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Abstract
In this paper, a new estimator of the Shannon entropy of a random variable X having a probability density
function f(x) is obtained based on window size spacings. Under the standard normal, standard exponential
and uniform distributions, the estimator is shown to have relative low bias and low RMSE through extensive
simulation study at sample sizes 10, 20, and 30. Based on the results, it is recommended as a good estimator
of the entropy. Also, the new estimator is applied in goodness-of-fit test to normality. The statistic is affine
invariant and consistent and the results show that it is a good statistic for assessing univariate normality of
datasets.
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1 Introduction
The entropy of a random variable, X , which has a distribution function F (x) and a probability density function
f(x) is a mathematical function which measures the amount of information in the random variable. It is denoted
by H(f) and Shannon [1] defines it as:

H(f) = −
∫ ∞
−∞

f(x)log {f(x)} dx (1.1)

It has been established that different random variables give different entropy functions obtained from (1.1). For
instance, suppose X is a normal random variable with mean, µ and variance σ2 , the entropy of X has been
obtained as H(f) = 1

2
+ ln

(
σ
√
2π
)

= 1
2
ln
(
2πeσ2

)
and that of a random variable X which is exponential

with probability function f(x) = λe−λx; x > 0, λ > 0 is H(X) = −lnλ + (1 − lnλ) . As a result, entropy
function can be used to characterize different random variables (different distributions).

In real life however, it is usually not known the distribution from where datasets are generated. Hence, it is
of utmost importance to obtain an estimator of the population parameter. Several researchers such as Vasicek
[2], Ebrahimi et al. [3], Wieczorkowski and Grzegorzewski [4], Alizadeh Noughabi [5], Alizadeh Noughabi and
Arghami [6], Zamanzede and Arghami [7], Al-Omari [8], Lombardi and Pant [9], Kohansal and Rezakhah [10], and
Bitaraf et al. [11], to mention but a few, have devoted research attention to this direction. These estimators are
obtained using different nonparametric approaches such as window size (m ) spacings, kernel density estimation,
nearest neighbour technique, and so on. The window size approach, no doubt, has attracted more researchers
the rest of other approaches put together. Let x1, x2, . . ., xn be a random sample of size n from a random
variable X whose probability law is f(x) with distribution function F (x) . Also, let the sample order statistics
obtained from the random sample be X(1), X(2), . . ., X(n) such that X(1) ≤ X(2) ≤ . . . ≤ X(n) . For a non-
negative integar m such that m = 0, 1, 2, . . ., n

2
, the sample m spacing is defined on j th order statistic by

X(j+m)−X(j−m) . Using such spacings, Vasicek [2] in his pioneer work in this direction, estimated the derivative
of F−1(p) by the slope given as: [

X(j+m) −X(j−m)

] n

2m
(1.2)

for (j−1)
n

< p < j
n
; j = m+ 1.m+ 2, . . ., n−m after transforming (1) in the form:

H(f) =

∫ 1

0

log

{
d

dp
F−1(p)

}
dp ; p ∈ (0, 1) (1.3)

to birth an estimator given by:

HVmn =
1

n

n∑
j=1

log
{ n

2m

[
X(j+m) −X(j−m)

]}
; (1.4)

where X(j) = X(1) for j < 1 and X(j) = X(n) for j > n . Although this estimator is biased, like all the other
non-parametric estimators, it is conceived to have a theoretically sound background to making a good estimator
of H(f) .

