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Abstract

In this paper, a new Jarque-Bera type statistic for assessing the multivariate normality of a multivariate
datasets is obtained. The affine-invariant and consistent statistic is shown to follow, asymptotically, a
chi-square distribution with 2 degrees of freedom. The critical values of the test were evaluated empirically
through extensive simulation studies for different sample sizes and different random vector dimensions. Also,
the empirical type-I-error rates and empirical powers of the proposed test were compared with some other
well-known competing statistics in the literature. The results obtained showed that the proposed omnibus
statistic is a powerful tool for assessing multivariate normality (MVN) of multivariate datasets.
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1 Introduction

Skewness and kurtosis are two important characteristics of every statistical distribution as they determine the
shape of a distribution. They measure the symmetry and peakedness of a distributionrespectively. Given a
random variable X which is said to have a distribution F (x), with a density function, f(x), the skewness and
kurtosis of X are defined respectively by:

β1 =
µ3

µ
3/2
2

andβ2 =
µ4

µ2
2

(1.1)

where µ2, µ3, and µ4 are the second, third, and fourth moments ofX with the ith moment as µi = E(X−µ)i; i =
1, 2, . . . . For a random sample of size n which is obtained from X, the measures of skewness and kurtosis in
(1.1) are estimated by:

√
b1 =

µ̂3

µ̂
3/2
2

and b2 =
µ̂4

µ̂2
2

(1.2)

where µ̂2, µ̂3, and µ̂4 are the second, third and fourth sample moments of the sample, with the ith sample

moment obtained as µ̂i = n−1∑n
j=1

(
Xj −X

)i
; i = 1, 2, . . . ; X = n−1∑n

j=1Xj .

Now, it is well known that a random variable X, which is normally distributed with parameters µ and σ2, has
skewness and kurtosis measures of zero and 3 respectively, irrespective of the values of µ and σ2. As a result,
any random sample with these measures in (1.2) deviating significantly from 0 and 3, respectively, can be said
to have come from a distribution other than normal. Based on this statement of fact, Jaque and Bera [1, 2]
used the methodology of Bowman and Shenton [3] to obtain a goodness-of-fit statistic for assessing normality of
datasets. The statistic is given by:

JBn = n

[(√
b1
)2

6
+

(b2 − 3)2

24

]
(1.3)

The test rejects normality of datasets for large values of the statistic in (1.3) which asymptotically follows a χ2
2,

with an assumption of independence of the
√
b1 and b2.

In multivariate case, Mardia [4,5] and Srivastava [6] have differently obtained measures of skewness and kurtosis.
Suppose a d−component random vector x is said to have a distribution F (x) with a density function f(x), Mardia
[4, 5] obtained the measures of skewness and kurtosis of x respectively as:

β1,d = E
{

(x− µ)Σ−1(y − µ)
}3

andβ2,d = E
{

(x− µ)Σ−1(x− µ)
}2

(1.4)

where y is independent and identically distributed (iid) with x, µ is the d−component mean vector of x and Σ
is the dxd variance - covariance matrix of x. For a random sample of size n from a d−dimensional distribution,
Mardia [4, 5] obtained sample measures of skewness and kurtosis respectively as:

b1,d = n−2
n∑
i=1

n∑
j=1

[
(xi − x)TS−1(xj − x)

]3
and b2,d = n−1

n∑
j=1

[
(xj − x)TS−1(xj − x)

]
(1.5)

where xj ; j = 1, 2, . . ., n is a single observation vector in the sample, x = n−1∑n
j=1 xj and S = n−1∑n

j=1(xj−
x)(xj − x)T .

Mardia [4] used the statistics in (1.5) to obtain two tests for multivariate normality with asymptotic null
distributions. They are:

An =
nb1,d

6
∼ χ2

v; v =
d(d+ 1)(d+ 2)

6
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and

Bn =
[b2,d − (d(d+ 2)(n− 1))/(n+ 1)]

[(8d(d+ 2))/n]1/2
∼ N(0, 1).

