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Abstract

Discussions are presented by Morita and Sato on the problem of obtaining the particular solution of an
inhomogeneous differential equation with polynomial coefficients in terms of the Green’s function. In
a preceding paper, solution is given without using the Green’s function, on the basis of nonstandard
analysis, for a restricted class of inhomogeneous terms. In the present paper, the corresponding solutions are
given in terms of the Green’s function. It is applied to Kummer’s and the hypergeometric differential equation.
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1 Introduction

In the present paper, we treat the problem of obtaining the particular solutions of a differential equation with
polynomial coefficients in terms of the Green’s function.

In a preceding paper [1], this problem is studied in the framework of distribution theory, where the method is
applied to Kummer’s and the hypergeometric differential equation. In another paper [2], this problem is studied
in the framework of nonstandard analysis, and it is applied to a simple fractional and a first-order ordinary
differential equation.

In a recent paper [3], a compact recipe based on nonstandard analysis, is presented, and is applied to Kummer’s
differential equation.

In the preceding paper [4], solutions of an eqution which has a special class of inhomogeneous part, are given,
without using the Green’s functuion. It is applied to the hypergeometric differential equation, the differential
equations treated in [2] and the Hermite differential equation.

In the present paper, we solve the problem considered in [4], but now the results are expressed in terms of the
Green’s function. It is applied to Kummer’s and the hypergeometric differential equation.

The presentation in this paper follows those in [1, 2, 3, 4], in Introduction and in many descriptions in the
following sections.

We consider a fractional differential equation, which takes the form:

pn(t,RDt)u(t) =

n∑
l=0

al(t)RD
ρl
t u(t) = f(t), (1)

where (i) n ∈ Z>−1, t ∈ R, (ii) al(t) for l ∈ Z[0,n] are polynomials of t, (iii) ρl ∈ C for l ∈ Z[0,n] satisfy
Re ρ0 > Re ρ1 ≥ · · · ≥ Re ρn and Re ρ0 > 0.

Here Z is the set of all integers, R and C are the sets of all real numbers and all complex numbers, respectively,
and Z>a = {n ∈ Z | n > a}, Z<b = {n ∈ Z | n < b} and Z[a,b] = {n ∈ Z | a ≤ n ≤ b} for a, b ∈ Z satisfying
a < b. We also use R>a = {x ∈ R | x > a} for a ∈ R, and C+ = {z ∈ C | Re z > 0}.

We use Heaviside’s step function H(t), which is equal to 1 if t > 0 and, to 0 if t ≤ 0. Here RD
ρl
t are the

Riemann-Liouville fractional integrals and derivatives defined by the following definition; see [5, 6].

Definition 1.1. Let t ∈ R, τ ∈ R, u0(t) be locally integrable on R>τ , u(t) = u0(t)H(t− τ), λ ∈ C+, n ∈ Z>−1

and ρ = n− λ. Then RD
−λ
t u(t) is the Riemann-Liouville fractional integral defined by

RD
−λ
t u(t) =

1

Γ(λ)

∫ t

−∞
(t− x)λ−1u0(x)H(x− τ)dx

=
1

Γ(λ)

∫ t

τ

(t− x)λ−1u0(x)dx ·H(t− τ), (2)

and RD
−λ
t u(t) = 0 for t ≤ τ , where Γ(λ) is the gamma function, RD

ρ
t u(t) = RD

n−λ
t u(t) is the Riemann-Liouville

fractional derivative defined by

RD
ρ
t u(t) = RD

n−λ
t u(t) =

dn

dtn
[RD

−λ
t u0(t)] ·H(t− τ), (3)

when n ≥ Re λ, and RD
n
t u(t) = dn

dtn
u0(t) ·H(t− τ) when ρ = n ∈ Z>−1.

21



Morita; J. Adv. Math. Com. Sci., vol. 39, no. 1, pp. 20-28, 2024; Article no.JAMCS.110802

In accordance with Definition 1.1, when u0(t) = 1
Γ(ν)

(t− τ)ν−1, we adopt

RD
ρ
t

(t− τ)ν−1

Γ(ν)
H(t− τ) =

{
(t−τ)ν−ρ−1

Γ(ν−ρ) H(t− τ), ν − ρ ∈ C\Z<1,

0, ν − ρ ∈ Z<1,
(4)

for ν ∈ C\Z<1 and τ ∈ R. Here RDt is used in place of usually used notation τDR, in order to show that the
variable is t.