Soon after the development of the estimator in (1.4), a number of researchers criticised the slope in (1.2) as
incorrect when j ≤ m or j > n − m + 1 . This triggered different modifications of the slope to arrive at
different estimators of the Shannon entropy with comparatively better results. Examples of such estimators
obtained in this light include the Ebrahimi et al. [3], Alizadeh Noughabi and Arghami [6] and Al-Omari [12,
8]. Till present however, there has not been a generally accepted estimator with respect to correctness of the
slope when j ≤ m or j > n−m+1 , hence this research paper. Several other nonparametric estimators of the
entropy have also been proposed in the literature which are not based on the window size spacings. For instance,
Zhang [13] obtained an estimator of the entropy and Zhang [14] showed that the estimator is asymptotically
normal with an exponentially decaying bias.
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In this work, a modification is introduced to the Bitaraf et al. [11] approach to obtain a competitively new
estimator of the Shannon entropy which is applied to goodness-of-fit test to normality of datasets. In what
follows, the new estimator is obtained in Section 2. Section 3 gives the Monte Carlo comparison of the estimator
with some other existing ones. The application to testing for normality is carried out in Section 4 while the
paper is concluded in Section 5.

2 The New Estimator
Let X1, X2, . . ., Xn be a random sample of size n from a continuous distribution F (x) having a probability
function f(x) . Also, let X(1), X(2), . . ., X(n) be the order statistics of the sample such that X(1) ≤ X(2) ≤
. . . ≤ X(n) . Using the sample order statistics, Ebrahimi et al. [3] modified the Vasicek estimator to propose a
new estimator given by:

HEb(1)mn =
1

n

n∑
i=1

log

{
n

cim

(
X(i+m) −X(i)

)}
, (2.1)

where ci =


1 + i−1

m
, 1 ≤ i ≤ m,

2, m+ 1 ≤ i ≤ n−m,
1 + n−i

m
, n−m+ 1 ≤ i ≤ n,

X(i−m) = X(1) for i ≤ m and X(i+m) = X(n) for i ≥ n−m .

Then, Bitaraf et al. [11] intoduced an internal j th spacings, in addition to the m th spacings, thereby changing
the normal slope in (1.2) to have:

Ti. =
1

2

1∑
j=0

Tij ; Tij =
n

wj(m− j)
{
X(i+m−j) −X(i−m+j)

}
(2.2)

for (i−1)
n

< p < i
n
; i = m + 1.m + 2, . . ., n − m , where wj =


1, 1 ≤ i ≤ m− j

2, m− j + 1 ≤ i ≤ n−m+ j

1, n−m+ j + 1 ≤ i ≤ n
and

j = 0, 1 . Based on (2.2), they obtained an estimator of the Shannon entropy as:

HBmn =
1

n

n∑
i=1

log {Ti.} (2.3)

and showed empirically that the estimator has smaller RMSE and bias than the Ebrahimi et al. [3]. Due to the
interesting properties of the j th internal spacing estimator of Bitaraf et al. [11], a new estimator of the entropy
is proposed, which modifies the weighting factor of the Bitaraf et al. [11] estimator. The proposed estimator is
given by:

HMmn =
1

n

n∑
i=1

log

{
1

2
(Ti0 + Ti1)

}
(2.4)

where Tij = n
wij(m−2j)

{
X(i+m−j) −X(i−m+j)

}
and wij =


1 + 1

3
, 1 ≤ i ≤ m− j

2, m− j + 1 ≤ i ≤ n−m+ j

1 + 1
3
, n−m+ j + 1 ≤ i ≤ n

; X(i−m+j) =

X(1) for i ≤ m− j and X(i+m−j) = X(n) for i ≥ n−m+ j , n
m
→ 0, j = 0, 1

Theorem 2.1: For a random sample X1, X2, . . ., Xn from a continuous distribution F (x) with a probability
density function f(x) , HMmn

Pr→ H(f) as n → ∞, m → ∞ , and n
m
→ 0 .

