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Abstract: An isolation layer composed of isolators and steel dampers in base-isolated tall buildings
can dissipate wind-induced energy via repeated elasto-plastic deformation. Its energy dissipation
can be used to estimate its wind-induced responses and the fatigue damage in the steel dampers.
Computationally costly time history analyses using multi-degree-of-freedom (MDOF) models suggest
that some structural parameters influence the isolation-layer energy dissipation. However, using
common single-degree-of-freedom (CS) models cannot fully capture such influences (e.g., those
caused by the damping ratio and the natural period of the upper structure). Hence, this paper
proposes a more accurate new equivalent single-degree-of-freedom (ES) model to estimate the
isolation-layer energy dissipation in base-isolated tall buildings under strong winds. The ES model
considers the influence of structural parameters and uses the first mode shapes of the MDOF models.
It is as computationally efficient as, but is more accurate than, the CS model. The results indicate that
it can estimate the isolation-layer energy dissipation as closely as MDOF models of base-isolated
tall-building under strong winds.

Keywords: base-isolated building; base isolation layer; steel damper; wind force; energy dissipation;
equivalent model

1. Introduction

Recently, base isolation systems have been applied to many tall buildings to ensure
their structural safety during earthquakes [1–3]. They are mainly composed of (i) isolators
such as rubber bearings and (ii) dampers such as viscous, viscoelastic, and steel dampers [4].
Steel dampers are most commonly used in base isolation systems due to their low cost
and high performance [5,6]. For example, they require little maintenance and can dissipate
seismic energy via repeated elasto-plastic deformation to minimize structural damage. In
the seismic design of base-isolated tall buildings, structural designers can decrease the yield
shear force coefficient of the steel dampers to promote the building’s seismic performance
because these dampers yield early, so they can dissipate a great amount of seismic energy
after yielding.

In earthquake- and typhoon-prone areas such as Japan, the wind-resistant performance
of base-isolated tall buildings should also be addressed [7–10]. However, for those base-
isolated tall buildings equipped with steel dampers, promoting their seismic performance
by, for example, decreasing the yield shear force coefficient of the steel dampers means
demoting their wind-resistant performance. This is because these dampers may result in
significant elasto-plastic responses in the base isolation layer, as they yield easily during
strong winds. For example, the maximum deformation of the base isolation layer can reach
around 10 cm in typhoon simulations [11]. Moreover, a study has shown that isolators
with nonlinear damping perform better at a high frequency than with linear damping [12].
Another more important aspect is that wind forces have a much longer duration than

Buildings 2024, 14, 329. https://doi.org/10.3390/buildings14020329 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14020329
https://doi.org/10.3390/buildings14020329
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0009-0001-9951-572X
https://orcid.org/0000-0003-4532-487X
https://orcid.org/0000-0001-9097-1721
https://doi.org/10.3390/buildings14020329
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14020329?type=check_update&version=2


Buildings 2024, 14, 329 2 of 23

seismic forces, which may lead to the accumulation of fatigue damage in yielding dampers.
For example, the typhoon simulation results show that the fatigue damage in steel dampers
can even be close to 1.0 in certain typhoon samples [13]. Suppose those fatigue-damaged
dampers are not replaced in time: fatigue fracture may occur in those dampers during the
next large earthquake [14,15], eventually leading to a decrease in the seismic performance
of the building. However, only a few studies have been conducted on the wind-induced
responses of base isolation layers, as well as the fatigue damage in steel dampers, because
the current wind-resistant design in Japan is based on buildings behaving elastically under
strong winds [16].

An energy balance method has been established by balancing the seismic energy
input and isolation layer energy dissipation, suggesting that the seismic responses of the
base isolation layer can be estimated as long as the isolation layer energy dissipation is
obtained [17]. Similarly, the wind-induced responses of the base isolation layer can also
be estimated if the isolation layer energy dissipation is obtained [18–23]. On the other
hand, the isolation layer energy dissipation will be very close to the steel damper energy
dissipation when the duration of the wind forces is long enough [23]. In relevant fields, D.
Rigon et al. estimated the multiaxial fatigue behavior of C45 steel specimens by using the
energy dissipation [24]. From the above study, we can infer that damper fatigue damage
is highly relevant to the isolation layer energy dissipation. Hence, studying the isolation
layer energy dissipation can help estimate the wind-induced responses of the base isolation
layer and fatigue damage in the steel dampers.

Multi-degree-of-freedom (MDOF) models with multi-story wind forces are commonly
analyzed in time history analyses to effectively estimate the isolation layer energy dissipa-
tion in base-isolated tall buildings under strong winds. However, time history analysis is
time-consuming because MDOF models have many parameters [11,13], and multi-story
wind forces should consider ensemble methods [25,26]. Hence, for efficient time history
analysis, proposing a single-degree-of-freedom (SDOF) model with only a one-story force
that can also be used to estimate the isolation layer energy dissipation is required. Such
efficiency is highly desired, especially when assessing the resiliency of a structure after a
major event [27,28]. In previous studies, two types of SDOF models have been proposed in
earthquake engineering. One is a common single-degree-of-freedom (CS) model assuming
the upper structure is a rigid body (Appendix A). The CS model does not consider the
upper structure’s characteristics (natural period and damping ratio), and all its structural
parameters are calculated based on the assumption of a rigid upper structure. The other
is a single-degree-of-freedom model proposed by Kasai et al. [29]. It considers the upper
structure characteristics, but the calculation of its partial structural parameters (mass and
wind force) is also based on the assumption of a rigid upper structure rather than a soft
upper structure, the same as in the CS model. Obviously, the above two SDOF models
are not appropriate for base-isolated tall buildings in wind engineering, and there is no
appropriate SDOF model at present.