In a different approach, Srivastava [6] via principal components of a random sample of size n, obtained estimators
of β1,d and β2,d in (1.4) as

b1,d =

√√√√d−1

d∑
i=1

{
w
−3/2
i

∑n
j=1(yij − yi)3

n

}2

(1.6)

and

b2,d = (nd)−1
d∑
i=1

w−2
i

n∑
j=1

(yij − y)4 (1.7)

where d is the dimension of the random vector, wi is the ith highest eigenvalue of the sample covariance matrix,
S, yij is the jth observation of the ith principal component, yi is the marginal mean of all the ith principal
component observations and y is the overall sample mean of the d principal components data. Using the results
in (1.6) and (1.7), Srivastava [6] obtained two statistics for assessing the MVN of datasets, which are given with
their asymptotic null distributions as:

S1,n =

(
nd

6

)
b21,d ∼ χ2

d andS2,d =

(
nd

24

)1/2

(b2,d − 3) ∼ N(0, 1);

where b1,d and b2,d are as obtained by Srivastava [6].

The tests for multivariate normality based on sample measures skewness and kurtosis are not the only tests for
multivariate normality. In fact, there are no fewer than 100 tests for multinormality in the literature. These
tests are developed using different characterizations of the multivariate normal distribution. Such tests include
Henze and Zirkler [7], Henze and Wagner [8], Szekely and Rizzo [9], Madukaife and Okafor [10, 11], Henze and
Visagie [12] as well as Dorr et al. [13, 14], to mention but a few. However, all the statistics for assessing the
MVN of datasets developed by Mardia [4, 5] and Srivastava [6] are, no doubt, powerful and affine invaraint tests,
except that they lack consistency. As a result, Koizumi et al. [15] proposed two Jaque-Bera type statistics for
assessing MVN, by building in both sample skewness and kurtosis measures. The statistics are:

MJBM = n

{
bM1,d
6

+
(bM2,d − d(d+ 2))2

8d(d+ 2)

}
(1.8)

and

MJBS = nd

{
bS1,d
6

+
(bS2,d − 3)2

24

}
(1.9)

where bM1,d and bS1,d are the b1,d due to Mardia [4] and Srivastava [6] respectively, while bM2,d and bS2,d are the b2,d
according to Mardia [4] and Srivastava [6] respectively.

The two statistics of Koizumi et al. [15] achieved consistency in addition to being affine invariant and having
a good power performance. However, the principal components transform of Srivastava [6] is not the only
univariate operator that can be employed to achieve marginal independence of a multivariate normal dataset.
Villasenor Alva and Estrada [16] noted that if a set of normal random variables are not correlated, then they
are independent. Based on that, they obtained a simple standardization transform of a d−component normal
random vector, applied the Shapiro and Wilk [17] statistic to each coordinate of the random vector and obtained
the average as a new Shapiro-Wilk type test for MVN. The test demonstrated a good control over type-I-error
and an appreciable power performance. As a result, Kim [18] applied the standardization idea of Villasenor Alva
and Estrada [16] to obtain a test for MVN based on the Jarque and Bera [1, 2] statistic. The statistic is given
by:

KJBn = n

d∑
i=1

{
(
√
b1)2

6
+

(b2 − 3)2

24

}
(1.10)
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The test procedure with the statistic in (1.10) which is asymptotically distributed as chi-square with 2d degrees
of freedom rejects the MVN of datasets for large values of the statistic.

Now, Urzua [19] has critisized the statistic of Jarque and Bera [1, 2] as not having correct moments of the sample
skewness and kurtosis. The work obtained correct moments of the measures as:

E
(√

b1
)

= 0; var
(√

b1
)

=
6(n− 2)

(n+ 1)(n+ 3)
; E (b2) =

3(n− 1)

(n+ 1)
; var (b2) =

24n(n− 2)(n− 3)

(n+ 1)2(n+ 3)(n+ 5)
(1.11)

Based on the correct expected values and variances in (1.11), the work obtained a Jarque-Bera type statistic for
testing normality of univariate datasets, which is given by:

AJBn =

(√
b1
)

var
(√
b1
) +

(b2 − E(b2))2

var (b2)
(1.12)

The statistic in (1.12) was shown to be more powerful than the Jarque and Bera [1, 2] statistic.