Remark 1.1. Let gν(t)= 1
Γ(ν)

tν−1H(t) for ν ∈ C. Then gν(t) = 0 if ν ∈ Z<1, and Equation (4) shows that if

ν /∈ Z<1, RD
ρ
t gν(t) = gν−ρ(t). As a consequence, we have RD

ν+n
t gν(t) = g−n(t) = 0 for n ∈ Z>−1.

In distribution theory [1, 7, 8, 9], we use distribution H̃(t), which corresponds to function H(t), differential
operator D, and distribution δ(t) = DH̃(t), which is called Dirac’s delta function.

1.1 Preliminaries on Nonstandard analysis

In nonstandard analysis [10], where infinitesimal numbers appear. We denote the set of all infinitesimal real
numbers by R0. We also use R0

>0 = {ε ∈ R0 | ε > 0}, which is such that if ε ∈ R0
>0, there exists N ∈ Z>0

satisfying ε < 1
N

. We use Rns, which has subsets R and R0. If x ∈ Rns and x /∈ R, x is expressed as x1 + ε by
x1 ∈ R and ε ∈ R0, where x1 may be 0 ∈ R. Equation x ' y for x ∈ Rns and y ∈ Rns, is used, when x− y ∈ R0.
We denote the set of all infinitesimal complex numbers by C0, which is the set of complex numbers z which
satisfy |Re z| + |Im z|∈ R0. We use Cns, which has subsets C and C0. If z ∈ Cns and z /∈ C, z is expressed as
z1 + ε by z1 ∈ C and ε ∈ C0, where z1 may be 0 ∈ C.

In place of (4), we now use

RD
ρ
t gν+ε(t) = RD

ρ
t

1

Γ(ν + ε)
tν−1+εH(t) = gν−ρ+ε(t) =

1

Γ(ν − ρ+ ε)
tν−ρ−1+εH(t), (5)

for all ρ ∈ C and ν ∈ C, where ε ∈ R0
>0.

Lemma 1.1. Let ρ1 ∈ C, ρ2 ∈ C, ν ∈ C, ε ∈ R0
>0 and gν+ε(t)=

1
Γ(ν+ε)

tν+ε−1H(t). Then the index law:

RD
ρ1
t RD

ρ2
t gν+ε(t) = RD

ρ1+ρ2
t gν+ε(t) = gν−ρ1−ρ2+ε(t), (6)

always holds.

In the present study in nonstandard analysis, in place of H̃(t) and δ(t) in distribution theory, Hε(t) and δε(t)
are used, which are given by

Hε(t) =RD
−ε
t H(t) = g1+ε(t) =

1

Γ(ε+ 1)
tεH(t), (7)

δε(t) = gε(t) =
d

dt
Hε(t) =

1

Γ(ε)
tε−1H(t) =

ε

Γ(ε+ 1)
tε−1H(t), (8)

for ε ∈ R0
>0. We note that they tend to H(t) and 0, respectively, in the limit of ε→ 0.

Lemma 1.2. In the notation in Remark 1.1, Hε(t) = g1+ε(t), δε(t) = gε(t), and

RD
ε
tHε(t) = RD

ε
tg1+ε(t) = g1(t) = H(t), RD

ε
tδε(t) = RD

ε
tgε(t) = g0(t) = 0. (9)
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1.2 Summary of the following sections

In solving Equation (1) in nonstandard analysis, we consider the solution of the following equation for ũ(t) =

RD
−ε
t u(t):

p̃n,ε(t,RDt)ũ(t) = f̃(t), (10)

where ε ∈ R0
>0 and

p̃n,ε(t,RDt) := RD
−ε
t pn(t,RDt)RD

ε
t . (11)

In [4], Conditions 1.2 and 1.1 on p. 52, are adopted. It is

Condition 1.1. Let ε ∈ R0
>0 and β ∈ C.

(i) f̃(t) = δε(t) and f(t) = 0.

(ii) f̃(t) = RD
β
t δε(t) = gε−β(t). When β /∈ Z>−1, f(t) = RD

β+1
t H(t), and when β ∈ Z>−1, f(t) = 0.

(iii) f̃(t) and f(t) are expressed as follows:

f̃(t) =

∞∑
l=1

cl · RDβl
t δε(t) =

∞∑
l=1

cl · gΓ(ε−βl)(t), f(t) =

∞∑
l=1

dl · RDβl
t δε(t). (12)

respectively, where cl ∈ C are constants, βl ∈ C satisfy −Re βl ≥ −Re β1 ∈ R, for all l ∈ Z>0, and dl = cl
if βl /∈ Z>−1, and dl = 0 if βl ∈ Z>−1.

Remark 1.2. Condition 1.1(i) is satisfied, when Condition 1.1(ii) is satisfied and β = 0.

