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Abstract: Objective: Lactate is a marker of hypoperfusion in critically ill patients. Whether lactate
is useful for identifying and stratifying neonates with a higher risk of adverse outcomes remains
unknown. This study aimed to investigate the association between lactate and morbidity and
mortality in neonates. Methods: A meta-analysis was performed to determine the association
between blood lactate levels and outcomes in neonates. Ovid MEDLINE, EMBASE, Cochrane Library,
and ClinicalTrials.gov were searched from inception to 1 May 2021. A total of 49 observational
studies and 14 data accuracy test studies were included. The risk of bias was assessed using the
Newcastle-Ottawa Scale for observational studies and the QUADAS-2 tool for data accuracy test
studies. The primary outcome was mortality, while the secondary outcomes included acute kidney
injury, necessity for renal replacement therapy, neurological outcomes, respiratory morbidities,
hemodynamic instability, and retinopathy of prematurity. Results: Of the 3184 articles screened,
63 studies fulfilled all eligibility criteria, comprising 46,069 neonates. Higher lactate levels are
associated with mortality (standard mean difference, −1.09 [95% CI, −1.46 to −0.73]). Using the
estimated sensitivity (0.769) and specificity (0.791) and assuming a prevalence of 15% for adverse
outcomes (median of prevalence among studies) in a hypothetical cohort of 10,000 neonates, assessing
the lactate level alone would miss 346 (3.46%) cases (false negative) and wrongly diagnose 1776
(17.76%) cases (false positive). Conclusions: Higher lactate levels are associated with a greater risk of
mortality and morbidities in neonates. However, our results do not support the use of lactate as a
screening test to identify adverse outcomes in newborns. Research efforts should focus on analyzing
serial lactate measurements, rather than a single measurement.
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1. Introduction

Lactate is a powerful parameter that can be used to indirectly assess the hemodynamic
system, but only when used correctly [1]. In critically ill patients, lactate is a classical
marker, where its elevation is associated with greater morbidity and mortality [1]. Hyper-
lactatemia is a hallmark parameter in shock states because of lactate production in anaerobic
metabolism, representing a state where there is an inadequate oxygen supply [2]. In adult
and pediatric literature, there is strong evidence that lactate is a predictor of mortality [3,4].
Unfortunately, evidence about the utility of lactate measurement in neonates is limited.

There is no consensus regarding the treatment of hemodynamic instability in neonates,
especially in preterm infants [5]. Moreover, classical parameters that are used to evaluate
the cardiovascular system such as blood pressure alone are still not reliable in the neonatal
period. Currently, there still is no definition for hypotension in neonates, nor a consensus
of whether its correction is beneficial [6].

In this context, being able to use a parameter that aids in the diagnosis and treatment of
hemodynamic instability in newborns would be valuable. The aim of this systematic review
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and meta-analysis was to determine the association between blood lactate concentration
and morbidity and mortality in neonates.

2. Material and Methods

This systematic review and meta-analysis followed the recommendations based on
the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analysis) [7]
and the Cochrane Centre for Reviews and Dissemination [8]. The search strategy was
developed according to recommendations of PRESS [9] (Peer Review of Electronic Search
Strategies) and was executed in May 2021. Ovid MEDLINE, EMBASE, Cochrane Library,
and trial registries were searched without publication or language restrictions (see the
Search Strategy in Figure S1). All references from retrieved citations were searched for
additional relevant studies. The Rayyan web app [10] was used for study selection and
initial abstract and title screening. The PRISMA flowchart is presented in Figure 1. We did
not find any randomized controlled trials. Data extraction was performed by two authors
(FYM and VLJK) and plotted in a previously built structured data extraction form. Any
unresolved discrepancies of extracted data were resolved by a third author (WBC).
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Figure 1. Flowchart—Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA).

Two authors (FYM and VLJK) independently screened titles and abstracts and re-
viewed them. When the title and abstract were insufficient to decide on eligibility criteria,
the full text was retrieved. If there was an unresolved disagreement, a third author (WBC)
was consulted. All selected studies were retrieved and applied to a predefined inclusion
criterion. The eligibility criteria included: (1) the study covered a neonatal population or a
specific neonatal subgroup analyzed separately (<6 weeks postnatal age or < corrected ges-
tational age of 40 weeks); (2) the study had at least one lactate measurement with a defined
time assessment point; and (3) the study reported at least one outcome of interest. Studies
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that included pediatric patients were only eligible if data for neonates could be extracted
separately. Studies reported only as abstracts were eligible only if sufficient information
was available. If multiple articles analyzed the same set of patients, we included only the
article with the largest number of neonates. This systematic review and meta-analysis
followed the previously published protocol registered with the PROSPERO International
Prospective Register of Systematic Reviews (CRD42021253329). Protocol changes are given
in the Supplementary Material.