Proof: Using a property of the convex function, Bitaraf et al. [11] obtained the inequality:

1

2n

n∑
i=1

(logai + logbi) ≤
1

n

n∑
i=1

log

(
1

2
(ai + bi)

)
≤ 1

n

n∑
i=1

max {logai, logbi} ; (2.5)
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where ai, bi ∈ R+ . Taking Ti0 for ai and Ti1 for bi and following the same principle with Bitaraf et al. [11],
we have the extreme terms of the inequality in (2.5) presented as:

1

2n

n∑
i=1

(
log

{
n
(
X(i+m) −X(i−m)

)
2m

}
+ log

{
n
(
X(i+m−1) −X(i−m+1)

)
2(m− 2)

}
+ log

{
2

wi0

}
+ log

{
2

wi1

})

≤ 1

n

n∑
i=1

max

(
log

{
n
(
X(i+m) −X(i−m)

)
2m

}
, log

{
n
(
X(i+m−1) −X(i−m+1)

)
2(m− 2)

})

Since wij ∈ (1, 2), (2n)−1∑n
i=1 log

{
2
wi0

}
and (2n)−1∑n

i=1 log
{

2
wi1

}
converges to 0. Also, there exists

Xij ∈
(
X(i−m+j), X(i+m−j)

)
such that

F
(
X(i+m−j)

)
− F

(
X(i−m+j)

)
X(i+m−j) −X(i−m+j)

= f (Xij) ; j = 0, 1.

In line with Bitaraf [11], the first and second terms of the inequality above give rise to

1

2

[
− 1

n

n∑
i=1

log {f(Xi0)} − Vm,n + Um,n −
1

n

n∑
i=1

log {f(Xi1)} − Vm−2,n + Um−2,n

]
,

where Vm−2j,n = 1
n

∑n
i=1 log

{
F(X(i+m−j))−F(X(i−m+j))
f(Xij

)[X(i+m−j)−X(i−m+j)]

}
, and

Um−2j,n = 1
n

∑n
i=1 log

{
n

2(m−2j)

[
F
(
X(i+m−j)

)
− F

(
X(i−m+j)

)]}
; j = 0, 1 . According to Vasicek [2] and

Bitaraf et al. [11], for a fixed n , the effect of Vm−j,n decreases as m decreases and Um−j,n converges in
probability to zero. Hence, HMmn converges in probability to H(f) as n → ∞, m → ∞ , and n

m
→ 0 and

the proof is completed.

3 Empirical Comparison of Entropy Estimators
In this section, the performance of some selected three estimators of the Shannon entropy is compared with the
proposed estimator through simulation studies. The selected estimators include the Vasicek [2], Ebrahimi et
al. [3], and the Bitaraf et al. [11] estimators, which are presented in this work as HVmn , HEmn , and HBmn
respectively. Precisely, the empirical root mean square error (RMSE) and the bias of these three competing
estimators are compared with those of the proposed HMmn estimator based on 10,000 samples of sizes 10, 20,
and 30. The sample sizes of 10, 20 and 30 are chosen for the study since they span through small sample to large
sample sizes. As a result, they can represent very well the general behaviour of an estimator across sample sizes.
These samples are obtained from three different continuous distributions, namely: the standard normal, uniform
in the interva (0, 1), and the standard exponential, which are chosen arbitrarily among all the possible statistical
distributions. In each of the sample sizes, the study is conducted for m = 1, 2, . . ., n

2
. Although Grzegorzewski

and Wieczorkowski [15] have obtained an optimal m as m∗ = [
√
n+ 0.5] , but it has been criticised as being

incorrect, hence our choice of using all the possible m for each sample size.

From each sample size under each distribution with a known measure of entropy θ , 10,000 samples are generated
and the estimated entropy measure, θ̂ , is computed from each of the samples using the four competing estimators.
Then, the RMSE and bias of each of the estimators is obtained by:

RMSE =

(
1

10000

10000∑
j=1

{
θ̂j − θ

}2
) 1

2

; bias =
1

10000

10000∑
j=1

θ̂j − θ. (3.1)

