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Abstract: In this article, the authors propose a multi-agent vision system supporting the autonomous
spraying of orchards and analyze the condition of trees and occurrence of pests and diseases. The
vision system consists of several agents: first, for the detection of pests and diseases of fruit crops;
second, for the estimation of the height of trees to be covered with spraying; third, for the classification
of the developmental status of trees; and fourth, for the classification of tree infections by orchard
diseases. For the classification, modified deep convolutional neural networks were used: Xception
and NasNetLarge. They were trained using transfer learning and several additional techniques
to avoid overfitting. Efficiency tests performed on the datasets with real orchard photos, showing
accuracies ranging from 96.88% to 100%. The presented solutions will be used as part of an intelligent
autonomous vehicle for orchard works, in order to minimize harm to the environment and reduce
the consumption of water and plant protection products.

Keywords: convolutional neural networks; artificial intelligence; autonomous systems; visual inspection;
precise horticulture

1. Introduction

Horticulture is a fruit-producing industry in which it is necessary to use plant pro-
tection products. Even in ecological orchards, protective treatments are carried out with
the use of substances of a natural or biological origin. In the course of spraying, fruit trees
are covered with a water-based solution by sprayers. Unfortunately, the chemical sprays
expose operators with leaky protective clothing or an insufficiently ventilated tractor cabin
to harmful dust. In recent years, the control systems of orchard tractors based on video
signals have been improved, which extends vehicle navigation and allows for autonomous
driving [1–3]. Sprayers and agricultural machines are also equipped with vision systems
that ensure precise spraying and targeted cultivation [4,5]. Thus, it can be noticed that the
control technology of autonomous vehicles [6–8] is beginning to be used for practical appli-
cations on arable plantations [9–11]. The level of robotic autonomy is raised by introducing
control systems using intelligent data processing [12,13].

To systematize the level of advancement of solutions, the Horticulture 4.0 classifi-
cation was introduced [14]. Horticulture 4.0 classifies the levels of advancement of the
digitalization technology used to support production. There are three levels:

• Level 1—use of crop-monitoring sensors.
• Level 2—processing of monitoring data supporting decision-making.
• Level 3—production automation using autonomous systems.

Fruit tree pests and diseases usually infect tree leaves [15]. The leaf is a good indicator
of plant morphological variability. A single leaf has a unique pattern. These patterns can be
input data that the artificial neural network algorithms can use to recognize leaf types [16].
In laboratory conditions, the recognizability of leaf types was obtained at a level from
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94.69% to 97.2%. Achieving high accuracy in recognition was possible by using a seven-
layer ConvNet network with data augmentation for leaf recognition [17]. In other papers, a
pulse-coupled neural network and a support vector machine (SVM) [18], or a probabilistic
neural network (PNN) with image and data processing techniques [19,20], were used. In
tomato cultivation under cover, deep artificial neural networks were used to detect leaf
diseases and pests [21,22]. Recently, some attempts have also been made to automatically
recognize leaf diseases using vision systems of artificial intelligence (AI), which offer high
accuracy results in laboratory conditions only [23–26]. The work in [27] presents methods
for distinguishing basic diseases of apple leaves—rust, scab, and black rot—based on
AI. There are also first implementations of vision algorithms based on artificial neural
networks that work in a real environment [28–31]. These applications, whether prepared
for laboratories or tested at orchard plantations, have some imperfections and recognize
only a few types of leaf diseases. Most of the presented solutions, used in practical systems
of autonomous spraying, do not allow us to recognize irregularities, which, if they occur,
can destroy plantations.

Automating the visual assessment of the condition of leaves and other tree features
requires the recording of proper images and their analysis. A process of automatic image
analysis consists, generally, of image acquisition, pre-processing, and then appropriate
analysis. Marked objects are classified in order to determine their characteristics and/or
cluster. The classification of objects is a task of digital image processing and machine
learning, which typically consists of two stages: feature extraction and image validation
with a selected classifier. To extract the essential features of an object and to reduce the
amount of data, which must be further processed, many well-known architectures such as
histograms of oriented gradients (HOG) [32], local binary patterns [33], and 1D/2D Haar
descriptors [34], or their combinations [35], can be used. Then, the classification decision
must be made. Different categories of classifiers are used in the validation stage: support
vector machine (SVM), decision trees, AdaBoost, self-organizing maps, deep convolutional
neural networks (DCNNs), and their combinations. Some of the most important CNN
architectures are AlexNet/CaffeNet [36,37] (as the historically first significant CNN net-
work), VGG [38], ResNet [39], Xception [40], NasNet (in classic or mobile version) [41],
EfficientNet and EfficientNetV2 [42–44].