The primary objective was to evaluate the impact of hyperlactatemia on mortality in
neonates during hospital stay. Composite outcomes with survival data were analyzed as
mortality. Secondary outcomes included acute kidney injury, renal replacement therapy
necessity, neurological outcomes, respiratory morbidities, hemodynamic instability, and
retinopathy of prematurity.

We grouped the timing of lactate assessment into two different groups: early (lactate
measured within 3 days of life or less) and late (lactate measured after more than 3 days
of life). Lactate collected from the umbilical cord was analyzed separately. Initially, we
planned to divide the lactate collected from venous and arterial sources, but due to insuf-
ficient data from the studies, this division was not possible. If studies assessed lactate at
multiple time points, the earliest post-condition/intervention point or the highest value
was selected. Hyperlactatemia was defined according to each study definition.

We assessed the risk of bias of included studies using the Newcastle-Ottawa Scale [11]
for nonrandomized studies. A study with a total score of 7 or higher was considered of
good quality, a study with a score of 4 to 6 was considered of fair quality, and a study with a
score of lower than 4 was considered of poor quality. To assess the risk of bias of diagnostic
accuracy studies, we used the QUADAS-2 tool [12].

For dichotomous variables, we used the odds ratio (OR) as the common measure of
association with its respective 95% confidence interval. Lactate as a continuous variable
was reported as standard mean differences (SMDs) with their respective 95% confidence
interval. When studies reported medians and interquartile intervals, we used Wan et al.’s
formula to infer the mean value and standard deviation [13]. To meta-analyze, we used
random-effects models as proposed by Der Simonian and Laird because of the anticipated
heterogeneity between studies. Statistical analysis was performed using RevMan 5 (Review
Manager 5) software, v5.4, The Cochrane Collaboration. Heterogeneity was analyzed by
performing subgroup analysis based on subgroup population and was measured using
I2 statistics where estimates higher than 50% were considered as indicating significant
heterogeneity. A p-value lower than 0.05 was considered statistically significant.

Following the recommendations from the Cochrane Screening and Diagnostic Test
Methods Group, one author (FYM) extracted diagnostic data and derived the number
of true-positive, false-positive, true-negative, and false-negative cases. A second author
(VLJK) checked the extracted data, and if a consensus was not reached, a third author
(WBC) was consulted. We then created forest plots with 95% confidence intervals (Cis)
for sensitivity and specificity using RevMan 5 (Review Manager 5) software, v5.4, The
Cochrane Collaboration. A hierarchical summary ROC model was used because the
reported cutoff levels for lactate differed among included studies. A meta-analysis of
diagnostic test accuracy studies was performed using MetaDTA (web-based tool v2.0) [14],
and estimates of sensitivity and specificity were calculated. Heterogeneity was assessed by
analyzing the forest plots of sensitivity and specificity across studies.

3. Results

Among 3184 records, a total of 185 potentially relevant articles were screened and
fully retrieved (Figure 1). Of those, 63 studies, including 46,069 newborns (sample sizes
ranged from 16 to 21,182 neonates), met the full inclusion criteria (Tables 1 and S1). No
randomized controlled trials were found. Studies excluded from the systematic review and
the justification for their exclusion are presented in Table S2. The majority of studies (57%)
were conducted in North America and Europe, 20 were conducted in Asia-Oceania, 6 were
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conducted in Latin America, and 1 was conducted in Africa. All studies were published
between 1994 and 2021, with most studies (46 of 63) published after 2010. Among the
studies, 14 evaluated lactates in preterm infants, 13 evaluated lactates in neonates with
infants with congenital heart disease (CHD), and 12 evaluated lactates in neonates with
birth asphyxia. The mean lactate levels in the nonsurvivor group varied between 2.2 and
23.42 mmoL/L. After applying the Newcastle-Ottawa Scale, 36 studies were labeled as
being of good quality and 13 as fair quality (Table S3). The main potential sources of bias
were “Representativeness of cohort” and “Comparability”.

We identified 14 studies analyzing lactate in data accuracy tests, comprising 39,540 pa-
tients. The characteristics of the included studies are summarized in Table S1. The cut-off
levels for lactate ranged from 2.5 to 9.95 mmoL/L. The main potential source of bias was
“Patient Selection”.

