, limiting their real-world 
usability and applicability. In contrast, this study 
aims to provide a fully functional and integrated 
system that can be used in practical scenarios. 
Conclusively, this study aims to contribute to the 
field of software defect prediction by developing 
a system that overcomes the limitations of 
previous research. The implemented system 
leverages tree-based algorithms, focusing on 
accuracy improvement, feature selection, and 
evaluation metrics. By addressing these key 
aspects, the study aims to enhance the reliability 
and practicality of software defect prediction 
systems, ultimately benefiting software 
development and quality assurance processes. 

6. RECOMMENDATION 
 
The proposed study has the potential to make a 
significant contribution to the existing body of 
knowledge in its respective fields. By conducting 
an in-depth analysis and investigation, the study 
could unveil new insights, perspectives, and 
findings that can expand and enrich the 
understanding of the subject matter. This 
contribution might manifest in various forms, 
including the identification of previously 
undiscovered trends, correlations, or patterns 
within the data. Furthermore, the study could 
challenge or refine existing theories, models, or 
assumptions, thus stimulating critical discourse 
and further research. The methodology and 
approach employed in the study could also offer 
a novel perspective that may inspire other 
researchers to explore similar questions or 
problems. Ultimately, the anticipated contribution 
to knowledge could extend beyond the 
immediate research scope, potentially influencing 
academic discussions, practical applications, and 
future research directions in the field. 
 

7. FUTURE WORK  
 
Future research can build upon the current work 
and contribute to the advancement of software 
defect prediction. Exploring alternative algorithms 
and metrics, along with conducting case studies, 
will enable researchers and practitioners to 
develop more robust and tailored prediction 
systems that can effectively identify and mitigate 
software defects, ultimately leading to higher 
software quality and customer satisfaction. 
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