In view of the above, this paper aims to propose a new equivalent single-degree-of-
freedom (ES) model to estimate the isolation layer energy dissipation in base-isolated tall
buildings under strong winds. The ES model must meet both of the following requirements:
(i) the upper structure characteristics are considered and (ii) the calculation of all the
structural parameters is based on a soft upper structure. Structural engineers need this ES
model to decrease the computing time for efficient wind-resistant design like the CS model
and to accurately estimate the isolation-layer energy dissipation like the MDOF model.
This paper first investigated the influences of the structural parameters on the isolation-
layer energy dissipation in MDOF models using time history analyses (Section 2). Next,
considering these influences, a modeling method for the ES model based on the first mode
of the MDOF model was described (Section 3). Then, the accuracy of the isolation-layer
energy dissipation in the ES model was verified by comparing the isolation-layer energy
dissipation in the ES model and MDOF model (Section 4). Finally, conclusions and related
remarks are given (Section 5).
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2. Isolation-Layer Energy Dissipation in MDOF Models

The base-isolated tall building considered in this paper (Figure 1a) was idealized
into a theoretical shear-type MDOF model (Figure 1b). Its upper structure, with assumed
dimensions of height Hu = 100 m (u denotes upper structure), width Bu = 25 m, and
depth Du = 25 m, is expressed using an elastic 10-degree-of-freedom model (herein viewed
as a 10-story model). Its isolation layer, composed of rubber bearings and steel dampers, is
expressed using an elasto-plastic SDOF model. More details about the MDOF model are
provided in Sections 2.1–2.4.

Buildings 2024, 14, x FOR PEER REVIEW 3 of 25 
 

energy dissipation in the ES model and MDOF model (Section 4). Finally, conclusions and 

related remarks are given (Section 5). 

2. Isolation-Layer Energy Dissipation in MDOF Models 

The base-isolated tall building considered in this paper (Figure 1a) was idealized into 

a theoretical shear-type MDOF model (Figure 1b). Its upper structure, with assumed di-

mensions of height 𝐻𝑢 = 100 m  (𝑢  denotes upper structure), width 𝐵𝑢 = 25 m , and 

depth 𝐷𝑢 = 25 m , is expressed using an elastic 10-degree-of-freedom model (herein 

viewed as a 10-story model). Its isolation layer, composed of rubber bearings and steel 

dampers, is expressed using an elasto-plastic SDOF model. More details about the MDOF 

model are provided in Sections 2.1–2.4. 

 

 

(a) (b) 

Figure 1. (a) Base-isolated tall building and (b) its idealized shear-type MDOF model. 

2.1. Wind Forces of MDOF Models 

The 500-year return period wind speed at the top of the building 𝑈500𝑦 = 50.41 m/s in 

Figure 1a was obtained based on a basic wind speed of 36 m/s and surface roughness cate-

gory III [30]. The wind force at the 𝑖-th story of the upper structure 𝐹𝑢𝑖 (𝑖 = 1, 2,…, 10) in 

Figure 1b was calculated for a 700-s duration at a 0.05-s time interval, using 𝑈500𝑦 and the 

story wind force coefficient obtained from the wind tunnel test [30]. Note that the wind force 

at the isolation layer 𝐹𝑏 = 0 (𝑏 denotes the base isolation layer). 

A total of 40 cases of wind forces (herein referred to as Force 01~40) in the along-wind 

and across-wind directions are considered in this paper [25,26]. As an example, Figure 2 

shows the wind forces at the 10th story of the upper structure 𝐹𝑢10 (Force 01), in which 

the along-wind direction has a mean component while the across-wind direction has 

none. Note that the first and last 50-s wind forces are envelopes used to avoid transient 

responses of the MDOF models in the time history analysis. Therefore, they are not con-

sidered in the calculation of the isolation-layer energy dissipation, as will be presented in 

Section 2.4. 

 

Figure 2. Wind forces at the 10th story of the upper structure 𝐹𝑢10 (Force 01). 

U
p

p
er

 s
tr

u
ct

u
re

𝐻
𝑢
=
 
 
 
  

B
as

e
is

o
la

ti
o

n
 

la
y

er

𝐵𝑢 = 𝐷𝑢 =     

Rubber 
bearing

Steel 
damper

𝑈500𝑦 =

         

≈

U
p

p
er

 s
tr

u
ct

u
re

(1
0

-s
to

ry
 m

o
d

el
)

B
as

e
is

o
la

ti
o

n
 

la
y

er

 𝑢10

 𝑢 

 𝑢 

 𝑢 

 𝑢1

 𝑢10

 𝑢 

 𝑢 

 𝑢 

 𝑢1

  
 𝑢

 𝑏

𝐹𝑢10

𝐹𝑢 

𝐹𝑢 

𝐹𝑢 

𝐹𝑢1

𝐹𝑏

 

 𝑏   𝑏 
 𝑏

−    

−   

(0)

500

1000

1500

0 100 200 300 400 500 600 700

Along-wind Across-wind

 [s]

𝐹𝑢10 [kN]

50-second envelope 50-second envelope

Figure 1. (a) Base-isolated tall building and (b) its idealized shear-type MDOF model.

2.1. Wind Forces of MDOF Models

The 500-year return period wind speed at the top of the building U500y = 50.41 m/s in
Figure 1a was obtained based on a basic wind speed of 36 m/s and surface roughness
category III [30]. The wind force at the i-th story of the upper structure Fui (i = 1, 2, . . . , 10)
in Figure 1b was calculated for a 700-s duration at a 0.05-s time interval, using U500y and
the story wind force coefficient obtained from the wind tunnel test [30]. Note that the wind
force at the isolation layer Fb = 0 (b denotes the base isolation layer).

