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ABSTRACT 
 

Interest in solar energy is growing by the day, because it is clean and unlimited. Concentrated 
photovoltaic-thermal (CPV/T) systems are one of the systems that are attracting a great deal of 
attention among solar energy systems. In this work, a study of a hybrid concentrated photovoltaic-
thermal (CPV/T) system that enables the simultaneous production of electrical and thermal energy 
has been presented. As the experimental realization of such devices is costly, it is necessary to 
develop numerical models.  
The aim of this work is to evaluate the thermal efficiency of the system based on the thermal model, 
using an iterative simulation procedure.  
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Propose a numerical model to evaluate the thermal efficiency of a CPV/T hybrid system. 
Starting from the energy conservation equations, a numerical modelling and simulation of the 
concentrated photovoltaic-thermal hybrid (CPV/T) system is carried out. A parametric analysis is 
carried out to study the influence of concentration, water mass flow rate, cell surface area and 
Reynolds number on the system's thermal and electrical performance. 
The results show that thermal efficiency decreases with increasing Reynolds number and mass flow 
rate. However, it increases when the water mass flow rate is equal to 0.0001kg/s, from 0.4% to 
0.7%, for a flow rate equal to 0.0010kg/s. 
An interesting and useful finding was that the proposed numerical model allow the determination of 
the electrical as well as thermal efficiency of the hybrid CPV/T. 
 

 
Keywords: Numerical; concentration; PV; cell; thermal; hybrid; efficiency. 
 

1. INTRODUCTION  
 
PhotoVoltaic/Thermal (PVT) hybrid solar 
collector was suggested as a solution for 
promoting the PV efficiency and the benefit of 
solar radiation. It is incorporation of solar PV with 
the Solar Thermal Collectors (STC) that serves in 
the simultaneous generation of electricity and 
heat with half the area needed and little extra 
cost [1]. Numerous investigations are conducted 
since the development of solar hybrid systems 
[2-5]. 

 
The surface temperature of photovoltaic panels 
increases due to the low efficiency of solar 
energy into electricity, as not all the energy 
absorbed by the photovoltaic cells can be 
converted into electrical energy. To satisfy the 
law of conservation of energy, the remaining 
solar energy must be converted into heat, which 
is why it is important to develop methods of 
cooling photovoltaic cells to increase output 
efficiency. Several active and passive methods of 
cooling photovoltaic panels have been studied 
and analysed to date [6-8]. From these studies 
came the idea of coupling the standard PV 
system with another thermal system, giving rise 
to a hybrid CPV/thermal system that generates 
electricity and heat at the same time, with a 
higher energy conversion rate from the solar 
radiation absorbed [9-12]. It appears that 
controlling the temperature rise of the 
photovoltaic panels leads to gains in the 
electrical power of the panel [13], and the 
thermal energy extracted from the photovoltaic 
panels is used for a variety of low-temperature 
applications. Several studies in the literature, 
both theoretical and experimental, report on 
electrical and thermal efficiencies [14-20]. 

 
However, these studies do not give the influence 
of certain parameters such as mass flow rate, 

Reynold's number or tube length on these 
efficiencies. 
 
K. Shanks et al [21] Conducted a study on a high 
concentrator photovoltaic with 5800x geometrical 
concentration ratio based on multiple primary 
Fresnel lenses focusing to one central solar cell. 
 
His study was focus on the optical efficiency of 
each component which is simulated as well as 
experimentally measured to ensure the accuracy 
of the simulations. 
 
The contribution of this paper is therefore to 
evaluate the electrical and thermal efficiency of a 
PV/Thermal hybrid collector model under 
concentration as a function of these different 
parameters. 
 

2. MATERIALS AND METHODOLOGY  
 

2.1 Description and Thermal Analysis of 
the Hybrid CPV/Thermal System 

 
2.1.1 System presentation 
 
The hybrid CPV/water heating system studied 
(Fig. 1) is made up of the following essential 
components: 
 

 A concentrator, which concentrates 
sunlight using mirrors or lenses. It 
increases the density of light at the surface 
of the PV cell; 

 A photovoltaic module converts solar 
radiation into electrical energy. It is made 
up of three layers: the first is a layer of 
glass, the front of which is exposed to                 
the radiation, the second layer contains  
the photovoltaic cells and the third                  
layer is the back of the module, made of 
tedlar; 
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 A substrate (heat sink) to absorb the heat, 

 A channel, bonded to the substrate to 
ensure good thermal contact between the 
two elements, through which water 
circulates to remove the heat stored by the 
heat sink; 

 Finally, a layer of insulation to minimize 
heat loss from the system. 