3.1. Mortality

We found 32 studies analyzing hyperlactatemia as a continuous variable and mortality,
comprising 2562 patients. Those who survived had lower lactate levels compared to
nonsurvivors (SMD, −1.09 [95% CI, −1.46 to −0.73]; I2 = 92%; p < 0.00001). Eight studies
evaluated mortality as part of the composite outcome. We grouped studies with similar
neonatal populations, resulting in five subgroups: (1) congenital heart disease (SMD, −0.72
[95% CI, −1.38 to −0.06]; I2 = 92%; n = 826; p = 0.03); (2) birth asphyxia (SMD, −1.01
[95% CI, −1.71 to −0.32]; I2 82%; n = 402; p = 0.004); (3) ECMO (SMD, −1.87 [95% CI,
−3.47 to −0.27]; I2 = 96%; n = 287; p < 0.02); (4) preterm (SMD, −1.52 [95% CI, −2.67 to
−0.73]; I2 96%; n = 706; p = 0.009); and (5) term (SMD, −1.09 [95% CI, −1.11 to −0.32];
I2 = 51%; n = 341; p = 0.0004) (Figure 2). When dividing studies according to the time of
lactate assessment, we categorized them into two different groups: (1) early (<3 days of
life) (SMD, −0.92 [95% CI, −1.31 to −0.53], I2 = 79%; n = 1009; p < 0.00001) and (2) late
(>3 days of life) (SMD, −1.2 [95% CI, −1.74 to −0.67], I2 = 94%; n = 1553; p < 0.00001)
(Figure 3). The heterogeneity among studies was considerable (I2 = 92% for an overall
impact of hyperlactatemia).
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Table 1. Characteristics of the included studies in the systematic review.

Author Year Country Study Type Subgroup
Population No. Patients Gestational Age Birth Weight (kg) Outcomes

Charpie JR [15] 2000 USA PC CHD 46 - 3.2 (0.5) Death or ECMO

Polackova R [16] 2017 Czech republic PC Birth Asphyxia 51 38.8 (1.8)—adverse
outcome group 3.2 (0.6)—adverse outcome group Death or severe disability

Lekhwani S [17] 2010 India RC All 50 - - Death

Tokuhisa T [18] 2014 Japan CC Birth Asphyxia 23 38.5 (1.3)—adverse
outcome group 2.9 (0.7)—adverse outcome group Death or cerebral palsy

Matsushita FY [19] 2019 Brazil RC Preterm 80 26.1 (2.1) 0.66 (0.14) Death

Buijs EAB [20] 2014 Netherlands PC ECMO 56 - 3 (2.2–3.3) Death

Photiadis J [21] 2006 Germany PC CHD 26 - 3.3 (0.1)—nonsurvivor group Death

Amirnovin R [22] 2013 USA PC CHD 24 - 3.3 (0.4) Death OR surgical intervention OR
ECMO OR transplant

Li J [23] 2012 Japan RC Birth Asphyxia 21 39.2 (1.9)—poor
outcome group 2.8 (0.4)—poor outcome group Death or neurological deficit

Shuhaiber J [24] 2012 USA CC CHD 112 25% with birth weight < 2.5
kg—nonsurvivor group Death

Hayakawa M [25] 2014 Japan RC Birth Asphyxia 227 36.6 (38.4–40.6) 2.9 (2.6–3.2) Death or neurological deficit

Joffe AR [26] 2007 Canada PC CHD 70 39 (2) 3.3 (0.6) Death

Manotas H [27] 2017 Colombia RC Birth Asphyxia 64 - - Death

Liu X [28] 2020 China RC CHD 207 - 3 (0.5)—nonsurvivor group Death

Ouellete C [29] 2019 USA RC Sepsis 12 - - Death

Miyamoto T [30] 2008 Germany RC CHD 34 35.5 (2.3) 2.1 (0.2) Death

Rocha TS [31] 2010 Brazil RC CHD 76 - 3.1 (0.4)—nonsurvivor group Death

Howard TS [32] 2016 USA RC CHD 84 - 2.9 (2.3–3.1)—nonsurvivor group Death

Groenendaal F [33] 2003 Netherlands RC Preterm 79 28.5 (2.3)—poor
outcome group 1.1 (0.5)—poor outcome group Death or cerebral palsy

Christmann M [34] 2018 Switzerland RC CHD 57 - 2.9 (0.5)—nonsurvivor group Death

Cheung PY [35] 1994 Canada RC ECMO 28 38.3
(2.1)—nonsurvivors 3 (0.4)—nonsurvivors Death

Phillips LA [36] 2011 UK PC Preterm 381 28 (23–37) 1 (0.37–1.5) Death
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Table 1. Cont.