All the simulations and computations are carried out using the R statistical software and the results are presented
in Tables 1, 2, and 3 for normal, uniform and exponential distributions respectively.
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Table 1. Empirical root mean square errors and biases of some Shannon entropy estimators
under the standard normal distribution with θ = 1.4189

n m RMSEs Biases
HVmn HEmn HBmn HMmn Vbias Ebias Bbias Mbias

10 1 0.6719 0.5559 − 1.2042 -0.6718 -0.3508 − -1.1068
2 0.5955 0.4297 0.4115 − -0.1791 -0.4041 -0.1882 −
3 0.6190 0.4045 0.3239 0.2789 -0.6090 -0.0066 -0.1761 -0.2118
4 0.6630 0.3936 0.2781 0.2747 -0.4730 -0.3832 0.2768 -0.4054
5 0.7165 0.3852 0.2591 0.2864 -0.2858 -0.1560 0.3527 -0.2146

20 1 0.4859 0.4243 − 1.1013 -0.4881 -0.4188 − -1.1863
2 0.3770 0.2957 0.2964 − -0.2671 -0.1690 -0.6345 −
3 0.3662 0.2631 0.2220 0.2711 0.2124 0.3404 -0.2391 0.4778
4 0.3762 0.2485 0.1912 0.1894 -0.4731 -0.3147 -0.0624 0.2219
5 0.3924 0.2395 0.1800 0.1782 -0.8076 -0.6187 -0.0106 0.0491
6 0.4198 0.2408 0.1818 0.1781 -0.2402 -0.0207 -0.1301 0.0298
7 0.4453 0.2375 0.1898 0.1808 -0.7344 -0.4843 0.0316 0.0711
8 0.4736 0.2389 0.2063 0.1806 -0.1426 0.1381 0.3092 -0.2776
9 0.5018 0.2380 0.2290 0.1803 -0.5254 -0.2141 0.3924 -0.0604
10 0.5268 0.2353 0.2549 0.1791 -0.6992 -0.3573 0.0472 0.1024

30 1 0.4130 0.3710 − 1.0550 -0.5199 -0.4737 − -1.1980
2 0.2987 0.2441 0.2515 − -0.3975 -0.3321 -0.3971 −
3 0.2749 0.2072 0.1879 0.2752 -0.4684 -0.3830 -0.0931 0.5519
4 0.2734 0.1918 0.1587 0.1735 -0.1492 -0.0436 -0.0146 0.0348
5 0.2831 0.1854 0.1474 0.1488 -0.0057 0.1202 0.1881 0.2138
6 0.2904 0.1788 0.1432 0.1443 -0.2438 -0.0972 -0.2126 0.0689
7 0.3051 0.1770 0.1528 0.1429 -0.3850 -0.1683 0.0965 -0.1639
8 0.3209 0.1768 0.1620 0.1478 -0.3329 -0.1458 -0.1017 -0.0268
9 0.3376 0.1753 0.1807 0.1466 -0.6350 -0.4275 0.1052 -0.1991
10 0.3553 0.1762 0.1977 0.1510 -0.3276 -0.0996 0.0971 -0.3528
11 0.3728 0.1758 0.2139 0.1506 -0.3077 -0.0593 0.0383 -0.0390
12 0.3871 0.1733 0.2362 0.1527 -0.4180 -0.1492 0.2273 -0.2422
13 0.4091 0.1741 0.2597 0.1555 -0.4504 -0.1611 0.2060 -0.0603
14 0.4274 0.1748 0.2805 0.1552 -0.5827 -0.2730 0.1564 0.0003
15 0.4479 0.1764 0.3037 0.1579 -0.4534 -0.1233 0.2449 -0.0288
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Table 2. Empirical root mean square errors and biases of some Shannon entropy estimators
under the standard exponential distribution with θ = 1

n m RMSEs Biases
HVmn HEmn HBmn HMmn Vbias Ebias Bbias Mbias

10 1 0.6742 0.5704 − 1.2278 -0.6411 -0.2621 − -1.0727
2 0.5777 0.4376 0.4271 − -0.2224 0.0063 0.2789 −
3 0.5673 0.3984 0.3619 0.4002 -0.3692 -0.2055 0.2221 0.5587
4 0.5738 0.3905 0.3633 0.3737 -0.0775 0.2163 0.3187 0.5347
5 0.5970 0.3794 0.4183 0.3727 -0.5236 -0.1298 0.0118 -0.5849