 
A number of assumptions are made when 
studying the system. These assumptions include 
the design of the system, atmospheric 
conditions, the characteristics of the heat transfer 
fluid flow rate and other factors that have an 
impact on the thermal analysis of the collector. 
These assumptions are: 
 

1. Heat transfer from the sides of the heat 
sink is ignored (or heat exchange is 
assumed to be negligible at the sides), 

2. The PV cell is assumed to be at the same 
temperature as the substrate (heat sink),  

3. Heat dissipation is assumed to take place 
by radiation and natural convection, and 
only at the top of the PV cell,  

4. The outlet temperature of the heat transfer 
fluid (water) is that of the substrate solar 
cell.  

 
2.1.2 Thermal analysis  
 
The sun's rays are concentrated by a 
concentrator (mirror or lens) on the solar cell to 
increase the density of light on its surface. The 
PV cell reaches its steady-state temperature 
when the absorbed light power is equivalent to 
the sum of the electrical power supplied to the 
load, the thermal power absorbed by the working 
fluid and the power dissipated in the form of heat. 

 

[7]               (1) 

 

With   

 

  : the transmissivity of the lens or 
concentrator; : the absorptivity 

coefficient of the PV cell surface;  : the 

surface area of the solar cell; : the 

geometric concentration ratio of the 

concentrator (lens) ,  :the energy 

density in standard air conditions mass. 
   

                             (2) 

 
 

  : the conversion efficiency, expressed as:

[1] 

   

                             (3) 

 

the radiating surface; the emissivity of the 

surface; the Stephan Boltzmann constant; 

the ambient temperature. 
 

            (4) 

 

the convection surface;  : the convection 

transfer coefficient which can be calculated by 
the following correlation.:  
   

  [9], [22]       (5) 

Were  
 

,  et  are the Nusselt number, 

Reynolds number and fluid Prandtl number 
respectively. 

 

                                   (6) 

the mass flow rate of the water; : the specific heat; : the initial temperature of the water.  

Thus: 

 

                 (7) 

 
The equation (7) obtained is a degree 4 equation which is solved by Newton's method on the 
MATLAB environment. 
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Fig. 1. The model and components of the CPV/thermal hybrid system 

 
3. RESULTS AND DISCUSSION 
 

3.1 Influence of Concentration Ratio on 
Temperature 

  
Fig. 2 and 3 illustrate the cell temperature 
according to the energy balance equation at 
thermal equilibrium under concentrated 
illumination in the case of laminar flow. The 
temperature of the solar cell increases 
remarkably with increasing concentrated light. 
This increase in cell temperature is due to the 
unconverted heat received by the cell as a result 
of the increase in concentrated light. It rises from 
298K to 909K when the light concentration 
increases from C= 1 Sun to C=100 Sun and for a 
water flow equal to 0.0002kg/s (Fig. 2). These 
maximum temperatures are below the melting 

point of silicon, which is 1710K. It is therefore 
possible to obtain these temperatures whatever 
the water flow rate and for laminar flow 
(Reynolds number less than or equal to 2300). 
The cell temperature as a function of 
concentration becomes almost linear with the 
increase in the flow rate of the working fluid 
(water) and the Reynolds number. This is 
because a large proportion of the heat is 
transported by the fluid (water). For a water mass 
flow rate of 0.005kg/s, the temperature of the 
solar cell rises from 298K to 331K for a 
concentration of C=1 Sun and C=100 Sun 
respectively (Fig. 3). These results show that the 
water flow rate and Reynolds number are key 
factors in the influence of temperature for 
concentrated photovoltaic/thermal (CPV/T) 
hybrid systems. 