In this work therefore, the Villasenor Alva and Estrada [16] technique is employed to obtain another consistent
and affine invariant test for MVN based on the Urzua [19] adjusted statistic. The power performance of the
proposed statistic is expected to be better than that of Koizumi et al. [15] based on Srivastava [6] principal
components sample measures of skewness and kurtosis as well as Kim [18]. The new statistic is developed in
Section 2 with its properties. In Section 3, the empirical critical values of the statistic is computed. Also, the
relative empirical power performance of the statistic is obtained in Section 4 while the work is concluded in
Section 5.

2 The New Statistic for Assessing Multivariate Normality

Suppose a random vector, x ∈ Rd, is such that x ∼ Nd(µ, Σ); d ≥ 1. Then, it is well known that

z = Σ−1/2(x− µ) ∼ Nd(0, Id), (2.1)

where Σ−1/2 is the inverse of the positive definite square root matrix of the covariance matrix, Σ. Now, let
x1, x2, . . ., xn be a random sample of size n from x ∼ Nd(µ, Σ) such that µ and Σ are estimated from the
sample observations by xn = n−1∑n

j=1 xj and Sn = n−1∑n
j=1(xj − xn)(xj − xn)T respectively. It is also

well known that the vector transformation

zj =


Z1j

Z2j

...
Zdj

 = S−1/2
n (xj − xn) (2.2)

approaches Nd(0, Id), especially at large sample sizes. As a result of (2.2), it is appropriate to state that each
component of zj is approximately from an independent standard normal. That is, Zij ∼ N(0 , 1).

In order to test for the MVN of a random sample of observation vectors, x1, x2, . . ., xn, it is appropriate to
propose the moment and distribution corrected statistic:

MAJBn =
1

d

d∑
i=1

{
(
√
b1)2

var
(√
b1
) +

(b2 − E(b2))2

var (b2)

}
(2.3)

where
√
b1 and b2 are the sample measures of skewness and kurtosis respectively, as presented in (1.3), E(b2),

var
(√
b1
)

and var (b2) are as presented in (1.11). Under the assumption of the MVN of datasets, the MAJBn
is expected to be zero. Since the statistic is non-negative, the test rejects MVN of datasets for large values of
the statistic.
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Theorem 2.1: The asymptotic null distribution of the MAJBn is chi-square with 2 degrees of freedom.

Proof. Jaque and Bera [1,2] have established that

n

{
(
√
b1)2

6
+

(b2 − 3)2

24

}
∼ χ2

2,

with E(b2) = 3, var
(√
b1
)

= 6
n

, and var (b2) = 24
n

. Based on the adjusted moments and additive (averaging)

property of independent chi-square distributions, d−1∑d
i=1 χ

2
2 ∼ χ2

2 since under the transformation of (2.2),
Z′ijs are mutually independent.

Table 1. Empirical critical values of the MAJBn statistic

n d = 2 d = 5
α=0.05 α=0.01 α=0.05 α=0.01

10 6.5992 13.0314 5.1783 8.2230
15 6.4692 14.2114 5.2318 9.1183
20 6.2576 13.9267 5.2148 9.3438
25 6.2424 13.9002 5.1189 9.3796
30 6.0819 13.7001 5.0473 9.1768
35 6.0242 13.2260 4.9341 8.9495
40 5.9281 12.8348 4.9259 8.9476
45 5.9190 12.7971 4.8678 8.8010
50 5.9014 12.8441 4.7936 8.5957
60 5.8005 12.3223 4.7299 8.2822
70 5.7782 11.8789 4.7153 8.1856
80 5.6646 11.5320 4.5858 7.8161
90 5.6046 11.2110 4.5075 7.7016
100 5.5401 10.9181 4.5323 7.5629
200 5.2460 9.6323 4.1885 6.5702
300 5.1230 8.9623 4.0874 6.2193
400 5.0503 8.4879 4.0097 5.8334
500 4.9947 8.1878 3.9194 5.6017