A total of 40 cases of wind forces (herein referred to as Force 01~40) in the along-wind
and across-wind directions are considered in this paper [25,26]. As an example, Figure 2
shows the wind forces at the 10th story of the upper structure Fu10 (Force 01), in which
the along-wind direction has a mean component while the across-wind direction has none.
Note that the first and last 50-s wind forces are envelopes used to avoid transient responses
of the MDOF models in the time history analysis. Therefore, they are not considered in the
calculation of the isolation-layer energy dissipation, as will be presented in Section 2.4.
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Figure 2. Wind forces at the 10th story of the upper structure Fu10 (Force 01).
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2.2. Modeling Method for the MDOF Models

For the MDOF model in Figure 1b, the mass of the i-th story of the upper struc-
ture mui is expressed as:

mui =
ρu·Hu·Bu·Du

10
(i = 1, 2, . . . , 10) (1)

where ρu is the density of the upper structure of the base-isolated tall building (=250 kg/m3).
Using mui as obtained from Equation (1), the stiffness of the i-th story of the upper

structure kui can be expressed by [31]:

kui =


(2π/Tu)

2·mu1·φu1+ku2(φu2−φu1)
φu1

(i = 1)
(2π/Tu)

2·mui ·φui+ku(i+1)(φu(i+1)−φui)
φui−φu(i−1)

(i = 2, 3, . . . , 9)
(2π/Tu)

2·mu10·φu10
φu10−φu9

(i = 10)

(2)

where Tu is the natural period of the upper structure of the MDOF model (the values are
presented in Section 2.3) and φui is the mode shape of the i-th story in {φu}. Here, {φu} is
the first mode shape of the upper structure of the MDOF model, assumed as a straight
distribution, which is commonly used in modeling.

Assuming the upper structure is a stiffness-proportional damping model, the damping
coefficient of the i-th story of the upper structure cui using kui obtained from Equation (2) is
given by:

cui =
ξu·Tu·kui

π
(3)

where ξu is the damping ratio of the upper structure of the MDOF model (values are
presented in Section 2.3).

On the other hand, the mass of the isolation layer mb can be written as:

mb = ρb·Bu·Du (4)

where ρb is the areal density of the isolation layer of the base-isolated tall building
(=3644 kg/m2).

Furthermore, the other parameters of the isolation layer can be computed using
the shear force–deformation relationship of the rubber bearing (Q f -δ f relationship), steel
damper (Qs-δs relationship), and isolation layer (Qb-δb relationship), as shown in Figure 3a–c.
Here, f and s denote the rubber bearing and steel damper, respectively.
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First, for the rubber bearing modeled as linearly elastic (Figure 3a), the stiffness k f is
defined as [4]:

k f =
4π2

(
mb + ∑10

i=1 mui

)
T2

f
(5)
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where Tf is the isolated period of the MDOF model or the natural period of the MDOF
model with a rigid upper structure and no steel damper (values are presented in Section 2.3).

Next, for the steel damper modeled using an elastic–perfectly plastic model (Figure 3b),
the yield shear force Qsy (y denotes the yield) and initial stiffness kse (e denotes the elastic
range) are described as follows [4]:

Qsy =

(
mb +

10

∑
i=1

mui

)
g·αsy (6)

kse =
Qsy

δsy
(7)

where g is the gravitational acceleration, αsy is the yield shear force coefficient of the steel
damper in the MDOF model (values are presented in Section 2.3), and δsy is the yield
deformation of the steel damper in the MDOF model (values are presented in Section 2.3).

Finally, for the isolation layer with bilinear behavior (Figure 3c) due to combining the
rubber bearing (Figure 3a) and steel damper (Figure 3b), the initial stiffness kbe, post-yield
stiffness kbp (p denotes plastic range), yield deformation δby, and yield strength Qby can be
formulated, respectively, as follows [4]:

kbe = k f + kse (8)

kbp = k f (9)

δby = δsy (10)

Qby = δby·kbe (11)

Note that for the isolation layer, the damping coefficient cb = 0 because the damping
ratio is assumed to be ξb = 0.

2.3. Structural Parameters and Their Influences on MDOF Models

According to the equations in Section 2.2, certain structural parameters determine the
behavior of the MDOF model and therefore may subsequently influence the isolation-layer
energy dissipation. These structural parameters and their values [32] are as follows:

(a) Damping ratio of the upper structure

ξu = 1%, 2%, and 5%.

(b) Natural period of the upper structure

Tu = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s.

(c) Isolated period

Tf = 4.0 s, 4.5 s, 5.0 s, 5.5 s, and 6.0 s.

(d) Yield shear force coefficient of the steel damper

αsy = 0.020, 0.025, 0.030, 0.035, and 0.040.

(e) Yield deformation of the steel damper

δsy = 1.5 cm, 2.0 cm, 2.5 cm, 3.0 cm, and 3.5 cm
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The influences of these structural parameters on the MDOF model obtained from
Section 2.2 are investigated in this section, and the findings are used for detailed discussions
on the isolation-layer energy dissipation in Section 2.4.

Figure 4a shows the mass distribution for the upper structure obtained from Equation (1).
The masses of all stories have the same value, and they are not influenced by the above
five structural parameters. Figure 4b shows the stiffness distribution for the upper structure
obtained from Equation (2). The stiffness decreases with the story level for each value of Tu,
and the upper structure with a long Tu shows a low stiffness. Among the five structural pa-
rameters, only Tu has an influence on the stiffness distribution. Figure 4c shows the damping
coefficient distribution for the upper structure obtained from Equation (3). For Tu = 3.0 s,
the damping coefficient for the upper structure increases with an increasing ξu. The same
can be said for the other values of Tu. Moreover, by comparing the damping coefficient
for Tu = 3.0 s and 3.5 s, the upper structure with a longer Tu shows a lower damping coeffi-
cient. Overall, only ξu and Tu can influence the damping coefficient for the upper structure.
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Figure 4. (a) Mass, (b) stiffness, and (c) damping coefficient distribution for the upper structure.