20 1 0.4874 0.4297 − 1.0949 -0.4684 -0.4558 − -1.4015
2 0.3774 0.3107 0.3201 − -0.3003 -0.2719 0.3241 −
3 0.3583 0.2790 0.2528 0.3363 -0.3846 -0.0740 -0.3377 0.2598
4 0.3555 0.2613 0.2418 0.2671 -0.3429 -0.3365 -0.3971 -0.1285
5 0.3563 0.2529 0.2517 0.2531 -0.1613 -0.3875 0.0975 0.0736
6 0.3572 0.2496 0.2799 0.2643 -0.4417 0.0610 0.3004 0.1359
7 0.3675 0.2484 0.3176 0.2679 -0.1151 0.0599 0.2417 0.0084
8 0.3769 0.2566 0.3605 0.2773 -0.1169 0.0393 0.2599 0.1986
9 0.3818 0.2628 0.4066 0.2960 -0.0756 -0.0904 0.3443 0.3686
10 0.3954 0.2719 0.4680 0.3139 -0.1185 0.1554 0.4483 0.5568

30 1 0.4207 0.3802 − 1.0530 -0.5638 -0.2902 − -0.9760
2 0.3065 0.2629 0.2720 − -0.1007 0.0792 -0.1688 −
3 0.2827 0.2285 0.2150 0.3254 -0.2235 -0.2701 -0.1336 0.4435
4 0.2736 0.2125 0.1975 0.2283 -0.2235 -0.1100 -0.3329 0.0932
5 0.2722 0.2048 0.1957 0.2132 -0.5552 -0.2931 0.3241 0.3032
6 0.2719 0.1996 0.2073 0.2102 -0.2572 -0.1826 -0.1514 -0.0942
7 0.2752 0.1988 0.2300 0.2128 -0.1886 -0.2609 0.0404 0.1135
8 0.2802 0.2026 0.2543 0.2162 -0.2200 0.1126 0.0583 -0.1477
9 0.2777 0.2021 0.2859 0.2305 -0.0324 0.2507 0.0171 -0.0296
10 0.2861 0.2082 0.3218 0.2388 -0.4808 0.0820 0.1876 -0.1442
11 0.2896 0.2141 0.3571 0.2492 -0.4216 -0.0712 -0.0542 0.1880
12 0.2953 0.2211 0.3936 0.2652 0.0961 0.2786 0.5240 0.2406
13 0.2979 0.2312 0.4384 0.2811 -0.0932 0.1771 0.1063 0.0724
14 0.3044 0.2422 0.4731 0.2983 -0.2753 0.3789 0.3739 0.6182
15 0.3031 0.2543 0.5213 0.3179 0.0411 -0.2888 0.3556 0.1823
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Table 3. Empirical root mean square errors and biases of some Shannon entropy estimators
under the uniform distribution in the interval 0 and 1, with θ = 0

n m RMSEs Biases
HVmn HEmn HBmn HMmn Vbias Ebias Bbias Mbias

10 1 0.5698 0.4461 − 1.1567 -0.5854 -0.2439 − -1.1061
2 0.4520 0.2839 0.2712 − -0.2184 0.0144 -0.1331 −
3 0.4534 0.2308 0.1769 0.2590 -0.5832 -0.2226 0.0942 0.2940
4 0.4833 0.2165 0.1704 0.1769 -0.3333 -0.0827 0.1686 -0.0642
5 0.5305 0.2058 0.2255 0.1664 -0.5598 0.1308 0.2110 0.0939