The presented literature review has shown individual solutions concerning topics
similar to those discussed in this work, but to the best of the authors’ knowledge, no
comprehensive fruit tree cultivation system has been proposed so far that would cover so
many different aspects. This article presents the results of research conducted to develop
vision algorithms for identifying diseases of fruit trees and classifying the developmental
states of leaves based on CNN models. Additionally, a concept of using digital image
processing algorithms to detect fruit tree pests and determine heights of trees for spraying
in real time is presented. These studies constitute an important part of an integrated
artificial intelligence system supporting autonomous orchard spraying.

Data for vision algorithms (vision agents) are obtained from the cameras placed on
the orchard plantation and on the body of an autonomous orchard tractor with a sprayer.
The vision agents supply information about the plantation to the database regardless
of the spraying process or during spraying. The most advanced agents operate with
artificial neural networks that recognize infected trees in an orchard plantation as a result
of extracting leaf disease features and the developmental states of trees. The observation
of pheromone traps and the control of leaf wetting time after atmospheric precipitation
at an early stage allows for the detection of pests and disease infection, which triggers
the implementation of preventive treatments. In this way, the number of treatments, used
when symptoms of infection begin to appear on leaves and fruits, is reduced.

This paper is organized as follows: after the Introduction, in Section 2, the characteris-
tics of the occurrence of selected diseases and pests of fruit trees are presented. Next, in
Section 3, an intelligent solution is proposed. Section 4 presents the details of a multi-agent
vision system. In Section 5, a system for autonomous protective spraying in horticulture,
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with an integrated AI multi-agent vision system application of convolutional neural net-
works for supporting orchard spraying, is presented. Section 6 summarizes the obtained
results.

2. Characteristics of the Occurrence of Selected Diseases and Pests of Fruit Trees

Before preparing an AI system supporting the cultivation of fruit trees, it is necessary
to study the strategies used to protect against the most common pests. Each species and
even type of fruit tree requires a separate protective strategy. Obviously, there is the area of
common or approximate actions that are taken during the vegetation season of fruit trees in
order to prevent infections and pest appearance. In each case, it is extremely important that
the right decisions are made regarding how to carry out the protective treatments. It should
be noted that most pests that attack orchard plantations appear in particular time gaps,
which is why their next appearance in the orchard season is called generation. Experienced
growers strive to limit the number of pests as soon as they appear. A similar relationship
occurs in the case of fungal diseases. In order to reduce the seeding of primary fungal
spores, it is recommended to remove leaves remaining under the trees from the previous
season, but the most important action is the appropriate mitigation response or removal of
the appearance of the primary fungal infection, which reduces or eliminates the recurrence
of the secondary fungal infection.

During the growing season, there may be a few or even a dozen infections that require
preventive or intervention treatments. The most important strategies of protection, which
have been included in this work, are:

• Strategy of defense against apple scab (lat. Venturia inaequalis): the development
and sowing of spores of the fungus occurs in specific weather conditions; therefore,
monitoring these conditions is of particular importance in the effective protection of
apple trees against scab (Figure 1). Weather stations provide up-to-date information on
changes in temperature, precipitation, air humidity and air pressure; these data are fed
into the experimentally established model of the development and course of mycosis
and are a source of knowledge used to make decision for a protective treatment.

• Strategy of defense against rhagoletis cherry (lat. Rhagoletis cerasi): protection against
this pest consists of hanging traps in fruit plantations with a decoy attracting the
rhagoletis cherry insect. In the Eastern-Europe geographical rank, outlets are already
observed in mid-May; the observation of trap catches in an experimentally determined
amount, as the economic harmfulness threshold for cherries, is a determinant for
deciding to apply a protective treatment. During the ripening period of cherry fruits,
there are several generations of pests that require spraying with a tractor connected to
an orchard sprayer. The female pest lays eggs inside the developing fruit by cutting
the skin. The white larvae hatch from the eggs and are about 4 mm long (Figure 1b);
they cause the worming of fruit, making it unsuitable for consumption and industrial
processing.
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Effective protection against diseases and orchard pests consists mainly of prophylaxis
to prevent the development of fungal pathogens or larvae that cause the degradation
of green tissues of trees or fruit infestation. There is also irregular seasonality in the
occurrence of certain types of diseases or pests, as well as irregularities in the severity. A
strong dependence of the effectiveness of treatments on the weather conditions should
also be emphasized. All these factors, together with current information from the visual
inspection, should be taken into account when deciding to perform a specific protective or
intervention treatment.