3 Empirical Critical Values of the Test

Since the MAJBn statistic is asymptotically chi-square with 2 degrees of freedom, the critical values, c, of
the statistic is such that P (MAJBn > cα,n,d) = α under the null distribution of MVN, where cα,n,d is the
upper 100(1 − α) percentile of the chi-square distribution with 2 degrees of freedom. As a result, the test can
be applied by using the percentage points of the chi-square distribution, as tabulated in statistical tables such
as the Biometrika Trust. In this sense, the MVN of a dataset is rejected if the realized value of the statistic
is greater than the appropriate cα,n,d. In this work however, the critical values are computed empirically and
presented in Table 1 for sample sizes, n = 10(5)50(10)100(100)500 and number of variables, d = 2 and 5 at
α = 0.05 and 0.01. The MAJBn statistic is computed in each of 100,000 samples simulated from the standard
multivariate normal distribution under the combinations of n and d. In each combination, the empirical cα,n,d
is obtained as the 100(1− α) percentile of the 100,000 computed statistics.
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4 Power Comparison

The power of a test is the ability of a test to reject the null hypothesis when it is wrong. Different tests for
ascertaining the same thing in statistics often have varied degrees of this ability. In goodness of fit tests to
statistical distributions for instance, power performance is one of the established ways of measuring how good
a statistic is. The power performance of a statistic can be theoretical or empirical. In this work, the empirical
power comparison is adopted. The empirical power performance of the proposed MAJBn statistic is compared
with those of three other related statistics for assessing MVN. The related competing statistics include the HZn
statistic of Henze and Zirkler [7]; the V En statistic of Villasenor Alva and Estrada [16] and the KJBn statistic
of Kim [18]. The HZn is given by:

HZn = n (4I {Sn is singular}+Dn,βI {Sn is nonsingular})

where Dn,β =
(
1 + 2β2

)
+ n−2∑n

j,k=1 exp

{
−β

2‖yj−yk‖2
2

}
− 2

(
1 + β2

)−d/2
n−1∑n

j=1 exp

{
−β

2‖yj‖2
2(1+β2)

}
; β > 0

and I {.} is an indicator function. The test is universally consistent, affine invariant and rejects MVN of datasets

for large values of the statistic, with appropriate β = ((2d+1)n/4)/(1/(d+4))√
2

. Also, the V En statistic is given by:

V En =
1

d

d∑
i=1

WZi ,

where WZi is the Shapiro and Wilk [15] statistic evaluated on the ith coordinate of the transformed observations
Zi1, Zi2, . . ., Zin; i = 1, 2, . . ., d and d is the number of variables. Finally, the KJBn statistic is given by (1.10).

The three statistics are chosen among the dozens of tests for MVN in the literature for two reasons. Firstly,
they are all well known standard statistics for assessing MVN which have relatively high power performances ,
in addition to being consistent against fixed alternatives and invariant to changes in scale and location of the
observation vectors. Secondly, all the statistics, except the HZn statistic, are obtained in somewhat similar
manner or with similar intermediary statistics such as the b1,d and the b2,d.

In order to execute the empirical power comparison, data are simulated from 17 different multivariate distributions.
They are grouped into symmetric and skewed distributions. The symmetric distributions considered include the
standard multivariate normal (SMVN); multivariate Cauchy (MVC); multivariate t with 2 degrees of freedom
(MVt2); the standard multivariate Laplace (SMV L); product of symmetric beta (Betad

1,1); product of Logistic
(Logisticd0,1); and product of Laplace (Laplaced1,3) distributions. Also, the skewed distributions considered include
product of the standard lognormal (SLNd); product of the asymmetric beta (Betad

1,3); product of the standard
exponential (Exponentiald1); product of the gamma (Gammad

1,3); product of the Weibull (Weibulld1,3); product of
half normal (Half − normald1); product of inverse normal (Inverse− normald1,5); product of the chi-square with
2 degrees of freedom (χ2

2); and product of the inverse beta (Inverse− betad
1,3) distributions.