20 1 0.4193 0.3555 − 1.0585 -0.2526 -0.2007 − -0.9864
2 0.2884 0.2017 0.2081 − -0.1701 -0.1565 -0.2188 −
3 0.2702 0.1556 0.1195 0.2666 -0.4173 -0.0834 -0.1081 0.1787
4 0.2751 0.1324 0.0878 0.1421 -0.1140 -0.0069 0.0012 0.2632
5 0.2904 0.1231 0.0990 0.1104 -0.1942 -0.0315 0.1244 0.0452
6 0.3105 0.1131 0.1298 0.1001 -0.3145 -0.0148 0.0864 0.1174
7 0.3326 0.1086 0.1677 0.0959 -0.3174 -0.2053 0.1870 0.0574
8 0.3599 0.1083 0.2084 0.0969 -0.2569 -0.0794 0.1652 0.1306
9 0.3858 0.1077 0.2479 0.1002 -0.3297 -0.0170 0.2803 -0.1262
10 0.4115 0.1061 0.2900 0.1038 -0.4326 -0.0760 0.26462 0.1206

30 1 0.3697 0.3245 − 1.0264 -0.3457 -0.3587 − -1.0021
2 0.2352 0.1757 0.1883 − -0.1430 -0.1442 -0.1214 −
3 0.2080 0.1314 0.1062 0.2758 -0.1615 -0.0652 -0.1184 0.1452
4 0.2043 0.1094 0.0678 0.1402 -0.1870 -0.0786 -0.1437 0.1991
5 0.2116 0.0963 0.0619 0.0996 -0.1363 0.0008 0.0485 0.1163
6 0.2217 0.0895 0.0781 0.0837 -0.3114 -0.0610 -0.0716 0.1146
7 0.2344 0.0835 0.1019 0.0781 -0.2111 0.0190 0.0827 0.1617
8 0.2490 0.0784 0.1288 0.0745 -0.2545 -0.0812 0.1460 0.0842
9 0.2658 0.0764 0.1563 0.0735 -0.2719 -0.2071 0.1949 0.0441
10 0.2827 0.0756 0.1828 0.0761 -0.3348 -0.0527 0.1564 0.0251
11 0.3013 0.0727 0.2101 0.0775 -0.3395 -0.0082 0.2102 0.1134
12 0.3194 0.0724 0.2376 0.0800 -0.3262 -0.0182 0.3247 0.0174
13 0.3369 0.0732 0.2656 0.0831 -0.3025 -0.0229 0.1635 0.1199
14 0.3557 0.0728 0.2924 0.0887 -0.3883 -0.1183 0.2449 0.1052
15 0.3740 0.0726 0.3179 0.0915 -0.3555 -0.0375 0.2767 0.0189
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From the results in Tables 1, 2, and 3, a number of important facts about the general behaviour of the Shannon
entropy estimators as well as specific estimators are established. Firstly, the efficiency behaviour of the estimators
depends on the distribution from where the sample is obtained. This is because the minimum RMSE of each of
the competing estimators under a specified sample size varies across the distributions. For instance, at sample
size of 10, HVmn , recorded minimum RMSEs of 0.5955, 0.5673, and 0.4520 under normal, exponential and
uniform distributions respectively. At a sample size of 20, the observed minimum RMSEs are 0.3662, 0.3563,
and 0.2702 under normal, exponential and uniform distributions respectively. In a similar manner, minimum
RMSEs of 0.2734, 0.2719, and 0.2043 were obtained for the same HVmn at sample size of 30 under the same
respective distributions. For the HEmn , ordered sets of minimum RMSEs, in the manner of the HVmn were
obtained as (0.3852, 0.3794, 0.2058); (0.2353, 0.2484, 0.1061); and (0.1733, 0.1988, 0.0724) respectively for
sample sizes 10, 20, and 30 respectively. For the HBmn estimator, the ordered sets of the minimum RMSEs
are (0.2591, 0.3619, 0.1704); (0.1800, 0.2418, 0.0878) and (0.1432, 0.1957, 0.0619) respectively for sample sizes
n = 10 , 20, and 30 while those of the new estimator, HVmn , are (0.2747, 0.3727, 0.1664); (0.1781, 0.2531,
0.0959) and (0.1429, 0.2102, 0.0735) respectively for sample sizes n = 10 , 20, and 30.