In Sections 2 and 3, full expressions of the Green’s functions and the solutions, are derived for Kummer’s and
the hypergeometric differential equation, respectively.

Section 4 is for Conclusion.

2 Solution of Kummer’s Differential Equation

Kummer’s differential equation is described by

pK(t,RDt)u(t) := [t
d2

dt2
+ (c− bt) d

dt
− ab]u(t) = f(t), (13)

where a, b and c are constants satifying a 6= 0 and b 6= 0.

Lemma 2.1. When Condition 1.1(ii) is satisfied, we construct the following transformed differential equations
of Equation (13), for ũ(t) = RD

−ε
t u(t), w̃(t) = RD

−β
t ũ(t) and w(t) = RD

ε
t w̃(t) = RD

−β
t u(t):

p̃K,ε(t,RDt)ũ(t) :=RD
−ε
t pK(t,RDt)RD

ε
t ũ(t)

= [t
d2

dt2
+ (c− ε− bt) d

dt
− (a− ε)b]ũ(t) = RD

β
t δε(t) = gε−β(t), (14)

p̃K,β+ε(t,RDt)w̃(t) :=RD
−β
t pK,ε(t,RDt)RD

β
t w̃(t)

= [t
d2

dt2
+ (c− β − ε− bt) d

dt
− (a− β − ε)b]w̃(t) = δε(t), (15)

p̃K,β(t,RDt)w(t) :=RD
−β
t pK(t,RDt)RD

β
t w(t)

= [t
d2

dt2
+ (c− β − bt) d

dt
− (a− β)b]w(t) = 0. (16)
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In obtaining these equations from (13), we use (17) in the following lemma, which is given in [4].

Lemma 2.2. Let λ ∈ C+, m ∈ Z>−1 and ρ = m− λ. Then

RD
ρ
t [tu(t)] = t · RDρ

t u(t) + ρ · RDρ−1
t u(t), (17)

RD
ρ
t [t2u(t)] = t2 · RDρ

t u(t) + 2ρt · RDρ−1
t u(t) + ρ(ρ− 1) · RDρ−2

t u(t). (18)

Lemma 2.3. Two complementary solutions of Equation (16), which are given by

Kβ,1(t) = 1F1(a− β; c− β; bt) =

∞∑
k=0

(a− β)kb
k

k!(c− β)k
tk, t > 0, (19)

Kβ,2(t) =
1

Γ(2− c+ β)
t1−c+β · 1F1(a− c+ 1; 2− c+ β; bt)

=

∞∑
k=0

(a− c+ 1)kb
k

k!Γ(2− c+ β + k)
t1−c+β+k = RD

−β
t K0,2(t)H(t), t > 0, (20)

exist, when c− β /∈ Z<1 and when c− β /∈ Z>1, respectively.

Following (60) in [3], we define the Green’s function GK,β,ε(t, τ), which satisfies

p̃K,β+ε(t,RDt)GK,β,ε(t, τ) = δε(t− τ), (21)

for τ ∈ R.

In the present section, formulas are derived with the aid of two complementary solutions given by (19) and (20),
and hence they hold when c− β /∈ Z<1.

Lemma 2.4. Let Kβ,1(t) be given by Equation (19). Then Lemmas 2.1 and 2.3 show that GK,β,ε(t, 0) and
GK,β,0(t, 0), given by

w̃β,ε(t) =GK,β,ε(t, 0) = RD
−ε
t GK,β,0(t, 0), (22)

wβ,0(t) =GK,β,0(t, 0) =
1

−1 + c− βKβ,1(t)H(t), (23)

are a particular solution of Equation (21) for τ = 0, and also of (15), and a complementary solution of Equation
(16), respectively.

Remark 2.1. The derivation of (22) with (23) for β = 0, with the aid of Frobenius method, is given in Section
3.1 of [3].

Theorem 2.1. Let Condition 1.1(ii) be satisfied, and GK,β,ε(t, 0) and GK,β,0(t, 0) be given by (22) with (23).
Then Lemmas 2.1, 2.4 and 2.3 show that

(i) when β ∈ C and f̃(t) = gε−β(t), ũε−β(t) = RD
β
t w̃β,ε(t), given by

ũε−β(t) = RD
β
t GK,β,ε(t, 0) =

1

−1 + c− β

∞∑
k=0

(a− β)kb
k

(c− β)kΓ(k − β + 1 + ε)
tk−β+εH(t), (24)

which is a particular solution of Equation (14),
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(ii) if β = n ∈ Z>−1, by using (24), we obtain u−n(t) = RD
ε
t ũε−n(t), expressed by

u−n(t) =

∞∑
k=n

(a− n)kb
k

(−1 + c− n)k+1

1

(k − n)!
tk−nH(t)