 

 
 

Fig. 2. Variation in photocell temperature as a function of light concentration for different 
values of water mass flow rate and for a Reynolds number of 1 
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3.2 Influence of Surface Area on 
Temperature  

 

Fig. 4 illustrates the variation in system 
temperature as a function of cell surface area. 
When the surface area increases from 0.1 to 
0.5m², the temperature increases by 285K for 
C=100sun, 256K for C=80sun and 36K for 
C=10sun. It varies little when the surface area is 
greater than 0.5m² for a given concentration and 
mass flow rate of water. The heat received does 

not raise the temperature of the system to the 
melting temperature of the silicon for a given 
concentration. For a hybrid CPV/T system with 
cooling, whatever the surface area of the cell, the 
heat received has less influence on the 
temperature of the solar cell. This is because 
increasing the cell surface area reduces the 
concentration ratio. To design such a system 
with better thermal and electrical efficiency, the 
surface area of the solar cell should be               
around m² 

 

 
 

Fig. 3. Variation in photocell temperature as a function of light concentration for different 
values of water mass flow rate and for a reynolds number of 1000 

 

 
 

Fig. 4. Temperature profile as a function of cell surface area for different values of light 
concentration and for a water flow rate equal to 0.005 kg/s 
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3.3 The Effect of Water Mass Flow Rate 
on Temperature  

 
The parametric study carried out on the 
temperature of the cell (of the system or of the 
water) by varying the mass flow rate and the 
geometric concentration ratio C for a surface 
area of 0.5m² and a Reynolds number equal to 
1000 shows that the temperature of the solar cell 
decreases and stabilises as a function of the 
mass flow rate and the concentration (Fig. 5). 
This decrease can be explained by the fact that 
by increasing the water mass flow rate for a 
given concentration, the heat transported by the 
fluid is greater than the unconverted heat and 
joule effect losses. In order to reduce the effects 
of temperature when the geometric concentration 
ratio is high and achieve better electrical and 
thermal efficiency, the water mass flow rate is an 
essential parameter to take into account, 
depending on the size of the system. 
 

3.4 Effect of Reynolds Number  
 
Fig. 6 shows the variation in system temperature 
as a function of Reynolds number. As the 
Reynolds number increases, the temperature of 
the system decreases. When the Reynolds 
number increases from 1 to 1000, the 
temperature decrease is 17K for C=100 suns, 
11K for C=70 suns, 9K for C=50 suns. For a 
Reynolds number greater than 2300 (turbulent 
flow) the temperature tends towards a stable 
temperature. The Reynolds number has a 

greater impact on the temperature of the               
system (water or solar cell) because as it 
increases, the heat transported by the fluid 
increases and helps to reduce the temperature of 
the system. 
 

3.5 Electrical and Thermal Performance 
of the System 

 
3.5.1 Electrical efficiency 
 
3.5.1.1 Electrical efficiency as a function of 

concentration 
 
The parametric study carried out on the cell's 
electrical efficiency by varying the geometric 
concentration ratio C of 1-100 suns and the mass 
flow rate shows that the photocell's electrical 
efficiency increases until it reaches a maximum 
value for each given mass flow rate of water. 
Above the concentration corresponding to the 
maximum efficiency, we observe a linear 
decrease in electrical efficiency. This result is in 
line with that found by whatever the water flow 
rate. Temperature has a negative influence on 
the electrical efficiency of the solar cell when the 
geometric concentration increases for a                
constant water flow rate (Fig. 7). This                  
decrease can be explained by the fact that the 
increase in concentration contributes to                    
raising the temperature of the system                            
and consequently the decrease in                        
electrical efficiency, which is given by the 
expression 

 

 
 

 
 

Fig. 5. Variation in temperature as a function of mass flow rate for different values of 
concentration 

  0.298 0.0142 ln( ) 0.715 3 0.697 4 ln( ) 298C E E C T        
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Fig. 6. Variation of temperature as a function of Reynolds number for different values of 
concentration and for a water flow rate equal to 0.15kg/s 

 

 
 

Fig. 7. Electrical efficiency as a function of concentration 
 
3.5.1.2 Electrical efficiency as a function of 

mass flow 
 
The variation in electrical efficiency as a function 
of mass flow rate, illustrated in Fig. 8 shows that 
efficiency increases when the mass flow rate of 
water increases, whatever the value of the 
geometric concentration. In fact, when the water 
mass flow rate is increased for a given 
concentration, the heat transported by the fluid is 
greater than the unconverted heat and joule 
losses. This leads to a reduction in temperature 
and an increase in electrical efficiency. 
 