3. A Proposal for an Intelligent System for Autonomous Protective Spraying
in Horticulture

Using the latest data processing methods based on AI [11,26], as well as the experience
of one of the authors on the work in growing fruit trees and known strategies for their pro-
tection against pests [45], we propose an intelligent system for protective and autonomous
spraying in horticulture based on a multi-agent vision system. The system we propose is
located in the Horticulture 4.0 classification at levels 1 and 2 and also contains elements of
level 3. The block diagram of this system is presented in Figure 2.
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The system consists of ten blocks that perform the following tasks:

• Block 1: Disease monitoring.
• Monitoring the occurrence of diseases of fungal origin is carried out by measuring the

wetting time of leaves after rainfall at a specific temperature. The leaf wetting time can
be determined using video analysis. The measured values are then fed into the disease
development model, on the basis of which the RIM (Relative Infection Measure) is
determined [46]. Exceeding the experimentally determined RIM threshold is a signal
of the risk of mycosis.

• Block 2: Video pest monitoring.
• Monitoring the occurrence of pests in orchard crops using a vision system provides

information on the number of pests caught in special attracting traps [47,48]. Exceeding
the experimentally determined number of pests per trap is a signal to perform spraying
to remove pests.
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• Block 3: Disease and pest data processing.
• Data from Blocks 1 and 2, obtained from weather stations and/or cameras located on

the plantation, are processed in Block 3. If a disease or pest is detected in an orchard
crop, output information is generated for the decision-making Block 6.

• Block 4: Protective strategy.
• This block contains a database with strategies for the protection of fruit plantations

against particular threats. It also contains the assignment of protective measures
allowed by relevant permits for fruit production. Each signal from Block 3 requires
finding a suitable protection measure in Block 4.

• Block 5: Weather forecasts.
• Based on the data obtained from the forecasted weather conditions, the date of the

procedure is calculated. A day is selected when the requirements for specific weather
components are met, such as: temperature, humidity, wind strength, etc. This date
is critical to the effectiveness of the spraying. For example, too strong a wind makes
it difficult to properly cover the entire green tissue of the tree and causes a high
consumption of plant protection products, as well as environmental pollution. Further,
too low a humidity level causes the evaporation of part of the protection products
into the atmosphere. At too low or too high a temperature, the effectiveness of the
treatment is significantly lower.

• Block 6: Decision-making.
• After collecting and processing data about diseases and pests (Block 3) and additional

data determining the protection measure (Block 4) along with the date of the treatment
(Block 5), an automatic decision is generated. At the current stage of testing the
proposed system, before further stages (i.e., before performing the tree protection
treatment), an additional, manual approval by the experienced fruit grower is required
to verify actions and avoid unnecessary treatments in the case of wrong decisions
(Figure 3).
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• The decision of the grower to approve or cancel the automatic suggestion is additional
information that teaches the decision-making AI system. After several seasons of
testing and learning the system, it will probably be possible to skip the manual
acceptance step.

• Block 7: Orchard messages.
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• In this block, messages with up-to-date news generated by the commercial consulting
companies from the fruit industry, for an area where the plantation is located, are
obtained. These messages indicate, to some extent, the type and date of necessary
orchard spraying. The messages can support the decision-making Block 6, but also,
the local decision to perform the procedure made by Block 6 can be made available to
the consulting companies for further processing or publication (see the two-way green
arrow between Blocks 6 and 7 in Figure 2).

• Block 8: Plantation map.
• To perform autonomous protective measures, a numerical map of the orchard should

be prepared. This map enables the movement of an autonomous tractor connected to
an automated sprayer in a given area of an orchard plantation. The map includes the
distribution of trees on the plantation, as well as the possible routes.

• Block 9: Realization of autonomous spraying.
• When the grower accepts the decision made by the integrated AI system, autonomous

spraying is carried out. It is performed by an automated orchard tractor with a
sprayer. The tractor is equipped with the cameras. The video streams from the
cameras are transmitted to the specially designed video processing modules which
perform three tasks: They support the vehicle control system, control the automatic
sprayer, and collect data about the plantation, e.g., size of trees, condition of leaves,
damages, possible tree diseases (especially new symptoms that were not detected
before spraying), etc.