=

∞∑
l=0

(a− n)n+lb
n+l

(−1 + c− n)n+l+1

1

l!
tlH(t) = CnGK,0,0(t, 0), (25)

which is a complementary solution of (13), where Cn = (a−n)n
(−1+c−n)n+1

bn = Γ(a)Γ(c−n−1)
Γ(a−n)Γ(c)

bn, and

(iii) if β /∈ Z>−1, by using (24), we obtain u−β(t), given by u−β(t) = RD
ε
t ũε−β(t) = RD

β
t GK,β,0(t, 0), which

is a particular solution of (13).

Theorem 2.1 shows that if f̃(t) = RD
β
t δε(t), the particular solution of (14) is given by (24). As a consequence,

we have the following theorem.

Theorem 2.2. Let f̃(t) and f(t) satisfy Condition 1.1(iii), so that they are given by (12), and

RD
βl
t GK,βl,ε(t, 0) =

1

−1 + c− βl

∞∑
k=0

(a− βl)kbk

(c− βl)kΓ(k − βl + 1 + ε)
tk−βl+εH(t). (26)

Then ũf (t) and uf (t), given by

ũf (t) =

∞∑
l=1

cl · RDβl
t GK,βl,ε(t, 0),=

∞∑
l=1

dl · RDβl
t GK,βl,0(t, 0), (27)

are particular solutions of (14) and (13), respectively. Condition c−β /∈ Z<1 in Lemma 2.3 requires the condition
c− βl /∈ Z<1 for all l ∈ Z>0, in the present case.

Lemma 2.5. Lemmas 2.3 and 2.1 show that wc(t) and uc(t), given by

wc(t) :=Kβ,2(t)H(t) = RD
−β
t K0,2(t)H(t), uc(t) = RD

β
t wc(t) = K0,2(t)H(t), (28)

are a complementary solution of Equations (16) and (13), respectively.

Remark 2.2. We now give a derivation of (28) for β = 0, by modifying the above mentioned proof of (45) given
in [3]. We assume that the solution of (13) is expressed by (52-c), which is obtained from (52) in [3] by replacing
ũ by u. Then (13) is expressed by (53-c), which is obtained from (53) in [3] by replacing ũ by u, ε by 0, and f̃ by
f . We then note that when f(t) = 0, (53-c) is satisfied by (55-c), which is obtained from (55) in [3] by replacing
ε by 0. By using these in (52-c) and putting u(t) = p0uc(t), we obtain (46) in [3], which gives (28) for β = 0.

3 Solution of the Hypergeometric Differential Equation

As stated in Introduction, solutions of the hypergeometric differential equation, are given in [4] without the
Green’s function. We now give them in terms of the Green’s function.

The hypergeometric differential equation is described by

pH(t,RDt)u(t)=[t(1− t) d
2

dt2
+ (c− (a+ b+ 1)t)

d

dt
− ab]u(t) = f(t), (29)
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where a, b and c are constants satifying a 6= 0 and b 6= 0.

Lemma 3.1. When Condition 1.1(ii) is satisfied, we construct the following transformed differential equations
of Equation (29), for ũ(t) = RD

−ε
t u(t), w̃(t) = RD

−β
t ũ(t) and w(t) = RD

ε
t w̃(t) = RD

−β
t u(t):

p̃H,ε(t,RDt)ũ(t) =RD
β
t δε(t) = gε−β(t), (30)

p̃H,β+ε(t,RDt)w̃(t) = δε(t), (31)

p̃H,β(t,RDt)w(t) = 0. (32)

where the left hand side of (30) is given by

p̃H,ε(t,RDt) = t(1− t) d
2

dt2
+ (c− ε− (a+ b+ 1− 2ε)t)

d

dt
− (a− ε)(b− ε), (33)

and then those of (31) and (32) are obtained from (33) by replacing ε by β + ε and β, respectively.

In obtaining these equations from (29), we use Lemma 2.2, which is given in [4].

Lemma 3.2. Let c−β /∈ Z<1. Then there exist two complementary solutions of Equation (32), which are given
by

Hβ,1(t) = 2F1(a− β, b− β; c− β; t)=

∞∑
k=0

(a− β)k(b− β)k
k!(c− β)k

tk, t > 0, (34)

Hβ,2(t) =
1

Γ(2− c+ β)
t1−c+β · 2F1(1 + a− c, 1 + b− c; 2− c+ β; t)

=RD
−β
t H0,2(t)H(t), t > 0. (35)

Following (2.20) in [4], we define the Green’s function GH,β,ε(t, τ), which satisfies

p̃H,β+ε(t,RDt)GH,β,ε(t, τ) = δε(t− τ), (36)

for τ ∈ R.