For a hybrid photovoltaic/thermal concentration 
(CPV/T) system, to achieve acceptable electrical 
efficiency when the geometric concentration is 

high, the water mass flow rate must be 
increased. 
 
3.5.1.3 Electrical efficiency as a function of 

Reynolds number  
 

It is clear that increasing the Reynolds number 
increases the electrical efficiency. When the 
Reynolds number was increased from 1 to 2300 
(laminar flow), the electrical efficiency increased 
from 17.86% to 35.53% respectively for c=100 
sun. Thereafter, the decrease in electrical 
efficiency continued slowly as the temperature 
tended towards a stable value as the             
Reynolds number increased. For a low 
concentration (1 sun) the electrical efficiency 
tends towards 30%.   
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3.5.2 Thermal efficiency  
 

3.5.2.1 Thermal efficiency as a function of 
concentration  

 

In this section, the effect of concentration is 
discussed. Varying the concentration ratio 
significantly affects the temperature of the 
system. This leads to an increase in thermal 
power and consequently an increase in thermal 
efficiency, as shown in Fig. 10. The results of this 
parametric analysis show that the thermal 
efficiency also increases as a function of the 
mass flow rate of the heat transfer fluid (water). 
When the mass flow rate is equal to 0.0001kg/s 
the efficiency increases from 0.4% to 0.7%, for a 
flow rate equal to 0.0010kg/s from 0.4 to 7.17% 
and for a water flow rate equal to 0.010kg/s from 
0.4 to 43.54% for a concentration varying from 1 
-100 suns. The greater the mass flow rate, the 

greater the thermal energy absorbed, hence the 
higher the thermal efficiency. 

 
3.5.2.2 Thermal efficiency as a function of water 

mass flow rate  

 
The mass flow rate of the working fluid is another 
important parameter in the CPV/thermal hybrid 
system with cooling. It governs the fluid outlet 
temperature and affects both thermal power and 
thermal efficiency. The influence of mass flow 
rate on thermal efficiency is shown in Fig. 10. 
The curves in Fig.11 show that the thermal 
efficiency decreases as a function of the 
geometric concentration ratio. For C=100 suns, 
the thermal efficiency decreases from 86.54% to 
36.59% for a flow rate of 0 to 1kg/s; for C=40 
suns, it varies from 87.62% to 37.30% for a mass 
flow rate of 0 to 1kg/s. 
 

 

 
 

Fig. 8. Electrical efficiency as a function of mass flow rate 
 

 
 

Fig. 9. Electrical efficiency profile as a function of reynolds number 
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Fig. 10. Thermal efficiency profile as a function of geometric concentration 
 

 
 

Fig. 11. Thermal efficiency profile as a function of water mass flow rate 
 

 
 

Fig. 12. Thermal efficiency profile as a function of reynolds number 
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3.5.2.3 Thermal efficiency as a function of 
Reynolds number  

 

The variation in thermal efficiency as a function 
of Reynolds number is shown in Fig. 12. It can 
be seen that increasing the Reynolds number 
decreases the thermal efficiency because 
increasing it decreases the temperature of the 
photocell (fluid), as shown in Fig. 5, and 
therefore the thermal power.  
 

4. CONCLUSION 
 

In this paper, we carry out the conceptual design 
of the Concentrated Photovoltaic/Thermal 
(CPV/T) hybrid system and the steady-state 
modelling for the evaluation of temperature, 
electrical and thermal performance. 
 

From the heat balance the fourth-degree thermal 
equation as a function of the photocell 
temperature was solved using MATLAB 
software. 
 

The results show that thermal efficiency 
decreases with increasing Reynolds number and 
mass flow rate. However, it increases when the 
water mass flow rate is equal to 0.0001kg/s, from 
0.4% to 0.7%, for a flow rate equal to 0.0010kg/s. 
 

An interesting and useful finding was that the 
proposed numerical model allows the 
determination of the electrical as well as thermal 
efficiency of the hybrid CPV/T. 
 

The various results which are obtained by 
numerical simulation need to be validated by 
experimental methods. 
 

A forthcoming publication will be devoted to an 
experimental comparative study with those of the 
numerical. 
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