Figure 5a–d show the influences of the different structural parameters (Tu, Tf , αsy,
and δsy) on the shear force–deformation relationship of the isolation layer (Qb-δb relation-
ship) obtained from Equations (8)–(11). As indicated in Figure 5a, Tu does not influence
the Qb-δb relationship since it is not used for calculating any parameter of the isolation layer.
The same can be said for the influence of ξu. As indicated in Figure 5b, Tf has a small influ-
ence on both the elastic and plastic ranges. As Tf increases, the initial stiffness decreases,
leading to a decreasing yield shear force, and the post-yield stiffness also decreases. This is
because the increase in Tf results in a decrease in k f (Equation (5)), which then results in
a decreasing kbe (Equation (8)) and kbp (Equation (9)). As indicated in Figure 5c, αsy has a
significant influence on the elastic range but none on the plastic range. As αsy increases, the
initial stiffness increases, leading to an increasing yield shear force, while the post-yield
stiffness remains unchanged. This is due to the fact that an increasing kse with an increas-
ing αsy (Equations (6) and (7)) can lead to an increase in kbe (Equation (8)). As indicated in
Figure 5d, δsy also has a significant influence on the elastic range but none on the plastic
range. As δsy increases, the initial stiffness decreases, leading to a large yield shear force
and yield deformation. The reason for this may be related to Equations (7) and (8).
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Figure 5. Shear force–deformation relationship of the isolation layer (Qb-δb relationship).

2.4. Influences of the Structural Parameters on the Isolation-Layer Energy Dissipation

After performing time history analysis for the MDOF model (Section 2.2) subjected
to the wind forces (Section 2.1) considering different values of the structural parameters
(Section 2.3), the isolation-layer energy dissipation in the isolation layer of the MDOF model
(per second [23])

.
Wb is obtained as follows:

.
Wb =

1
t1 − t0

∫ t1

t0

Qb·
.
δbdt (12)

where
.
δb is the derivative of δb with respect to time. As explained in Section 2.1, t0 = 50 s,

and t1 = 650 s.
Figure 6a–d show the isolation-layer energy dissipation in the isolation layer of the

MDOF model (per second)
.

Wb obtained from Equation (12) considering the different values
of the structural parameters. Note that each value of

.
Wb is the ensemble average for Force

01~40. In the following, the
.

Wb value in the across- and along-wind directions are discussed
separately due to their different results.

In the across-wind direction,
.

Wb increases significantly with the increase in Tu, as
shown in Figure 6a. For each value of ξu,

.
Wb increases by more than 6 times as Tu ranges

from 1.5 s to 3.5 s. Although Tu has no influence on the Qb-δb relationship (Figure 5a),
it influences the stiffness distribution for the upper structure (Figure 4b). It follows that
the MDOF model with a soft upper structure (a long Tu) tends to have significant wind
responses, including a large deformation of the base-isolation layer that results in a great
amount of

.
Wb. In Figure 6b,

.
Wb in the across-wind direction increased slightly with

the increase in Tf . For Tf = 4 ∼ 6 s,
.

Ws ranges from 670.2 kN·cm/s to 871.0 kN·cm/s
for ξu = 1%, from 434.5 kN·cm/s to 647.0 kN·cm/s for ξu = 2%, and from 136.4 kN·cm/s
to 298.6 kN·cm/s for ξu = 5%. This slight trend in

.
Wb is attributed to the slight decrease in
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the initial and post-yield stiffness of the isolation layer with an increasing Tf (Figure 5b).

In Figure 6c,
.

Wb in the across-wind direction decreases significantly with the increase
in αsy.

.
Wb decreases by 71.8% for ξu = 1%, by 85.1% for ξu = 2%, and by 96.6% for ξu = 5%,

as αsy increases from 0.02 to 0.04. This significant decrease is due to the significant increase
in the yield shear force of the isolation layer with an increasing Tf (Figure 5c), leading
to difficulty in dissipating the wind-induced energy with the damper yielding. In Fig-
ure 6d,

.
Wb in the across-wind direction increases slightly with the increase in δsy, which

is similar to the trend observed in Figure 6b. The reason for this slight trend is that the
isolation layer becomes soft in the elastic range by increasing δsy (Figure 5d) so that the

isolation layer can dissipate more wind-induced energy. Moreover,
.

Wb in the across-wind
direction decreases significantly with the increase in ξu as the other structural parameters
(Tu, Tf , αsy, and δsy) remain unchanged, as shown in Figure 6a–d. This is because the
upper structure with a larger ξu can dissipate more wind-induced energy, leading to less
wind-induced energy that can be dissipated by the isolation layer. Summing up, in the
across-wind direction, ξu, Tu, and αsy show significant impacts on

.
Wb, which implies that a

base-isolated tall building with a large ξu, a large Tu, and a small αsy can easily produce

a significant amount of
.

Wb. Therefore, structural designers should pay special attention
to this aspect when conducting the wind-resistant design of base-isolated tall buildings.
Furthermore, Tf and δsy show minor impacts on

.
Wb in the across-wind direction.
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Figure 6. Isolation-layer energy dissipation of the MDOF model (per second)
.

Wb.

On the other hand,
.