Author Year Country Study Type Subgroup
Population No. Patients Gestational Age Birth Weight (kg) Outcomes

Kessler U [37] 2006 Switzerland RC Preterm/NEC 128 28.7
(0.8)—nonsurvivors 1.2 (0.12)—nonsurvivors Death

Abubacker M [38] 2002 UK RC Preterm/NEC 24 27 (24–36)—
nonsurvivors 0.7 (0.5–1.8)—nonsurvivors Death

Verheijen PM [39] 2010 Netherlands RC CHD 105 - - Death

Araki S [40] 2010 Japan RC Birth Asphyxia 16 35.6
(4.5)—nonsurvivors 2.3 (0.7)—nonsurvivors Death

Erdeve O [41] 2019 Turkey PC All 372 31.1
(5.4)—nonsurvivors 1.65 (1.09)—nonsurvivors Death or ECMO

Chen D [42] 2020 China PC All 161 31.9
(3.5)—nonsurvivors 1.95 (0.53)—nonsurvivors Death

Cheung PY [43] 2002 Canada PC ECMO 74 39 (2) 3.2 (0.7) Death

Cheung PY [44] 2005 Canada PC CHD 85 38 (1)—nonsurvivors 3.1 (0.55)—nonsurvivors Death

Reppucci ML [45] 2020 USA RC Preterm/GI
perforation 42 - BW < 1500 g Death

Grayck EN [46] 1995 USA RC ECMO 82 - - Death/intracranial hemorrhage

Fernandez HGC [47] 2012 Brazil RC All 156 33.1 (4)—
hyperlactatemia 1.83 (0.88)—hyperlactatemia

Death/seizure/pulmonary
hypertension/intracerebral

hemorrhage

Márquez-González
H [48] 2015 Mexico PC All 154 18% > 37 weeks—

nonsurvivors 22% > 2500 g—nonsurvivors Death

Márquez-González-
H

[48]
2015 Mexico PC All 227 - - Death

Murtuza B [49] 2011 Switzerland RC CHD 221 - 3.1 (0.6) Death

Okur N [50] 2018 Turkey PC Preterm 119 28.2 (2)—
hyperlactatemia 0.96 (0.31)—hyperlactatemia Death/MV

duration/IVH/PDA/ROP/BPD

Tuten A [51] 2017 Turkey PC Preterm 60 27 (2.5) 0.99 (0.28) Death/BPD/PDA/NEC/IVH/ROP

Deshpande SA [52] 1996 UK PC All mechanically
ventilated 75 29 (23–40) 1.3 (0.55–4.08) Death

Chilinda GK [53] 2018 Malawi PC All 389 - 2.9 (0.57)—hyperlactatemia Death
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Table 1. Cont.

Author Year Country Study Type Subgroup
Population No. Patients Gestational Age Birth Weight (kg) Outcomes

Haiju Z [54] 2008 China PC Birth Asphyxia 18 38.1 (1.05)–moderate
to severe HIE

2.7 (2.2–3.1)—moderate to severe
HIE Severe HIE

Neacsu A [55] 2020 Romania RC Birth Asphyxia 274 Term infants (>37
weeks) -

APGAR < 3 first minute OR
APGAR < 5 fifth minute OR

respiratory insufficiency OR NICU
> 24 h

Mazouri A [56] 2021 Iran PC Meconium Aspirate
Syndrome 150 38.6 (1.43) -

Pulmonary
hemorrhage/pulmonary

hypertension/IVH/MV necessity

Syed F [57] 2019 India PC Preterm 156 34–36 + 6/7 weeks - RDS/TTN/pneumonia/MAS

Karabayir N [58] 2014 Turkey PC All 1341 39.3 (0.9) 3.4 (0.6) MAS/MV/O2 supply

Ozkiraz S [59] 2013 Turkey CC TTN 56 37.7 (1.6) 2.9 (0.5) Respiratory support

Simovic AM [60] 2016 Serbia CC Preterm 108
31.7

(3.3)—respiratory
support

1.8 (0.7) Respiratory support

Miletin J [61] 2008 Ireland PC Preterm 38 26.5 (24–29)—low
SVC group 1.1 (0.5–1.44)—Low SVC group Low SVC