From each of the distributions, a total of 10,000 samples are simulated for each sample size, n = 25, 50 and 100
and variable dimension d = 2 and 5. The values of the four competing statistics are evaluated in each of the
10,000 samples under a combination of sample size and variable dimension and the power of each test is measured
by the number of the 10,000 samples where MVN is rejected. In this work, the empirical powers are expressed in
percentage. The results are presented in Tables 2 and 3 for symmetric and asymmetric distributions respectively.

The test for MVN under the first distribution in Table 2, the standard multivariate normal distribution, is
actually a test of type-I-error rate. This is because the distribution is null and as a result, the power is expected
to be the level of significance, which is 5%. A test for MVN is said to have a good control over type-I-error
if its power does not exceed the level of significance under the null distribution. As a result, all the four test
procedures compared in this work are observed to have good control over type-I-error in all the sample sizes and
variable dimensions considered.
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Table 2. Empirical power comparison of the MAJBn statistic with some other competing tests
under symmetric distributions, α = 0.05

Distributions n d = 2 d = 5
HZn V En KJBn MAJBn HZn V En KJBn MAJBn

SMVN 25 4.0 5.2 5.1 4.6 2.9 4.8 5.1 5.1
50 4.8 5.1 4.8 5.3 4.3 4.8 4.7 5.2
100 5.2 4.9 5.1 4.9 5.1 5.3 4.7 4.6

MVC 25 98.8 96.8 96.3 97.1 99.8 97.5 95.0 98.0
50 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

MVt2 25 79.1 73.5 76.5 77.2 94.3 74.0 78.2 79.7
50 97.3 95.4 96.0 96.5 99.9 98.9 99.2 99.3
100 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0

Betad1,1 25 16.8 40.7 0.1 0.0 79 56.4 0.1 0.0
50 60.8 93.2 0.7 0.0 42.0 99.7 1.4 0.0
100 97.3 100.0 95.0 82.6 93.2 100.0 100.0 99.9

Student td5 25 20.6 29.7 36.9 37.7 16.6 46.9 54.9 56.3
50 33.9 51.6 59.6 60.7 35.0 75.8 82.4 84.5
100 54.9 76.5 82.9 83.9 63.5 96.5 98.1 98.1

Logisticd0,1 25 10.4 16.2 22.3 22.3 8.4 22.3 31.3 30.4
50 14.6 26.2 34.7 35.7 14.1 41.0 51.6 53.7
100 24.9 43.4 53.2 54.9 24.5 67.9 78.1 79.8

MVLaplace 25 50.4 39.4 44.1 45.9 86.2 46.1 49.5 51.7
50 83.9 69.8 71.0 72.6 99.7 86.2 86.5 88.2
100 98.7 94.3 93.2 93.8 100.0 99.6 99.6 99.5

Laplaced1,3 25 35.2 42.6 46.8 49.2 29.1 63.5 66.4 68.9
50 62.9 72.0 73.0 74.4 63.7 93.2 92.4 94.3
100 91.3 95.0 94.2 94.7 94.4 99.9 99.8 99.9

The results under the remaining seven symmetric distributions considered show that the new statistic is generally
more powerful than the other competing statistics. This however is with the exception of the symmetric beta
distribution, betad

1,1, where the statistic recorded very poor power performance at n = 25 and 50.