Wb in the along-wind direction is significantly small and varies
negligibly with increasing structural parameters (ξu, Tu, Tf , αsy, and δsy), as shown in
Figure 6a–d. The reason for this can be explained by the Qb-δb relationship for t = 50 ∼ 650 s
shown in Figure 7a,b. For a specific MDOF model (ξu = 2%, Tu = 2.5 s, Tf = 5.0 s,
αsy = 0.03, δsy = 2.5 cm), the Qb-δb relationship in the along-wind direction (Figure 7b)
shows much fewer and smaller hysteresis loops than those in the across-wind direction
(Figure 7a). This is because the wind forces in the along-wind direction have mean compo-
nents (Figure 2) in the +δb direction, which leads to the fact that there is no large wind force
in the −δb direction and can make the isolation layer deform plastically in the −δb direction.
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To sum up, the above five structural parameters show negligible impacts on
.

Wb in the
along-wind direction.
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Figure 7. Qb-δb relationship (ξu = 2%, Tu = 2.5 s, Tf = 5.0 s, αsy = 0.03, δsy = 2.5 cm, Force 01,
and t = 50 ∼ 650 s).

3. Proposed Equivalent Single-Degree-of-Freedom Models
3.1. Modeling Concept

As found in Sections 2.3 and 2.4, ξu and Tu influence the MDOF model and therefore
subsequently influence the isolation-layer energy dissipation. This contradicts the common
single-degree-of-freedom (CS) model, which cannot be influenced by ξu and Tu (Section 1
and Table A1 in Appendix A). In order to evaluate the isolation-layer energy dissipation
as accurately as the MDOF model and with the computational efficiency of the CS model
(Appendix A), this paper proposes a new equivalent single-degree-of-freedom (ES) model
which considers ξu and Tu as well as Tf , αsy, and δsy.

On the other hand, for an elastic MDOF model of a tall building, its elastic first mode
model can show nearly equal wind-induced responses. In addition, several structural
parameters of the elastic MDOF model, including the natural period and damping ratio,
can affect its elastic first mode model. Based on these findings, for the elasto-plastic MDOF
model considered in this paper, its elasto-plastic first mode model (herein referred to as
the ES model) is likely to show a high accuracy for the isolation-layer energy dissipation
corresponding to the structural parameters of the elasto-plastic MDOF model under strong
winds. For this reason, the modeling method for the ES model proposed in this paper is
based on the first mode of the elasto-plastic MDOF model, as will be discussed Section 3.3.
Since the MDOF model considered in this paper has elasto-plastic behavior, its first mode
shape can vary with the current stiffness (initial or post-yield stiffness) of the isolation layer.
As such, the possible variation in the first mode shape is investigated first in Section 3.2.

3.2. First Mode Shapes of MDOF Models

When the isolation layer deforms elastically, the eigenvalue problem of the MDOF
model is expressed as: (

[Ke]− ω2
e [M]

)
{φe} = {0} (13)

where {φe} is the elastic first mode shape of the MDOF model or the first mode shape of
the MDOF model when the isolation layer deforms elastically, ωe is the natural frequency
of the MDOF model when the isolation layer deforms elastically, [M] is the mass matrix of
the MDOF model in which mb and mu1 ∼ mu10 are used, and [Ke] is the stiffness matrix
of the MDOF model in which kbe and ku1 ∼ ku10 are used. The matrices [M] and [Ke] are
given as follows:

[M] =

mb · · · 0
...

. . .
...

0 · · · mu10

 (14)
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[Ke] =

kbe + ku1 · · · 0
...

. . .
...

0 · · · ku10

 (15)

On the other hand, when the isolation layer deforms plastically, the eigenvalue prob-
lem of the MDOF model can be expressed by:([

Kp
]
− ω2

p[M]
){

φp
}
= {0} (16)

where
{

φp
}

is the plastic first mode shape of the MDOF model or the first mode shape of
the MDOF model when the isolation layer deforms plastically, ωp is the natural frequency
of the MDOF model when the isolation layer deforms plastically, and

[
Kp
]

is the stiffness
matrix of the MDOF model in which kbp and ku1 ∼ ku10 are used, which is given by:

[
Kp
]
=

kbp + ku1 · · · 0
...

. . .
...

0 · · · ku10

 (17)

{φe} and
{

φp
}

as obtained from Equations (13) and (16), respectively, are then nor-
malized to satisfy:

{φe}T [M]{φe} =
{

φp
}T

[M]
{

φp
}
= 1 (18)

Figure 8a,b show the normalized {φe} and
{

φp
}

obtained from Equation (18) consid-
ering the different values of the structural parameters. Note on the vertical axis notations, b
refers to the isolation layer, and Gr. refers to the ground. As indicated in Figure 8a, Tu has
significant impacts on both {φe} and

{
φp
}

because it significantly influences the stiffness
of the upper structure (Figure 2). As indicated in Figure 8b, Tf has negligible impacts
on {φe} and small impacts on

{
φp
}

because it slightly influences the initial and post-yield
stiffness of the isolation layer (Figure 5b). As indicated in Figure 8c,d, αsy and δsy have small
impacts on {φe} but none on

{
φp
}

because they have influences on the initial stiffness
but none on the post-yield stiffness of the isolation layer (Figure 5c,d). These findings are
used for detailed discussions of the influences of the structural parameters on ES models in
Section 3.4.Buildings 2024, 14, x FOR PEER REVIEW 11 of 25 
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3.3. Modeling Method for ES Models

Based on the normalized {φe} and
{

φp
}

obtained from Section 3.2, the modeling
method for the ES model is introduced in this section.

Figure 9a,b show the ES model and its shear force–deformation relationship (Qes-δes re-
lationship). According to Equation (18), the mass of the ES model mes in Figure 9a can be
written as:

mes = {φe}T [M]{φe} =
{

φp
}T

[M]
{

φp
}
= 1 (19)
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Figure 9. (a) ES model and (b) its shear force–deformation relationship (Qes-δes relationship).