In the present section, formulas are derived with the aid of two complementary solutions given by (34) and (35),
and hence they hold when c− β /∈ Z<1.

Lemma 3.3. Let Hβ,1(t) be given by Equation (34). Then Lemmas 3.1 and 3.2 show that GH,β,ε(t, 0) and
GH,β,0(t, 0), given by

w̃β,ε(t) =GH,β,ε(t, 0) = RD
−ε
t GH,β,0(t, 0), (37)

wβ,0(t) =GH,β,0(t, 0) =
1

−1 + c− βHβ,1(t)H(t), (38)

are a particular solution of Equation (36) for τ = 0, and also of (31), and a complementary solution of Equation
(32), respectively.

Remark 3.1. The derivation of (37) with (38) for β = 0, with the aid of Frobenius method, is given in p. 53 of
[4].
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Theorem 3.1. Let Condition 1.1(ii) be satisfied, and GH,β,ε(t, 0) and GH,β,0(t, 0) be given by (37) with (38).
Then Lemmas 3.3 and 3.1 show that

(i) when β ∈ C and f̃(t) = gε−β(t), ũε−β(t), given by

ũε−β(t) = RD
β
t GH,β,ε(t, 0) =

1

−1 + c− β

∞∑
k=0

(a− β)k(b− β)k
(c− β)kΓ(k − β + ε+ 1)

tk−β+εH(t), (39)

is a particular solution of Equation (30),

(ii) if β = n ∈ Z>−1, u−n(t) = RD
ε
t ũε−n(t), expressed by

u−n(t) =

∞∑
k=n

(a− n)k(b− n)k
(−1 + c− n)k+1

1

(k − n)!
tk−nH(t)

=

∞∑
l=0

(a− n)n+l(b− n)n+l

(−1 + c− n)n+l+1

1

l!
tlH(t) = CnGH,0,0(t, 0), (40)

is a complementary solution of Equation (29), where Cn = (a−n)n(b−n)n
(−1+c−n)n+1

= Γ(a)Γ(b)Γ(c−n−1)
Γ(a−n)Γ(b−n)Γ(c)

, and

(iii) if β /∈ Z>−1, u−β(t), given by u−β(t) = RD
ε
t ũε−β(t) = RD

β
t GH,β,0(t, 0) with the aid of (39), is a particular

solution of (29).

Theorem 3.2. Let f̃(t) and f(t) satisfy Condition 1.1(iii), so that they are given by (12), and

RD
βl
t GH,βl,ε(t, 0) =

1

−1 + c− βl

∞∑
k=0

(a− βl)k(b− βl)k
(c− βl)kΓ(k − βl + 1 + ε)

tk−βl+εH(t). (41)

Then ũf (t) and uf (t), given by

ũf (t) =

∞∑
l=1

cl · RDβl
t GH,βl,ε(t, 0), uf (t) =

∞∑
l=1

dl · RDβl
t GH,βl,0(t, 0), (42)

are particular solutions of Equations (30) and (29), respectively. The condition, which corresponds to Condition
c− β /∈ Z<1 in Lemma 2.3, requires the condition c− βl /∈ Z<1 for all l ∈ Z>0, in the present case.

Lemma 3.4. Lemmas 3.1 and 3.2 show that uc(t), given by

uc(t) =H0,2(t)H(t), (43)

is a complementary solution of Equation (29).

4 Conclusion

In the preceding paper [4], we consider the problem of solving the equation which has a special class of
inhomogeneous part, and we adopt a recipe without the Green’s functuion, which is applied to the hypergeometric
differential equation, the differential equations treated in [2] and the Hermite differential equation.

In the present paper, we solve the problem considered in [4], but now the results are expressed in terms of the
Green’s function. It is applied to Kummer’s and the hypergeometric differential equation.
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In Section 2, the results for Kummer’s differential equation, in which Condition 1.1(ii) is satisfied, are given in
Theorem 2.1 and Lemma 2.5, and the results, in which Condition 1.1(iii) is satisfied, are given in Theorem 2.2.
Here Condition 1.1(i) is treated as a special case of Condition 1.1(ii).

In Section 3, the corresponding results for the hypergeometric differential equation, are given in Theorems 3.1
and 3.2 and Lemma 3.4.
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