Table 3 shows that the newly proposed statistic generally recorded power performances slightly inferior to the
V En and KJBn statistics, but slightly superior to the HZn statistic in all the variable dimensions considered
especially at smaller sample sizes of 25 and 50 under almost all the asymmetric distributions considered. The
power performance of the proposed test however improved to be almost at par with the slightly superior ones at
sample size of 100. It is therefore expected that the proposed statistic can compete favourably with any known
test for MVN at sample sizes beyond 100. As a result, it can be regarded as a powerful procedure for assessing
multivariate normality of multivariate datasets.

4.1 Real-life application

The new statistic is applied to a chemical solvent dataset. The solvent dataset, retrieved from
https://openmv.net/tag/multivariate, is a 9-component dataset which consists of physical properties of a sample
of 103 chemical solvents. In this study, only three physical properties are extracted, which included the boiling
point, dielectric and dipole moment, to form a 103x3 data matrix. The extracted dataset is tested for multivariate
normality using the proposed MAJBn statistic at 5% level of significance and the statistic rejected the null
distribution of multivariate normality of the dataset since the computed value of the statistic, 2906.04, is greater
than the critical value of 5.0359. The result further shows the applicability of the proposed statistic.
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Table 3. Empirical power comparison of the MAJBn statistic with some other competing tests
under asymmetric distributions, α = 0.05

Distributions n d = 2 d = 5
HZn V En KJBn MAJBn HZn V En KJBn MAJBn

Lognormald0,1 25 99.0 99.9 98.6 97.4 99.7 100.0 99.5 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Betad
1,3 25 53.4 81.6 34.6 25.7 37.2 95.5 49.7 36.1

50 92.1 99.8 78.9 65.3 87.7 100.0 97.5 91.9
100 100.0 100.0 100.0 99.9 99.9 100.0 100.0 100.0

Exponentiald1 25 92.4 98.8 89.6 84.0 92.0 100.0 99.1 97.7
50 99.9 100.0 99.9 99.8 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Gammad
1,3 25 92.9 99.1 88.5 84.0 92.3 100.0 99.2 97.9

50 99.9 100.0 99.9 99.7 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Weibulld2,3 25 14.9 27.0 17.9 15.7 9.4 39.5 23.5 20.4
50 31.5 60.9 35.2 30.4 24.2 88.0 53.6 47.7
100 60.5 96.1 75.7 69.7 55.7 100.0 96.9 94.4

Halfnormald1 25 47.9 77.2 43.3 36.8 35.0 94.1 62.8 53.7
50 86.8 99.6 82.9 75.3 82.3 100.0 98.5 96.1
100 99.8 100.0 99.9 99.9 99.7 100.0 100.0 100.0

Inverse normald1,5 25 70.2 72.5 59.6 54.1 90.4 92.9 80.8 76.5
50 97.8 98.0 90.9 88.2 100.0 100.0 99.6 99.3
100 100.0 100.0 99.9 99.9 100.0 100.0 100.0 100.0

Chi squared2 25 92.8 99.1 89.9 84.1 92.0 100.0 99.1 97.8
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 99.9 99.7 100.0 100.0 100.0 100.0

Inverse betad
2,5 25 93.6 98.8 93.1 90.0 95.9 100.0 99.7 99.3

50 100.0 100.0 99.9 99.9 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5 Conclusion

It is stated in earlier works on this subject that there is no shortage of procedures for assessing MVN of datasets.
These procedures existing in the literature share different properties ranging from affine invariance, consistency,
type-I-error rate, power performance, to asymptotic null distribution. No test however has been identified to be
universally the best in terms of these properties. The test procedure developed in this work has shown to have
good control over type-I-error, as well as having good power performance. It has also been shown, in this work,
that the statistic has an asymptotic nuul distribution of chi square with 2 degrees of freedom. Its consistency
and affine invariance are however not proved in this work, but it has been shown in the earlier works in the
literature that tests based on skewness and kurtosis measures are affine invariant. Also, it well known that tests
based on either skewness or kurtosis measures lack consistency but tests with combination of the two measures
are consistent against any fixed alternative. As a result, the MAJBn statistic proposed in this work can be
recommended as a powerful affine invariant and consistent test for multivariate normality.
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