This indicates the mass of the ES model can be simplified into 1, while the mass of the CS
model is the sum of the upper structure and base isolation-layer masses (Equations (1), (4),
and (A1) in Appendix A).

Using the normalized {φe} and
{

φp
}

, the initial and post-yield stiffness of the ES
model, kes

e and kes
p (Figure 9b), are defined as follows:

kes
e = {φe}T [Ke]{φe} (20)

kes
p =

{
φp
}T[Kp

]{
φp
}

(21)

Based on the normalized {φe} (the reason is presented in Appendix B), the yield shear
force of the ES model Qes

y is described as:

Qes
y = {∆φeb, ∆φeu1, · · · , ∆φeu10}


Qby

φeu1(by)
...

φeu10(by)

 (22)

Here, ∆φeb, ∆φeui, and φeui(by) are given by:

∆φeb = φeb (23)

∆φeui =

{
φeu1 − φeb (i = 1)

φeui − φeu(i−1) (i = 2, 3, . . . , 10) (24)

φeui(by) = Qby·
∆φeui
∆φeb

(i = 1, 2, . . . , 10) (25)

where φeb and φeui are the mode shapes of the isolation layer and the i-th story of the upper
structure in normalized {φe}.

Using Qes
y and kes

e as obtained from Equations (20) and (22), respectively, the yield
deformation of the ES model δes

y can be written as:

δes
y =

Qes
y

kes
e

(26)
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As indicated in Equations (20)–(22) and (26), the shear force–deformation relationship
of the ES model was obtained based on {φe} or

{
φp
}

, which is influenced by the natural
period of the upper structure (Equations (2), (15), and (17)). Whereas, the natural period of
the upper structure does not influence the shear force–deformation relationship of the CS
model (Equations (A2)–(A5) in Appendix A).

Note that the ES model is assumed to be an initial stiffness-proportional damping
model. Hence, based on the Biggs method, the damping ratio of the ES model ξes (Figure 9a)
is expressed as [33]:

ξes =
ξb·Wb + ∑10

i=1 ξu·Wui

Wb + ∑10
i=1 Wui

(27)

where Wb and Wui are the maximum potential energy of the isolation layer and the i-th story
of the upper structure, which are given based on normalized

{
φp
}

(the reason is presented
in Appendix C) as follows [33]:

Wb =
1
2
·kbp·φ2

pb (28)

Wui =
1
2
·kui·φ2

pui (29)

Here, φpb and φpui are the mode shapes of the isolation layer and i-th story of the
upper structure in normalized

{
φp
}

.
As Equation (27) indicates, the damping ratio of the ES model is relevant to that of the

upper structure. This is in contrast to Equation (A6) in Appendix A, where the damping
ratio of the CS model is not related to the upper structure.

Based on normalized {φe} (the reason is presented in Appendix D), the wind force of
the ES model Fes is expressed as:

Fes = {φe}T{F} (30)

where {F} is the wind force vector composed of Fb and Fu1 ∼ Fu10. This shows the wind
force of the ES model is computed using the elastic first model, which is influenced by
the four structural parameters (Tu, Tf , αsy, and δsy) according to Equations (2), (5)–(8), and
(15). Meanwhile, the wind force of the CS model is the sum of the wind forces of the
upper structure and isolation layer and is irrelevant to these four structural parameters
(Equation (A7) in Appendix A).

3.4. Influences of the Structural Parameters on ES Models

The influences of the structural parameters on the ES model obtained from Section 3.3
are investigated in this section, and the findings are used for detailed discussions on the
accuracy verification for the isolation-layer energy dissipation in Section 4.

Figure 10a–d show the shear force–deformation of the ES model (Qes-δes relationship)
obtained from Equations (20)–(22) and (26) considering the different values of the structural
parameters. As indicated in Figure 10a, Tu influences both the elastic and plastic ranges
because it influences {φe} and

{
φp
}

(Figure 8a), in contrast to its lack of influence on
the Qb-δb relationship (Figure 5a). Note that the Qb-δb relationship is in accordance with the
shear force–deformation relationship of the CS model (Equations (A2)–(A5) in Appendix A).
As indicated in Figure 10b, Tf has a negligible influence on the elastic range and a small
influence on the plastic range due to its negligible impacts on {φe} and small impacts
on
{

φp
}

(Figure 8b), respectively, which is similar to the Qb-δb relationship (Figure 5b). As
indicated in Figure 10c,d, αsy and δsy have small influences on the elastic range, which is
different from the Qb-δb relationship (Figure 5c,d), but none on the plastic range, which
is similar to the Qb-δb relationship (Figure 5c,d). This is because they have small impacts
on {φe} and but none on

{
φp
}

.
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Figure 10. Shear force–deformation of the ES model (Qes-δes relationship).

Figure 11a–d show the damping ratio of the ES model ξes obtained from Equation (27)
considering different values of the structural parameters. As shown in Figure 11a,b, Tu and Tf
influence ξes due to their impacts on

{
φp
}

(Figure 8a,b). In contrast, αsy and δsy do not
influence ξes (Figure 11c,d) because they have no impact on

{
φp
}

(Figure 8c,d). More-
over, ξes increases with an increasing ξu according to Figure 11a–d.
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Figure 11. Damping ratio of the ES model ξes.
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Figure 12a,b show the wind forces of the ES model Fes considering different values
of Tu (Tf = 5.0 s, αsy = 0.03, δsy = 2.5 cm, and Force 01) obtained from Equation (30). In
Figure 12a, Fes for Tu = 1.5 s nearly equals that for Tu = 3.5 s in the along-wind direction,
which indicates Tu has a negligible influence on Fes. Although Tu influences {φe}, the
mode shapes of the lower stories (isolation layer and 1st~5th story) and upper stories
(6th~10th story) vary adversely as Tu increases (Figure 8a), which leads to the negligible
influence of Tu on Fes. The same can be said for the influences of the other structural
parameters (Tf , αsy, and δsy) on Fes. Moreover, Figure 12b also shows the negligible
influence of Tu on Fes in the across-wind direction for to the same reason.
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Figure 12. Wind forces of the ES model Fes considering different values of Tu (Tf = 5.0 s,
αsy = 0.03, δsy = 2.5 cm, and Force 01).