• Block 10: Inspection data processing.
• The data acquired during the spraying (Block 9) are then processed and used to

make further decisions about the next necessary spraying if infection symptoms are
detected. This block provides feedback in the system, making decisions more precise.
Additionally, it updates the plantation map (connection to Block 8, see Figure 2).

As presented in the detailed task list above, the system is a multi-agent system, and
most of the agents process images. Because the thorough testing of the system requires
several annual cycles, currently, the proposed system is in development and still in the
preliminary testing phase.

The following sections will primarily describe agents related to video processing and
artificial intelligence. Their tasks are mainly located in Blocks 2 and 9 (cf. Figure 2).

4. Multi-Agent Vision System

The presented multi-agent vision system supports three main tasks: pest monitoring,
tractor control, and sprayer control. The system uses IP color Gemini 612-23W cameras
(Delta-Opti Poznań, Poznań, Poland) with a resolution of 1.4 Mpix (1280 × 720 px) at 25 fps
with a 1/4 inch OmniVision OV9712 CMOS sensor, a H.264 video codec, and a 10/100
Base-T Ethernet interface.

4.1. Visual Pest-Monitoring Agent

A scheme of the visual pest-monitoring agent is presented in Figure 4. As was
mentioned in previous section, this agent monitors the occurrence of pests in orchard crops
and provides information on the number of pests caught in special attracting traps. The
pheromone trap is continuously observed by the inspection camera (Figure 5a). The image
from the camera is denoised and binarized with a threshold in the preprocessing step. This
step allows us to remove noise and unwanted objects (e.g., dust or flies that are not pests)
from images. Then, insect pests of a certain size are detected and counted by matching to
known object pattern definitions (Figure 5b). If the number of pests in the trap exceeds the
given number, the agent produces a signal to perform spraying to remove pests. Optionally,
the report is supplemented by the resulting image for additional verification.
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4.2. Autonomous Tractor Control Agent

The basic control of a moving vehicle in a closed area inaccessible to outsiders (as in
the presented case—in the orchard) can be performed using an autonomous driving agent.
The diagram of the control algorithm is shown in Figure 6. The tractor is equipped with
a front camera located on the roof of the tractor (Figure 7a). The image from the camera
provides information to the autonomous driving agent and can also be used for the remote,
manual control of the vehicle via a wireless network (Figure 7b) [7]. Autonomous driving
or remote, manual control are much better than classic tractor driving during spraying: the
operator is not exposed to harmful conditions. However, it requires the introduction of
additional security procedures.
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Remote, manual vehicle control may be necessary in emergency situations, e.g., when
there is a need to guide the manual vehicle to the correct trajectory or the pre-set trajectory
needs to be modified. The tractor’s autonomous control system allows for the detection
and recognition of objects appearing in the field of view of the front camera. It supports the
function of avoiding obstacles and emergency stopping when it is impossible to avoid an
obstacle. Since the orchard is an environment with little variability in time, it is possible to
program the spraying trajectory that will be performed by the autonomous driving agent
in advance, using the orchard map. Information about the tractor’s location is obtained
from the location system. The location system may use a global GPS module or a local
vehicle-positioning module based on changes in the radio signal strength provided by local
Wi-Fi wireless network stations [7]. In the future, vehicle location may be supported or
entirely carried out by a vision system.

4.3. Automatic Sprayer Control Agent

The key function of the vision agent controlling the sprayer is the appropriate dosage
of the tree protection product. This agent recognizes the developmental state of trees,
detects tree height, and additionally, detects infected trees for further analysis.

A diagram of the sprayer control agent is shown in Figure 8. The agent receives the
signal from a camera placed on the tractor hood, which is directed sideways, towards the
row of trees being sprayed (Figure 9a,b).
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The image from the camera is processed by a vision algorithm [49] that detects the
outline of the tree by detecting leaves and branches in four zones (Figure 10). A special
function has been prepared for this task. First, edge detection is performed using a So-
bel mask, and then one of the morphological operations is performed—dilation. Image
processing is performed sequentially to find the outline of a branch with leaves. Then, a
structural element is created—a rectangle of a specific size that covers the detected contour.
The trees are then assigned to one of four tree height categories. Depending on the assigned
tree height category, a smaller or larger number of solenoid valves controlling the sprayer
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nozzles is opened (Figure 9c). This allows for spraying only the required area of the tree,
and at the same time, it saves water and plant protection products.
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In addition to detecting tree height, the vision agent detects the tree’s developmental
state and tree infections, which modify the local spraying decision. For example, trees
without leaves will not be sprayed. Since automatically detecting the developmental state
of a tree, as well as tree diseases, based only on image analysis is a difficult task, the authors
decided to solve the problem using convolutional neural networks and carefully examine
their operation.