Secondly, the RMSEs for each of the estimators across the distributions considered decrease with increasing
sample size. This is however expected for every good estimator. Again, it is observed that the window size
m at which the RMSE is a minimum (also known as the optimal window size) for a specified sample size
varies from one distribution to another and from one estimator to another. This is against Grzegorzewski and
Wieczorkowski [15], who proposed optimal window size m∗ = [

√
n+ 0.5] , where [x] is the integral part of x .

For each of the estimators, the optimal window size, m∗ , is presented in Table 4 for each sample size under
different distributions with that of Grzegorzewski and Wieczorkowski [15] denoted by m∗(GW ) . The results in
Table 4 show that all the estimators, except the HVmn , maintained optimal window size generally greater than
the m∗(GW ) in almost all the distributions considered.

Table 4. Optimal window size of different estimators in comparison with m∗(GW ) = [
√
n+ 0.5]

Distributions n m∗(GW ) m∗(HVmn) m∗(HEmn) m∗(HBmn) m∗(HMmn)

Normal 10 3 2 5 5 4
20 5 3 10 5 6
30 6 4 12 6 7

Exponential 10 3 3 5 3 5
20 5 6 7 4 5
30 6 6 7 5 6

Uniform 10 3 2 5 4 5
20 5 3 10 4 7
30 6 4 12 5 9

In addition to the above, the results in Tables 1, 2, and 3 show that HEmn , HBmn , and HMmn generally have
smaller RMSEs and bias values than the HVmn in all the sample sizes and distributions considered. As a result,
they can be regarded as bias corrected and generally more efficient estimators than the HVmn . Specifically, the
HBmn and HMmn recorded least RMSEs in all the sample sizes and distributions considered except in the
standard exponential distribution, where the HEmn recorded lower RMSEs than the HMmn in sample sizes
n = 20 and 30. Finally, the new HMmn estimator recorded higher RMSEs than the HBmn in the sample size
of n = 10 of the normal distribution and n = 20 and 30 of the uniform distribution. Based on these results,
the proposed estimator can be regarded as a good estimator of the Shannon entropy.
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4 Test of Normality Based on The New Estimator
It is well known that among all the statistical distributions that possess a density function f(x) and have a
given variance, σ2 , the entropy, H(f) , is maximized by the normal distribution. Based on this, Vasicek [2]
obtained a statistic for testing the assumption of normality. Now, following the procedure of Vasicek [2], a new
test for testing the normality of datasets is obtained by

Mmn =
1

s

n∏
i=1

{
n
(
X(i+m) −X(i−m)

)
2wi0m

+
n
(
X(i+m−1) −X(i−m+1)

)
2wi1(m− 2)

} 1
2

(4.1)

where s2 = n−1∑n
i=1

(
xi −X

)2 . The statistic is consistent and affine invariant.

The Mmn statistic is applied to test for the normality of four different datasets. The first three datasets
are simulated from the standard normal, standard exponential, and standard lognormal distributions, having
sample size of 30 in each case while the last dataset is the petal length of the iris setosa dataset, see Seber [16].
Expectedly, the test rejected the normality of all the datasets at 5% level of significance, except the standard
normal distribution. The results therefore show that the statistic is a good test for testing normality of datasets.

5 Conclusion
Several estimators of the Shannon entropy already exists in the literature via window size spacings. All the
estimators are however biased with varied degrees of biasedness. Also, the ability of these estimators to be
appropriate for the true population entropy depends largely on their relative efficiencies, measured in terms of
the MSEs (or RMSEs). In this study, the new bias corrected estimator was obtained by a modification of the
Bitaraf et al. [11] estimator. In addition to having relatively low bias, the new estimator also has relatively
low RMSE compared to some other estimators. As a result, it can be recommended as a good estimator of the
Shannon entropy. Also, the Mmn statistic obtained for testing normality which is based on the new estimator
can be recommended as a good test for normality of datasets. This is based on the ability of the test to reject
the normality of the four datasets which are actually non-normal.
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