The influences of the structural parameters on the ES model are summarized in Table 1.
All five structural parameters have impacts on the ES model and therefore may influence the
isolation-layer energy dissipation in the ES model. This differs to Table A1 in Appendix A,
where two structural parameters (ξu and Tu) have no impact on the CS model.

Table 1. Influences of structural parameters on the ES model.

mes kes
e kes

p Qes
y δes

y ξes Fes

ξu × × × × × # ×
Tu × # # # # # #
Tf × # # # # # #
αsy × # × # # × #
δsy × # × # # × #

# denotes having influence and × denotes having no influence.

4. Accuracy Verification for Isolation-Layer Energy Dissipation

In order to judge whether the proposed ES model (Section 3) can be used to estimate
the isolation-layer energy dissipation in base-isolated tall buildings under strong winds,
this section focuses on verifying the accuracy of calculating the isolation-layer energy
dissipation using the ES model by comparing the isolation-layer energy dissipation in
the ES model and MDOF model in the along- and across-wind directions. In addition,
the isolation-layer energy dissipation in the CS model is also verified in this section for
comparison with the ES model.
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After performing time history analysis for the ES model, the isolation-layer energy

dissipation in the ES model (per second [23])
.

W
es
b is expressed as:

.
W

es
b =

1
t1 − t0

∫ t1

t0

Qes·
.
δ

es
dt (31)

where Qes is the shear force of the ES model,
.
δ

cs
is the derivative of δcs with respect to time,

and t0 = 50 s and t1 = 650 s (the same as Equation (12)).

Figure 13a–d show the isolation-layer energy dissipation in the ES model
.

W
es
b (Equa-

tion (31)), CS model
.

W
cs
b (Equation (A8) in Appendix A), and MDOF model

.
Wb (Equation

(12)) with variations in Tu and ξu (Figure 13a), in Tf and ξu (Figure 13b), in αsy and ξu (Fig-
ure 13c), and in δsy and ξu (Figure 13d). The accuracy of the ES and CS models is evaluated

by comparing
.

W
es
b and

.
W

cs
b with

.
Wb, respectively.

As indicated in Figure 13a,
.

W
cs
b has constant values and a low accuracy (errors greatly

exceeding 20%) in the along- and across-wind directions because Tu and ξu have no impact

on the CS model (Table A1 in Appendix A). On the other hand,
.

W
es
b shows a much higher

accuracy than
.

W
cs
b in the along- and across-wind directions because Tu and ξu influence

the ES model (Table 1). Although the errors in
.

W
es
b are less than 20% in the along-wind

direction, these errors can be ignored because the values of
.

W
es
b and

.
Wb in the along-

wind direction are significantly small. In the across-wind direction, the errors in
.

W
es
b are

within 20% when
.

Wb < 800 kN·cm/s and within 10% when
.

Wb ≥ 800 kN·cm/s, which
means

.
W

es
b has a good accuracy.

As indicated in Figure 13b,
.

W
cs
b also has a low accuracy (errors greatly exceeding 20%)

in the along- and across-wind directions. Despite Tf influencing the CS model (Table A1 in

Appendix A), the result shows it has a small impact on
.

W
cs
b . On the other hand,

.
W

es
b also has

a much higher accuracy than
.

W
cs
b in the along- and across-wind directions. As explained in

the preceding paragraph, the errors in
.

W
es
b in the along-wind direction can be ignored.

As indicated in Figure 13c,
.

W
es
b has a much higher accuracy than

.
W

cs
b in the along-

and across-wind directions. In the across-wind direction, the errors in
.

W
es
b are approx-

imately within 20%. However, in the large range of isolation-layer energy dissipation

(
.

Wb ≥ 800 kN·cm/s), the errors in
.

W
es
b are within 10%.

As indicated in Figure 13d, the errors in
.

W
es
b are approximately within 20% in the

along- and across-wind directions. In the across-wind direction, it is observed that the error

in
.

W
es
b slightly decreases as

.
Wb increases.

To sum up, the proposed ES model has a much higher accuracy of isolation-layer
energy dissipation than the commonly used CS model in the along- and across-wind
directions. The errors in the isolation-layer energy dissipation in the ES model are ap-
proximately less than 20%, which shows a good accuracy. Especially in the large range of
isolation-layer energy dissipation (

.
Wb ≥ 800 kN·cm/s in the across-wind direction), they

are approximately within 10%, indicating a good accuracy. These errors are mainly due to:

(1) Partial parametric calculation of the ES model (Qes
y , ξes, and Fes) is based on the

assumption of only one mode shape ({φe} or
{

φp
}

), as mentioned in Appendices B–D,
but the isolation layer in fact shows elasto-plastic deformation under strong winds.

(2) The influence of higher-order modes may lead to these errors.

As a supplementary, Figure 14 shows an example of the time history of the accumu-
lated isolation-layer energy dissipation in the ES model Wes

b , CS model Wcs
b , and MDOF

model Wb in the across-wind direction (ξu = 2%, Tu = 2.5 s, Tf = 5.0 s,
αsy = 0.03, δsy = 2.5 cm, and Force 03). Wes

b of the ES model is close to Wb of the MDOF
model during 600 s. This demonstrates the validity of the ES model.