Balushi AA [62] 2017 Canada RC Birth Asphyxia 190
39.2

(1.5)—hypotension
group

3.4 (0.6)—Hypotension group Hypotension/brain injury

PC: Prospective cohort; RC: retrospective cohort; CC: case–control; CHD: congenital heart disease; NEC: necrotizing enterocolitis; GI: gastrointestinal; MV: mechanical ventilation;
IVH: intraventricular hemorrhage; PDA: persistent ductus arteriosus; ROP: retinopathy of prematurity; BPD: bronchopulmonary dysplasia; HIE: hypoxic-ischemic encephalopathy;
NICU: neonatal intensive care unit; RDS: respiratory distress syndrome; TTN: transient tachypnea of the newborn; MAS: meconium aspirate syndrome; SVC: superior vena cava flow.
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We identified 12 studies evaluating hyperlactatemia as a dichotomous variable and its
association with mortality, comprising 1801 patients. Hyperlactatemia was associated with
a higher risk of mortality (OR, 9.39 [95% CI, 4.13–21.35]; I2 = 76%; p < 0.00001) (Figure 4).
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Adverse Outcomes

Hyperlactatemia is also associated with a higher risk of acute kidney injury (SMD,
−0.68 [95% CI, −0.98 to −0.38]; I2 = 50%; n = 453; p < 0.00001), a higher risk of requiring
renal replacement therapy in neonates with congenital heart disease (SMD, −0.84 [95% CI,
−1.41 to −0.26]; I2 = 44%; n = 153; p = 0.004) (Figure S2), and worse neurological outcomes
in neonates with birth asphyxia (SMD, -0.44 [95% CI, −0.67 to −0.22]; I2 = 0%; n = 307;
p = 0.0001) (Figure S3).

Hyperlactatemia is not associated with a higher risk of respiratory morbidities, bron-
chopulmonary dysplasia (BPD), persistent ductus arteriosus (PDA), intraventricular hem-
orrhage (IVH), or retinopathy of prematurity (ROP) (Figures S4–S9).

However, higher lactate levels from umbilical cord blood are associated with a higher
risk of worse outcomes (Figure S10).

3.2. Data Accuracy Test for Adverse Outcomes

The estimate of sensitivity was 0.769 (95% CI, 0.692–0.831), and that of specificity was
0.791 (95% CI, 0.718–0.850). We observed a high heterogeneity among the studies, with
a wide variety of sensitivity and specificity estimates. The prevalence rates of adverse
outcomes ranged widely from 0.18% to 75%. We then applied the DTA estimates for
sensitivity (0.769) and specificity (0.791) from our meta-analysis to a hypothetical cohort
of 10,000 neonates with a prevalence rate of adverse outcomes of 0.18% (resulting in a
median of 4.15 cases of adverse outcomes being missed and 2086 cases being wrongly
diagnosed as an adverse outcome), 15% (resulting in a median of 346 cases of adverse
outcomes being missed and 1776 being wrongly diagnosed as an adverse outcome), 50%
(resulting in a median of 1155 cases of adverse outcomes being missed and 1045 cases
being wrongly diagnosed as an adverse outcome), and 75% (resulting in a median of
1732 cases of adverse outcomes being missed and 522 being wrongly diagnosed as an
adverse outcome). Summary receiver operating characteristic curves and forest plots are
presented in Figure S11 and Figure 5, respectively. We applied the QUADAS-2 tool to assess
the quality of studies, and the risk of bias was low (Figure S12).
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4. Discussion

This systematic review and meta-analysis support the hypothesis that higher lactate
levels are associated with increased mortality and risk of morbidities (AKI, RRT necessity,
respiratory complications, hemodynamic instability, and neurological deficit) in neonates.
This observation was similar across different subgroups of patients, from preterm infants to
neonates with birth asphyxia. Although the data are robust and consistent, their interpreta-
tion is complicated due to the heterogeneity between studies, with different conditions and
times of assessment. Indeed, the included studies had heterogeneity as high as 95%, even
after subgrouping into more homogeneous groups, explaining the wide range of sensitivity
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(43–100%) and specificity (39–95%) in the data accuracy test for adverse outcomes. Using
the estimated sensitivity (0.769) and specificity (0.791) and assuming a prevalence of 15%
for adverse outcomes (the median of prevalence among studies) in a hypothetical cohort
of 10,000 neonates, assessing lactate level alone would miss 346 cases (false negative) and
wrongly diagnose 1776 cases (false positive).

