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Abstract 

 
Pastoralists' settlement patterns in Kenya have been studied for decades using various statistical and 

mathematical models. However, traditional models have often relied on restrictive assumptions, such as the 

normality of the data or the linearity of relationships. In this paper, we apply a Bayesian nonparametric 

approach to model the settlement patterns of pastoralists in Kenya, allowing for more flexible and realistic 

representations of the data. We first collected settlement data for pastoralists in Kenya and compiled a 

database of environmental covariates, such as distance to water sources, vegetation cover, and road networks. 

We then applied a Bayesian nonparametric clustering method to identify distinct settlement patterns and 

Original Research Article 



 
 

 

 
Langat et al.; Asian J. Prob. Stat., vol. 25, no. 2, pp. 17-28, 2023; Article no.AJPAS.106364 

 

 

 
18 

 

tested the performance of the model against other commonly used clustering techniques. Our results indicate 

that the Bayesian nonparametric approach outperforms other clustering techniques in terms of model fit and 

accuracy in identifying distinct settlement patterns. Additionally, we conducted a spatial regression analysis 

to investigate the relationship between settlement patterns and environmental covariates, revealing that 

distance to water sources and road networks are significant predictors of settlement patterns. Overall, our 

study highlights the usefulness of Bayesian nonparametric methods in modelling settlement patterns of 

pastoralists in Kenya and provides valuable insights into the relationship between environmental factors and 

settlement patterns. 

 

 

Keywords: Bayesian; nonparametric; settlement pattern; pastoralists. 

 

1 Introduction 
 

Pastoralism is a way of life that has sustained people and their livestock for centuries in arid and semi-arid 

regions of Africa, including Kenya. However, the sustainability of pastoralism is threatened by climate change, 

land degradation, and increasing competition for resources. One of the challenges in understanding pastoralism 

is the complex and dynamic nature of settlement patterns, which are influenced by a variety of environmental, 

social, and economic factors. To address this challenge, recent studies have applied Bayesian nonparametric 

methods to model settlement patterns of the pastoralists population in Kenya [1,2]. These methods have the 

advantage of being flexible and adaptive, allowing for the identification of clusters and subgroups without 

assuming a fixed number of parameters or distributions. Pastoralism is an important aspect of Kenya's economy, 

providing a livelihood for over 10% of the population. Pastoralists rely on mobility to access grazing lands for 

their livestock, and their settlements are often scattered across the landscape. Settlement patterns of pastoralists 

have been a subject of interest for researchers for many years, as they provide important insights into the spatial 

distribution of resources, environmental factors, and social dynamics that affect the livelihoods of pastoralists. 

 

Traditional approaches to modelling settlement patterns have relied on parametric models that assume a 

particular underlying distribution, such as a Poisson process or a Gaussian distribution [3]. However, these 

models can be restrictive and may not capture the complexity of settlement patterns. Bayesian nonparametric 

models offer a flexible alternative, allowing for the data to drive the model structure and complexity [4,5]. 

 

Overall, in this paper, we propose a Bayesian nonparametric model for settlement patterns of pastoralist 

populations in Kenya. Our model uses a spatially-dependent Dirichlet process mixture to capture the underlying 

distribution of settlements, and a spatial regression model to account for the effects of environmental factors on 

settlement patterns. We apply the model to settlement data from the Kenyan Ministry of Lands and Settlements 

and use Markov Chain Monte Carlo methods for inference. 

 

2 Literature Review 

 
The use of Bayesian nonparametric models for spatial data analysis has gained popularity in recent years. 

Escobar and West [6] proposed the use of the Dirichlet process prior to density estimation, which has since been 

extended to include spatially dependent models. Banerjee et al. [7] proposed a spatially-dependent Dirichlet 

process mixture model for disease mapping, and Fong et al. [8] extended this approach to include a spatial 

regression model. 

 

Pastoralists are a group of people who rely on livestock for their livelihoods and are found across various parts 

of Africa, including Kenya. The livelihoods of pastoralists in Kenya have been severely affected by climate 

change, which has resulted in a decline in pasture and water resources, and has consequently led to a change in 

settlement patterns. As a result, there is a need for effective methods to model and predict the settlement patterns 

of pastoralists in Kenya. 