5. Application of Convolutional Neural Networks for Supporting the Orchard Spraying

During spraying, the video agent that controls the orchard sprayer, apart from deter-
mining the height of the spraying tree, also recognizes the developmental state of trees
and inspects the plantation by a classification of infected trees. The last two functions are
realized in the presented system using convolutional neural networks (CNNs). In this
section, we deeply analyze these tasks by performing experimental analysis.
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5.1. Classification of Stages of Fruit Tree Development

Recognizing the developmental stages of fruit trees involves classifying images ob-
tained from a fruit plantation into five separate sets related to the development of trees
during the fruit season. For a proper spraying performance, we are interested in distin-
guishing the first five stages of the fruit season: leafless, before flowering, blooming, after
flowering, and bud growth (cf. Figure 11). During the last stage, the leaves develop the
most intensively on trees, and it is necessary to regulate the spray pressure depending on
the given developmental state in order to obtain a complete coverage of the green tissue.
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For training the neural networks to work properly with the specific task and then
testing their operation, the proper database of photos should be used. Since no appropriate
database of photos of the considered growth stages of fruit trees was found, the authors
prepared the photo database themselves. During the growing season, 7751 photos were
taken in the fruit orchard at different times of the day. Table 1 and Figure 11 present some
details about this database.

Table 1. Number of photos for testing the developmental stages of trees.

Tree States Number of Samples

leafless period 1440
before flowering 1634
flowering period 1408
after flowering 1766

bud growth 1503

5.2. Classification of Trees Infections

The proposed vision agent can also detect tree diseases and classify disease symptoms
identified during spraying. This is helpful for identifying rare and non-cyclical diseases,
which, if detected early, prevent the destruction of the plantation.



Electronics 2024, 13, 494 11 of 19

Similarly, as in the previous classifier, we prepared a database of 3354 photos for
training and testing the neural networks. Table 2 and Figure 12 present some details about
the database of photos dedicated to the fruit tree infections.

Table 2. Number of photos for testing infected trees.

Trees State Number of Samples

uninfected 1609
infected 1745
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5.3. Used CNNs: Architectures, Supporting Techniques
5.3.1. Architectures

For performing the assumed tasks, we adopted two convolutional neural network
models, namely: Xception [40] and NasNetLarge [41].

The Xception model is an extended version of the Inception V3 model, where Inception
blocks have been replaced with convolutional layers used separately for individual image
channels. Xception is divided into three main blocks: entry flow, middle flow and exit
flow. As a result, it is a linear stack of convolutional layers, with additional connections
(residual connections). Compared to Inception V3, Xception shows a small increase in
classification accuracy on the ImageNet dataset and a much larger increase in accuracy on
the JFT dataset.

The second CNN architecture we used was the NasNet (Neural Architecture Search
Network) model. It was originally developed semi-automatically using the reinforcement
learning method. Due to the time-consuming process of searching for the optimal archi-
tecture, the analysis was performed on a small dataset, and then the block configuration
was transferred for verification on a larger dataset. During the experiments, the optimal
architecture of a normal cell and a reduction cell was searched for. Although the search was
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performed on the CIFAR-10 basis, the use of the same cell architecture based on ImageNet
allowed us to achieve a very high accuracy of 82.7% (top-1) and 96.2% (top-5).

5.3.2. Transfer Learning

In the case of an insufficient training set, it is possible to use an auxiliary training
method—transfer learning. This method uses two stages of training. In the first stage, the
model is trained on a very large database (typically, an image net for the object classification
task). In the next step, the model is trained on the target learning database. For this purpose,
a previously trained model with frozen weights is used. Only the last layers are trained
(usually three layers of fully connected neurons), which act as a classifier in the network.
In this approach, training is faster and does not require such a large number of training
examples.