Lactate is a widely used marker of altered tissue perfusion in critically ill patients,
especially in adults, where hyperlactatemia is an indispensable feature that can be used
to evaluate shock state. However, altered blood lactate cannot be attributed exclusively
to anaerobic metabolism [72]. Other physiopathology mechanisms, including glycolysis,
catecholamines release, liver hypoperfusion, and alterations in pyruvate dehydronegase
activity (through mitochondrial dysfunction [73]) can contribute to an elevated lactate
concentration [74]. Consequently, trying to define a cut-off for hyperlactatemia is difficult,
unless the clinical condition and time of assessment are well determined. For instance,
our meta-analysis showed that a lactate level greater than 4 mmoL/L was associated with
higher mortality (OR, 5.61 [95% CI, 2.27–13.84]; I2 = 76%; n = 1009; p = 0.0002). However,
when analyzing lactate as a continuous variable, we found 20 studies where the survivor
group had a mean lactate level greater than 4 mmoL/L. Still, an elevated lactate level should
always be a warning signal that requires evaluation [1]. Jansen TC et al. demonstrated that
in adults, with increasing initial lactate levels, survival quickly decreased [75].

Therefore, without a clear neonatal subpopulation, clinical condition, and time of
assessment, the lactate level alone is unlikely to assist as a screening test for adverse
outcomes in newborns. However, as the neonates with the highest risk of death were those
with a higher lactate concentration, lactate levels could be used to stratify those with a
higher risk of adverse outcomes. These interpretations are in agreement with pediatric
studies. Scott HF et al. [4], found that in children attending emergency departments,
hyperlactatemia is associated with mortality, but with low sensitivity (20%). That is, lactate
levels alone are not effective as a screening test, but might be used to identify the patients at
highest risk. The evidence that lactate is a marker of severity of illness in adults is vast [73].
In fact, the SEPSIS-3 consensus requires a persistence of lactate greater than 2 mmoL/L
to identify adult patients with sepsis with a greater risk of mortality [76]. For this reason,
recent studies in adult and pediatric populations have focused on lactate clearance as the
predictor of outcome, rather than the isolated lactate level itself [74,77–79]. In a recent
systematic review evaluating adult patients, Jean-Louis Vincent et al. found that serial
lactate measurement could be useful in the evaluation of the response to therapy in critically
ill patients and stated that lactate clearance evaluation seems to be valid regardless of the
initial value [74]. Despite the complexity of the interpretation of lactate level, its decrease is
ultimately a good sign [80].

Future studies evaluating lactate levels in neonates need to adjust for potential con-
founders in lactate metabolism. For example, we did not find any study evaluating a
possible interference of vasoactive drugs in lactate metabolism. It is known that the
use of exogenous catecholamines induces an increased plasma lactate concentration [81].
Moreover, with recently published guidelines using point-of-care ultrasound to assess the
hemodynamic state in neonates [82], lactate could be an additional parameter in conjunction
with an echocardiogram.

Our systematic review and meta-analysis were conducted through a rigorous search
strategy through all of the available literature, including four studies not written in English,
with strong statistical analysis, and risk of bias assessment. However, several limitations are
worthy of note. First, a meta-analysis of observational studies does not permit conclusions
about causality. Second, we found a wide heterogeneity between studies, with varied
subpopulations, clinical conditions, and lack of adjustment for covariates. This heterogene-
ity poses a challenge in determining whether the outcomes and studies are comparable
or not. With our results, we suggest that further research evaluating blood lactate levels
carefully adjust for potential confounders, including exogenous catecholamines adminis-
tration. Moreover, research efforts should focus on inspecting serial lactate measurements,
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rather than a single measurement. Third, as there is no definition of hyperlactatemia in
neonates, we found no study where the threshold was predefined in the data accuracy
test analysis. Lastly, 13 of the included studies had a fair quality classification through the
Newcastle-Ottawa Scale.

5. Conclusions

Our systematic review and meta-analysis, which included data from 46,069 neonates,
suggest that greater lactate levels are associated with a higher risk of mortality and mor-
bidities. Nonetheless, until new studies assess the precise clinical condition and time of
assessment, the results from our meta-analysis do not support the use of lactate levels as a
screening test to identify adverse outcome in newborns. Research efforts should focus on
analyzing serial lactate measurements, rather than a single measurement.
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