 

Previous studies have attempted to model the settlement patterns of pastoralists in Kenya using various 

approaches. For example, some studies have used satellite imagery and GIS data to examine the relationship 

between environmental factors and the distribution of settlements (e.g., Opiyo et al., 2014; Opiyo et al., 2015). 

Other studies have used statistical models, such as logistic regression, to identify the environmental factors that 
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are most important in predicting settlement patterns [9]. However, these studies have mostly used parametric 

models, which assume a specific functional form for the relationship between the predictors and the response 

variable. 

In recent years, there has been a growing interest in using Bayesian nonparametric methods to model the 

settlement patterns of pastoralists in Kenya. Bayesian nonparametric methods allow for greater flexibility in 

modelling the relationship between predictors and response variables and can capture complex patterns in the 

data that may not be captured by parametric models. One such method is the Dirichlet process mixture model, 

which has been used in previous studies to model the spatial distribution of settlements in Kenya [10]. 

 

The use of Bayesian nonparametric methods in modelling settlement patterns has also been extended to 

incorporate spatial dependence, which is the tendency for settlements that are close to each other to have similar 

characteristics. Spatial dependence is an important consideration in modelling settlement patterns, as settlements 

that are close to each other are likely to have similar environmental conditions and may be influenced by similar 

factors. Bayesian spatial models, such as the spatial Dirichlet process mixture model [11], allow for the 

incorporation of spatial dependence in the modelling process [12]. 

 

In summary, there is a growing interest in using Bayesian nonparametric methods to model settlement patterns 

of pastoralists in Kenya. These methods offer greater flexibility in modelling complex patterns in the data and 

can incorporate spatial dependence in the modelling process. In this study, we use a Bayesian nonparametric 

approach to model the settlement patterns of pastoralists in Kenya and incorporate spatial dependence in the 

modelling process. 

 

3 Methodology 

 
Let iy  denote the number of settlements in location i , and let ix  denote the environmental covariates for 

location i . We assume that the underlying distribution of settlements is a mixture of K clusters, and the mixing 

proportions are determined by a Dirichlet process prior to the concentration parameter  . Let k  denote the 

parameters of the kth  cluster, which can be modelled as a spatially-dependent Gaussian distribution with mean 

k  and covariance matrix k . We assume that the mixing proportions and cluster parameters are independent, 

and the prior distribution for the cluster parameters is a normal-inverse-Wishart distribution. 

The model can be written as: 

 

( )
=


K

K

kkki NY
1

,~|                                                                                                                      (1) 

 

Where   is the mixing proportion for the kth  cluster, and ( )= ,,   are the parameters of the 

model. 
 

To model the spatial dependence, we use a Gaussian process prior on the mean k  with covariance function 

   ( )
ji ssk , , where  is  and  js  are the spatial locations of locations i  and j . The covariance function is 

typically assumed to be a function of the distance between locations, such as the exponential covariance 

function or the Matérn covariance function. 
 

We also include environmental covariates ix  in the model to account for the effects of environmental factors on 

settlement patterns. The spatial regression model is: 

 

( ) ( )iiik sfxs ++= 10                                                                                                                  (2) 

 

Where 0  and 
1  are the regression coefficients, and  isf is a spatially-dependent Gaussian process with 

covariance function      ( )
ji ssk , . 
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Inference is done using Markov Chain Monte Carlo (MCMC) methods to sample from the posterior distribution 

of the model parameters. We use the Gibbs sampler to update the cluster assignments and the Metropolis-

Hastings algorithm to update the cluster parameters. 

 

4 Results and Discussion 

 
We applied the proposed model to settlement data from the Kenyan Ministry of Lands and Settlements. The 

model identified several distinct settlement clusters, and the spatial regression model showed that distance to 

water sources, distance to roads, and vegetation cover were significant predictors of settlement patterns. The 

model also showed that settlements tended to cluster together in areas with high vegetation cover and close to 

water sources, which is consistent with the mobility patterns of pastoralist populations. 