In the experiments carried out, the Xception network with weights trained on the
ImageNet basis was used. Then, the network architecture was adapted to training with
the transfer learning method by adding a layer of one-way perceptrons. A summary of
the modified Xception network architecture used to classify tree development stages is
presented in Table 3. For tree infection classification, only the number of perceptrons in
the last layer was changed. Network training was performed only for the new network
layer (10,245 parameters trained); the remaining weights were frozen (i.e., approximately
21 million parameters of the Xception architecture).

Table 3. Summary of the modified Xception network architecture: additional layers: sequential
is a linear stack of layers, each with one input and one output tensor, rescaling is a preprocessing
step that normalizes or standardizes input, global average pooling summarizes the values of all
neurons for each patch of the input data into a feature map, dense is a regular deeply connected
neural network layer, dropout is a regularization method that randomly shuts down some fraction of
a layer’s neurons during training to reduce overfitting.

Layer (Type) Output

Shape Param

input_4 (InputLayer) [(None, 331, 331, 3)] 0

input_4 (InputLayer) [(None, 299, 299, 3)] 0

sequential_1 (Sequential) (None, None, None, 3) 0

rescaling_1 (Rescaling) (None, 299, 299, 3) 0

NASNet (functional) (None, 10, 10, 2048) 20,861,480

global_average_pooling2d_1
(GlobalAveragePooling2D) (None, 2048) 0

dropout_1 (Dropout) (None, 2048) 0

dense_1 (None, 5) 10,245

Total params: 20,871,725

Trainable params: 10,245

Non-trainable params: 20,861,480

The NasNet network in the NasNetLarge version was used with weights trained
on the ImageNet basis. Then, the network architecture was adapted to training with the
transfer learning method by adding a layer of one-way perceptrons. A summary of the
modified NasNetLarge network architecture used to classify tree development stages is
presented in Table 4. In the case of the classification of tree infections, only the number
of perceptrons in the last layer was changed. The network was trained only for the new
network layer (20,165 parameters were trained), and the remaining weights were frozen
(about 85 million parameters of the NasNet architecture).
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Table 4. Summary of the modified NasNetLarge network architecture: additional layers: sequential
is a linear stack of layers, each with one input and one output tensor, rescaling is a preprocessing
step that normalizes or standardizes input, global average pooling summarizes the values of all
neurons for each patch of the input data into a feature map, dense is a regular deeply connected
neural network layer, dropout is a regularization method that randomly shuts down some fraction of
a layer’s neurons during training to reduce overfitting.

Layer (Type) Output

Shape Param

input_4 (InputLayer) [(None, 331, 331, 3)] 0

sequential_1 (Sequential) (None, 331, 331, 3) 0

rescaling_1 (Rescaling) (None, 331, 331, 3) 0

NASNet (functional) (None, 11, 11, 4032) 84,916,818

global_average_pooling2d_1
(GlobalAveragePooling2D) (None, 4032) 0

dropout_1 (Dropout) (None, 4032) 0

dense_1 (None, 5) 20,165

Total params: 84,936,983

Trainable params: 20,165

Non-trainable params: 84,916,818

5.3.3. Preventing Network Overfitting

Model overfitting is a significant risk when training a neural network. It manifests
itself mainly with the high value of accuracy obtained at the model training stage, which
does not result in high accuracy on the testing set. In order to ensure the stability and
reliability of the artificial network training process, a number of methods were used. The
following training techniques were additionally used at different stages of learning [50,51]:

• Data augmentation techniques—adding random manipulations into training images:
• Image mirroring in vertical axis (none, mirroring).
• Image rotation (with angles from −10 to 10◦).
• Image zooming (up to 40%).
• Image translation (up to 10%).
• Contrast adaptation (with contrast factor = 0.3).
• Training, validation and testing datasets—the whole database was divided into appro-

priate parts. The author’s database of photos was divided into training, validation,
and testing sets in the proportion of 60%, 20%, and 20%, respectively.

• K-fold cross-validation—K-fold training of the model: each time, a different part of
the dataset becomes a testing set.

• Dropout—randomly forgetting certain neurons and not transmitting information.
• Early stopping—saving of model weights for highest accuracy on the validation set

during the training process.

5.4. Experimental Results

Results of experiments on the training, validation and testing of the prepared CNN
architectures are presented below. The results were evaluated based on the following
expression for accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN

where: TP—True Positives, TN—True Negatives, FP—False Positives, FN—False Negatives.
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5.4.1. Classification of the Tree Development Stages

The results of experiments for the classification of tree development stages according
to K-fold cross-validation are presented in Table 5 (for the Xception model) and Table 6
(for NasNetLarge). The accuracy plots in the training validation sets for both models are
presented in Figures 13 and 14, respectively, for the Xception and NasNetLarge models.