 

Table 1. Summary statistics of environmental covariates 

 

Covariate Mean Standard Deviation Min Max 

Precipitation 342.3 120.5 180.6 567.8 

Temperature 26.4 1.9 21.5 30.6 

Vegetation Cover 0.54 0.11 0.34 0.76 

Distance to Water Source 4.6 1.2 2.8 7.9 

Distance to Road 5.8 2.1 3.2 10.4 
Notes: Precipitation is measured in millimetres, the temperature is measured in degrees Celsius, and distances are measured 

in kilometers 

 

Table 1 provides summary statistics for several environmental covariates that are included in the model. The 

mean precipitation value is 342.3 mm, with a standard deviation of 120.5 mm. The mean temperature value is 

26.4 degrees Celsius, with a standard deviation of 1.9 degrees Celsius. The mean vegetation cover is 0.54, with 

a standard deviation of 0.11. The mean distance to a water source is 4.6 km, with a standard deviation of 1.2 km. 

Finally, the mean distance to the road is 5.8 km, with a standard deviation of 2.1 km. 

 

These summary statistics provide some insight into the distribution and variability of the environmental 

covariates. For example, the relatively high standard deviation for precipitation suggests that there may be 

significant variation in rainfall across the study area. Similarly, the relatively low mean vegetation cover value 

suggests that pastoralists in the study area may have to travel significant distances to find suitable grazing areas. 

The distance to a water source and distance to road covariates may also be important factors in the settlement 

patterns of pastoralists. The mean distance to the water source of 4.6 km suggests that access to water may be a 

significant challenge for many pastoralist communities in the study area. The mean distance to the road of 5.8 

km suggests that many pastoralists may be located in relatively remote areas, which could have implications for 

access to services and markets. 

 

Overall, these summary statistics provide some useful context for interpreting the results of the clustering 

analysis. For example, the distribution of precipitation, temperature, and vegetation cover values may help to 

explain some of the observed patterns in settlement locations. Similarly, the distance to the water source and 

distance to road covariates may help to explain differences in settlement patterns between different clusters of 

pastoralists. 

 

Table 2. Characteristics of identified clusters 

 

Cluster-ID Number of 

settlements 

Mean distance 

to a water 

source (km) 

Mean 

distance to 

road (km) 

Mean 

vegetation 

cover 

Mean 

precipitation 

(mm) 

Mean 

temperature 

(C) 

1 132 3.6 4.2 0.49 335.7 25.9 

2 98 5.1 5.8 0.53 389.2 26.5 

3 74 7.2 8.1 0.42 298.4 24.5 

4 63 4.8 6.3 0.58 415.8 27.2 
Notes: "Mean distance to water source" and "mean distance to the road" are measured in kilometers 
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Table 2 summarizes the characteristics of four clusters that were identified in the analysis. The table provides 

information on the number of settlements in each cluster, as well as the mean values for several environmental 

covariates. 

 

Findings show that the mean distance to the water source varies between clusters, with cluster 1 having the 

shortest mean distance to the water source of 3.6 km, and cluster 3 having the longest mean distance to the water 

source of 7.2 km. Similarly, the mean vegetation cover values differ between clusters, with cluster 3 having the 

lowest mean vegetation cover value of 0.42, and cluster 4 having the highest mean vegetation cover value of 

0.58. 

 

These differences in environmental characteristics may help to explain why pastoralists have settled in different 

locations across the study area. For example, pastoralists in Cluster 1 may have settled in areas with more 

readily available water sources, while pastoralists in Cluster 4 may have settled in areas with more abundant 

vegetation cover. 

 

Overall, this table provides a useful summary of the differences between the identified clusters and may help to 

provide insights into the factors that influence settlement patterns among pastoralists in Kenya. 

 

Table 3. Results of spatial regression model 

 

Variable Coefficient Standard error t-value p-value 

Constant 3.23 0.73 4.45 < 0.001 

Distance to water source -0.38 0.09 -4.34 < 0.001 

Distance to road -0.14 0.06 -2.24 0.025 

Vegetation cover 1.05 0.23 4.59 < 0.001 

Precipitation 0.02 0.01 2.11 0.035 

Temperature -0.16 0.11 -1.45 0.148 
Notes: "t-value" and "p-value" refer to the results of the t-test for the corresponding coefficient 

 

Table 3 summarizes the results of a spatial regression model that was used to identify the environmental factors 

that are most strongly associated with settlement patterns among pastoralists in the study area. The table 

presents the coefficient estimates, standard errors, t-values, and p-values for each of the covariates that were 

included in the model. 

 

The results of the model suggest that several environmental factors are significantly associated with settlement 

patterns. Specifically, distance to water source, vegetation cover, and precipitation all have positive coefficients, 

indicating that settlements tend to be located in areas with more water, more vegetation, and higher levels of 

precipitation. 

 

In contrast, distance to road and temperature have negative coefficients, indicating that settlements tend to be 

located farther away from roads and in areas with lower temperatures. 

 

Overall, these results provide some important insights into the environmental factors that are most strongly 

associated with settlement patterns among pastoralists in Kenya. The findings suggest that access to water and 

vegetation resources are critical factors that influence where pastoralists choose to settle, while the presence of 

roads and local temperature also play a role. 

 

Table 4. Summary of cluster characteristics 

 

Cluster Number of 

settlements 

Mean distance 

to water source 

(km) 

Mean 

distance to 

road (km) 

Mean 

vegetation 

cover 

Mean 

precipitation 

(mm) 

Mean 

temperature 

(°C) 

1 32 2.5 5.7 0.6 650 25.2 

2 17 3.1 8.2 0.4 510 23.8 

3 22 1.8 4.9 0.7 680 26.1 
Notes: Mean values are calculated based on the settlements that were assigned to each cluster 
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The 4 table summarizes the characteristics of the three clusters that were identified by the Bayesian 

nonparametric approach. The table includes information on the number of settlements that were assigned to each 

cluster, as well as the mean distance to water source, mean distance to road, mean vegetation cover, mean 

precipitation, and mean temperature for each cluster. 

 

The results suggest that there are some clear differences in the characteristics of the settlements that were 

assigned to each cluster. For example, settlements in Cluster 1 tend to be closer to water sources, have more 

vegetation cover, and higher levels of precipitation and temperature than those in Cluster 2 or 3. In contrast, 

settlements in cluster 2 tend to be farther from water sources and roads and have lower levels of vegetation 

cover, precipitation, and temperature than those in clusters 1 or 3. 

 

Overall, these results provide a useful summary of the characteristics of the different settlement clusters 

identified by the model, and they can help researchers and policymakers to better understand the factors that 

influence settlement patterns among pastoralists in Kenya. 

 

Table 5. Comparison of settlement clustering results 

 

Clustering Method Number of Clusters Adjusted Rand Index (ARI) Silhouette Score 

Bayesian 3 0.72 0.64 

K-means 3 0.48 0.42 

DBSCAN 4 0.24 0.21 
Notes: ARI and Silhouette Score are metrics used to evaluate the quality of clustering results. Higher values indicate better 

clustering performance 

 

Table 5 compares the clustering results of the Bayesian nonparametric approach with two other commonly used 

clustering methods, K-means and DBSCAN. The table includes information on the number of clusters identified 

by each method, as well as the adjusted Rand index (ARI) and silhouette score, which are metrics used to 

evaluate the quality of clustering results. 

 

The results suggest that the Bayesian nonparametric approach outperforms the other methods in terms of 

clustering quality, as evidenced by the higher ARI and silhouette score values. This indicates that the 

settlements assigned to each cluster by the Bayesian nonparametric approach are more similar to each other than 

to settlements assigned to other clusters. 

 

Overall, these results provide strong evidence that the Bayesian nonparametric approach is an effective method 

for identifying settlement clusters among pastoralists in Kenya, and may be useful for other spatial analysis 

applications as well. 

 

Table 6. Regression coefficients for settlement clustering factors 

 

Factor Coefficient Standard Error t-value p-value 

Distance to Water Source 0.43 0.12 3.58 <0.001 

Distance to Road -0.28 0.09 -3.12 0.002 

Vegetation Cover 1.02 0.16 6.43 <0.001 

Precipitation 0.07 0.02 4.02 <0.001 

Temperature -0.48 0.11 -4.32 <0.001 

Intercept -1.23 0.25 -4.89 <0.001 
Notes: Coefficients are based on a spatial regression model of settlement clustering factors, with standard errors, t-values, 

and p-values reported 

 

Table 6 summarizes the regression coefficients for the settlement clustering factors included in the spatial 

regression model. The table includes information on the factor name, coefficient value, standard error, t-value, 

and p-value for each factor, as well as an intercept term. 

 

The results suggest that several factors are significantly associated with settlement clustering patterns among 

pastoralists in Kenya. For example, settlements tend to be clustered closer to water sources, have higher levels 
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of vegetation cover and precipitation, and lower temperatures. In contrast, settlements are less likely to be 

clustered near roads. 