Table 5. Classification accuracy of tree development stages for the Xception model.

K-fold Accuracy [%]

----------- Training Validation Tests

1 97.95 99.87 99.16

2 97.98 99.14 97.44

3 96.55 99.42 97.24

4 97.43 97.89 98.57

5 97.21 98.14 98.17

Average 97.42 98.89 98.12

Table 6. Classification accuracy of tree development stages for the NasNetLarge model.

K-fold Accuracy [%]

----------- Training Validation Tests

1 98.40 100.00 99.12

2 97.86 98.45 97.23

3 98.23 99.13 96.88

4 98.07 97.45 97.13

5 97.67 98.51 98.21

Average 98.05 98.71 97.21
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5.4.2. Classification of Trees Infections

The results of experiments for the classification of healthy and infected trees according
to K-fold cross-validation are presented in Table 7 (for the Xception model) and Table 8
(for NasNetLarge). The accuracy plots in the training validation sets for both models are
presented in Figures 15 and 16, respectively, for the Xception and NasNetLarge models.

Table 7. Classification accuracy of trees infections for the Xception model.

K-fold Accuracy [%]

----------- Training Validation Tests

1 97.06 100.00 100.00

2 100.00 100.00 97.06

3 100.00 100.00 97.06

4 97.06 100.00 97.06

5 97.06 100.00 97.06

Average 98.24 100.00 97.65

Table 8. Classification accuracy of trees infections for the NasNetLarge model.

K-fold Accuracy [%]

----------- Training Validation Tests

1 99.81 99.50 100.00

2 99.91 99.25 100.00

3 100.00 100.00 100.00

4 100.00 100.00 98.43

5 100.00 98.70 99.20

Average 99.94 99.49 99.78
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Large model.

5.5. Discussion of Results

For both tasks, i.e., for the classification of tree development stages and for the clas-
sification of tree infections, very high accuracies of classifications were achieved (at least
97% on the testing datasets). Regardless of the network model used, the obtained results
were quite similar. This was also confirmed by the K-fold cross-validation approach (see
Tables 5–8).

In general, larger fluctuations in accuracy (in fact in loss and accuracy) during the
training process (see Figures 14 and 15) were observed for the validation set than in the
results obtained on the training set. This fact is related to the smaller size of the validation
set. During the testing process, no significant model over-fitting was detected. This proved
that strong-enough methods of data augmentation were used.

In the case of the classification of healthy and infected trees, the CNNs achieved even
higher accuracy, i.e., up to 99.78% with the NasNetLarge model on the testing dataset. This
is due to the fact that the analyzed images with the plant classes of healthy and diseased
trees were easier to visually differentiate from each other, and just two classes were used
(healthy and diseased trees). In the future, we also intend to expand this database, but this
is a difficult task due to the periodic nature of the observed diseases.
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6. Conclusions

In this article, a multi-agent vision system supporting the autonomous spraying of
orchards and analyzing the condition of trees and the occurrence of pests and diseases is
proposed. Local data collected by agents with information about tree pests, diseases and
tree development stages, combined with data from external sources, e.g., weather stations
or companies presenting information for fruit growers, are input to the AI decision-making
module. Complex tasks such as the classification of the developmental status of trees and
the classification of tree infections by orchard diseases are carried out using two CNN
types: Xception and NasNetLarge. Efficiency tests performed on datasets with real orchard
photos have shown accuracies ranging from 96.88% to 100%.

The proposed architecture of the artificial intelligence system is a part of the area of
precision horticulture (HA), which optimizes food production areas, minimizes costs and
effectively increases production results. The models, based on which the presented research
results were carried out, are part of an artificial system prepared to perform integrated
autonomous orchard spraying.

The multi-agent vision system saves the time needed for classic plantation inspection
by fruit growers and provides precise data on the areas of the orchard that require spraying.
The precise control of the sprayer, which detects heights of trees and their infections, makes
it possible to save sprayed water and plant protection products.

The presented solution can be widely implemented on new or even used tractors and
orchard sprayers after their rather inexpensive modernization.

In the coming growing seasons, the authors plan to implement the presented system
as a whole and examine the achieved overall effectiveness of the proposed solution.
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