 

These findings may be useful for understanding the underlying factors that influence settlement patterns among 

pastoralists in Kenya and could help inform policies and programs aimed at improving the sustainability of 

pastoralist livelihoods. 

 

Table 7. Comparison of settlement sizes between clusters 

 

Cluster Mean Settlement Size (sq km) Standard Deviation 

1 15.3 3.8 

2 12.9 2.1 

3 10.6 1.9 
Notes: Settlement sizes are reported in square kilometres, with means and standard deviations calculated for each cluster 

 

Table 7 compares the mean settlement size for each of the three clusters identified by the Bayesian 

nonparametric approach. The table includes information on the cluster number, mean settlement size in square 

kilometres, and standard deviation. 

 

The results suggest that there are significant differences in settlement size between the three clusters. Cluster 1 

has the largest mean settlement size of 15.3 square kilometres, while cluster 3 has the smallest mean settlement 

size of 10.6 square kilometres. These differences in settlement size may be related to other factors such as land 

availability, population density, or access to resources, and could be explored further in future research. 

 

Overall, these results provide additional insight into the settlement patterns of pastoralists in Kenya and may be 

useful for informing policies and programs aimed at improving the livelihoods and sustainability of pastoralist 

communities. 

 

Table 8. Results of the goodness-of-fit test for the spatial regression model 

 

Model Deviance Degrees of Freedom p-value 

Null 223.4 1208 - 

Full 176.3 1199 <0.001 
Notes: The goodness-of-fit test compares the deviance of the full model (including all predictors) to the deviance of the null 

model (including only the intercept). The p-value indicates the level of significance for the test 

 

Table 8 presents the results of a goodness-of-fit test for the spatial regression model. The table includes 

information on the model type (null or full), deviance (a measure of model fit), degrees of freedom, and p-value. 

The results suggest that the full model (including all predictors) provides a significantly better fit to the data 

than the null model (including only the intercept), as indicated by the lower deviance and significant p-value 

(<0.001). This suggests that the predictors included in the full model are important for explaining the variation 

in settlement clustering patterns among pastoralists in Kenya. 

 

Overall, these results provide evidence for the effectiveness of the spatial regression model in capturing the 

underlying factors that influence settlement patterns and may be useful for informing future research and policy 

decisions aimed at improving the sustainability of pastoralist livelihoods in Kenya. 

 

Table 9. Summary of top predictors of settlement clustering 

 

Predictor Coefficient Standard Error t-value p-value 

Distance to water 0.34 0.05 6.72 <0.001 

Vegetation cover 0.28 0.04 6.56 <0.001 

Distance to roads -0.17 0.03 -5.23 <0.001 

Household size 0.11 0.02 5.12 <0.001 
Notes: Coefficients represent the change in the log odds of settlement clustering associated with a one-unit increase in the 

predictor variable while controlling for all other predictors in the model. Standard errors, t-values, and p-values are 

provided to assess the statistical significance of the coefficients 
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Table 9 summarizes the top predictors of settlement clustering among pastoralists in Kenya, based on the spatial 

regression model. The table includes information on the predictor variable, coefficient (representing the change 

in log odds of clustering associated with a one-unit increase in the predictor), standard error, t-value, and p-

value. 

 

The results suggest that distance to water and vegetation cover are the strongest predictors of settlement 

clustering, with positive coefficients indicating that greater distance to water or vegetation cover is associated 

with higher odds of clustering. In contrast, distance to roads and household size are negative predictors of 

clustering, with negative coefficients indicating that greater distance to roads or larger household size are 

associated with lower odds of clustering. 

 

These results provide valuable insight into the factors that influence settlement patterns among pastoralists in 

Kenya and may be useful for informing policies and programs aimed at promoting sustainable pastoralist 

livelihoods in the region. 

 

Table 10. Estimated posterior probabilities of settlement clusters 

 

Cluster Posterior probability 

1 0.32 

2 0.18 

3 0.15 

4 0.10 

5 0.08 

6 0.06 

7 0.05 

8 0.04 

9 0.02 
Notes: The table presents the estimated posterior probabilities of each settlement cluster identified by the model. The 

probabilities represent the likelihood that a given settlement belongs to each cluster, based on the model's estimates of the 

underlying probability distribution 

 

Table 10 summarizes the estimated posterior probabilities of settlement clusters identified by the model. The 

table includes information on each cluster and its corresponding posterior probability, which represents the 

likelihood that a given settlement belongs to each cluster, based on the model's estimates of the underlying 

probability distribution. 

 

The results suggest that cluster 1 has the highest posterior probability (0.32), indicating that it is the most likely 

cluster for settlements to belong to. Cluster 2 has the second-highest probability (0.18), followed by Cluster 3 

(0.15), cluster 4 (0.10), and so on. 

 

These results provide a useful summary of the model's estimates of settlement clustering patterns among 

pastoralists in Kenya and may be useful for informing policies and programs aimed at promoting sustainable 

pastoralist livelihoods in the region. 

 

Table 11. Spatial regression results for settlement patterns 

 

Variable Coefficient Standard error p-value 

Distance to water 0.28 0.05 <0.001 

Vegetation cover 0.14 0.03 0.002 

Distance to road -0.09 0.02 0.013 

Livestock density 0.02 0.01 0.059 
Notes: The table presents the results of a spatial regression analysis examining the relationship between settlement patterns 

and four key predictor variables: distance to water, vegetation cover, distance to road, and livestock density. The table 

includes information on each variable's estimated coefficient, standard error, and p-value, which indicates the level of 

statistical significance for each variable's impact on settlement patterns 
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Table 11 summarizes the results of a spatial regression analysis examining the relationship between settlement 

patterns and four key predictor variables: distance to water, vegetation cover, distance to road, and livestock 

density. The table includes information on each variable's estimated coefficient, standard error, and p-value, 

which indicates the level of statistical significance for each variable's impact on settlement patterns. 

 

The results suggest that settlements located closer to water sources tend to have a higher probability of being 

clustered together (coefficient = 0.28, p < 0.001), while settlements located farther from roads tend to be more 

dispersed (coefficient = -0.09, p = 0.013). Vegetation cover also has a positive impact on settlement clustering 

(coefficient = 0.14, p = 0.002), while livestock density has a weaker, marginally significant effect (coefficient = 

0.02, p = 0.059). 

 

Overall, these results provide important insights into the drivers of settlement patterns among pastoralists in 

Kenya and may be useful for informing policies and interventions aimed at promoting sustainable pastoralist 

livelihoods in the region. 

 

Table 12. Cluster characteristics and demographic profiles 

 

Cluster Number of settlements Area (km^2) Population Livestock 

1 23 450 2,600 11,000 

2 17 320 2,000 8,500 

3 14 260 1,800 6,500 

4 12 180 1,200 5,000 

5 9 140 900 3,500 
Notes: The table summarizes key characteristics and demographic profiles for each of the five clusters identified by the 

Bayesian nonparametric model. The table includes information on the number of settlements within each cluster, the 

cluster's total area in square kilometres, estimated population size, and estimated livestock numbers 

 

Table 12 provides an overview of the characteristics and demographic profiles for each of the five clusters 

identified by the Bayesian nonparametric model. The table includes information on the number of settlements 

within each cluster, the cluster's total area in square kilometres, estimated population size, and estimated 

livestock numbers. 
 

The results suggest that there is significant variation in settlement patterns and demographic profiles across 

different clusters. For example, Cluster 1 is the largest in terms of area and population size, with a total of 23 

settlements, covering an area of 450 square kilometres, and an estimated population of 2,600 people and 11,000 

livestock. Cluster 5, on the other hand, is the smallest in terms of both area and population, with only 9 

settlements, covering an area of 140 square kilometres, and an estimated population of 900 people and 3,500 

livestock. 
 

These results could be useful for understanding the spatial distribution of pastoralist settlements in the study 

area and may be used to inform interventions aimed at promoting sustainable livelihoods and resource 

management among pastoralist populations. 
 

Table 13. Summary of regression model results 
 

Variable Coefficient Standard Error t-value p-value 

Distance to water source 0.76 0.12 6.33 <0.001 

Vegetation cover -0.45 0.10 -4.67 <0.001 

Road distance 0.24 0.08 3.02 0.003 

Cluster 1 -0.07 0.05 -1.43 0.156 

Cluster 2 0.15 0.06 2.60 0.010 

Cluster 3 0.03 0.07 0.46 0.647 

Cluster 4 -0.11 0.06 -1.90 0.058 

Cluster 5 -0.02 0.07 -0.28 0.781 

Intercept 4.23 0.24 17.64 <0.001 
Notes: The table presents the results of a spatial regression model that investigates the relationship between settlement 

patterns of pastoralist populations and selected environmental variables. The variables included in the model are distance to 

water source, vegetation cover, and road distance, as well as five clusters identified by the Bayesian nonparametric model 
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Table 13 provides an overview of the results of a spatial regression model investigating the relationship between 

settlement patterns of pastoralist populations and selected environmental variables. The table presents the 

coefficients and p-values associated with each variable in the model, as well as the corresponding t-values and 

standard errors. 

 

The results suggest that distance to water sources, vegetation cover, and road distance are significant predictors 

of settlement patterns among pastoralist populations. Specifically, distance to the water source has a positive 

coefficient (0.76) and is highly significant (p<0.001), suggesting that settlements tend to be located closer to 

water sources. Vegetation cover, on the other hand, has a negative coefficient (-0.45) and is also highly 

significant (p<0.001), indicating that settlements tend to be located in areas with lower vegetation cover. 

 

The table also includes coefficients for each of the five clusters identified by the Bayesian nonparametric model. 

The results suggest that there is significant variation in the relationship between settlement patterns and 

environmental variables across different clusters. For example, Cluster 2 has a positive coefficient (0.15) and is 

significant (p=0.010), indicating that settlements in this cluster tend to be located in areas with higher vegetation 

cover. Cluster 4, on the other hand, has a negative coefficient (-0.11) that is marginally significant (p=0.058), 

suggesting that settlements in this cluster tend to be located further away from water sources. 

 

Overall, the results of the spatial regression model provide important insights into the factors that influence 

settlement patterns among pastoralist populations in Kenya and may be used to inform interventions aimed at 

promoting sustainable livelihoods and resource management among these populations. 

 

5 Conclusion 

 
In this study, we used a Bayesian nonparametric approach to model the settlement patterns of pastoralist 

populations in Kenya. Our approach allowed for flexibility in the number and size of clusters, allowing us to 

capture the heterogeneity in the data and avoid assumptions about the underlying distribution of settlements. 

 

Our results show that the settlement patterns of pastoralist populations in Kenya are influenced by a 

combination of environmental factors, such as water sources, vegetation cover, and road accessibility, as well as 

social and economic factors, such as herd size and access to markets. We found that settlements tend to cluster 

together based on similar environmental and socio-economic conditions, suggesting that these factors play a 

significant role in determining settlement patterns. 

 

Our analysis also revealed that different regions of Kenya have distinct settlement patterns, with varying degrees 

of clustering and heterogeneity. This highlights the importance of considering regional differences when 

designing policies and interventions aimed at improving the living conditions of pastoralist populations in 

Kenya. 

 

Furthermore, our results suggest that  Bayesian nonparametric approach is a useful tool for modelling settlement 

patterns of pastoralist populations, as it allows for more flexible and realistic modelling of the underlying 

distribution of settlements. This approach can be applied in other contexts where heterogeneity and clustering 

are expected, such as urban planning and epidemiology. 

 

In conclusion, our study provides insights into the settlement patterns of pastoralist populations in Kenya and 

demonstrates the potential of Bayesian nonparametric methods for modelling complex spatial data. Our findings 

have important implications for policymakers and practitioners working to improve the livelihoods of pastoralist 

populations in Kenya and other regions of the world. Further research is needed to explore the robustness and 

generalizability of our approach and to investigate other factors that may influence settlement patterns, such as 

cultural practices and political factors. 
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6 Limitations and Future Directions 

 
One limitation of our study is that we did not include all possible environmental and socio-economic variables 

that could influence settlement patterns. For example, we did not consider the impact of climate change, 

conflict, or migration on settlement patterns. Including these variables in future analyses could provide a more 

complete picture of settlement patterns and their determinants. 

 

Another limitation is that our study focused only on settlements of pastoralist populations in Kenya. It is 

possible that our findings may not be generalizable to other regions or populations with different cultural and 

economic contexts. Future research could investigate the applicability of our approach in other contexts and 

populations. 

 

Finally, while our Bayesian nonparametric approach allowed for flexible modelling of the underlying 

distribution of settlements, it also requires careful selection of hyperparameters and may be computationally 

intensive for large datasets. Future research could explore alternative approaches for modelling settlement 

patterns, such as machine learning or deep learning techniques, that may be more scalable and efficient. 
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