Buildings 2024, 14, 329 16 of 23Buildings 2024, 14, x FOR PEER REVIEW 18 of 25 
 

 Along-wind direction Across-wind direction 

 

  

(a
) 

V
ar

ia
ti

o
n

 i
n

 𝑇
𝑢

 a
n

d
 𝜉
𝑢

  

(𝑇
𝑓
=

5.
0 

s,
 𝛼

𝑠𝑦
=

0.
03

, 
 

an
d

 𝛿
𝑠𝑦
=

2.
5 

cm
) 

 
 

  

(b
) 

V
ar

ia
ti

o
n

 i
n

 𝑇
𝑓
 a

n
d

 𝜉
𝑢

  

(𝑇
𝑢
=

2.
5 

s,
 𝛼

𝑠𝑦
=

0.
03

, 

an
d

 𝛿
𝑠𝑦
=

2.
5 

cm
) 

 
 

  

(c
) 

V
ar

ia
ti

o
n

 i
n

 𝛼
𝑠𝑦

 a
n

d
 𝜉
𝑢

  

(𝑇
𝑢
=

2.
5 

s,
 𝑇
𝑓
=

5.
0 

s,
 

an
d

 𝛿
𝑠𝑦
=

2.
5 

cm
) 

 
 

  

(d
) 

V
ar

ia
ti

o
n

 i
n

 𝛿
𝑠𝑦

 a
n

d
 𝜉
𝑢

 

(𝑇
𝑢
=

2.
5 

s,
 𝑇
𝑓
=

5.
0 

s,
 

an
d

 𝛼
𝑠𝑦
=

0.
03

) 

 

Figure 13. Isolation-layer energy dissipation in the ES model 𝑊̇𝑏
 𝑠 , CS model 𝑊̇𝑏

𝑐𝑠 , and MDOF 

model 𝑊̇𝑏. 

0

1

2

0 1 2

百

CS model

ES model

𝑊̇𝑏   10
      / 

𝑊̇𝑏
 𝑠  𝑊̇𝑏

𝑐𝑠   10      / 

Error = 0

0

10

20

0 10 20

百

百

CS model

ES model

𝑊̇𝑏
 𝑠  𝑊̇𝑏

𝑐𝑠    10      / 

𝑊̇𝑏  10
      / 

Error = 0

0

1

2

0 1 2

百

百

CS model

ES model

𝑊̇𝑏  10
      / 

𝑊̇𝑏
 𝑠  𝑊̇𝑏

𝑐𝑠   10      / 

Error = 0

0

10

20

0 10 20

百

百

CS model

ES model

𝑊̇𝑏
 𝑠  𝑊̇𝑏

𝑐𝑠    10      / 

𝑊̇𝑏  10
      / 

Error = 0

0

1

2

0 1 2

百

CS model

ES model

𝑊̇𝑏  10
      / 

𝑊̇𝑏
 𝑠  𝑊̇𝑏

𝑐𝑠   10      / 

Error = 0

0

10

20

0 10 20

百

百

CS model

ES model

𝑊̇𝑏
 𝑠  𝑊̇𝑏

𝑐𝑠    10      / 

𝑊̇𝑏  10
      / 

Error = 0

0

1

2

0 1 2

百

百

CS model

ES model

𝑊̇𝑏  10
      / 

𝑊̇𝑏
 𝑠  𝑊̇𝑏

𝑐𝑠   10      / 

Error = 0

0

10

20

0 10 20

百

百

CS model

ES model

𝑊̇𝑏
 𝑠  𝑊̇𝑏

𝑐𝑠    10      / 

𝑊̇𝑏  10
      / 

Error = 0

Figure 13. Isolation-layer energy dissipation in the ES model
.

W
es
b , CS model

.
W

cs
b , and MDOF

model
.

Wb.



Buildings 2024, 14, 329 17 of 23

Buildings 2024, 14, x FOR PEER REVIEW 19 of 25 
 

(1) Partial parametric calculation of the ES model (𝑄𝑦
 𝑠, 𝜉 𝑠, and 𝐹 𝑠) is based on the as-

sumption of only one mode shape ({𝜑 } or {𝜑 }), as mentioned in Appendices B–D, 

but the isolation layer in fact shows elasto-plastic deformation under strong winds. 

(2) The influence of higher-order modes may lead to these errors. 

As a supplementary, Figure 14 shows an example of the time history of the accumu-

lated isolation-layer energy dissipation in the ES model 𝑊𝑏
 𝑠, CS model 𝑊𝑏

𝑐𝑠, and MDOF 

model 𝑊𝑏  in the across-wind direction (𝜉𝑢 = 2% , 𝑇𝑢 = 2.5 s , 𝑇𝑓 = 5.0 s , 𝛼𝑠𝑦 = 0.03 , 

𝛿𝑠𝑦 = 2.5 cm, and Force 03). 𝑊𝑏
 𝑠 of the ES model is close to 𝑊𝑏 of the MDOF model dur-

ing 600 s. This demonstrates the validity of the ES model. 

 

Figure 14. Time history of accumulated isolation-layer energy dissipation in the ES model 𝑊𝑏
 𝑠, CS 

model 𝑊𝑏
𝑐𝑠, and MDOF model 𝑊𝑏  in the across-wind direction (𝜉𝑢 = 2%, 𝑇𝑢 = 2.5 s, 𝑇𝑓 = 5.0 s, 

𝛼𝑠𝑦 = 0.03, 𝛿𝑠𝑦 = 2.5 cm, and Force 03). 

5. Conclusions 

This paper analyzed a theoretical shear-type multi-degree-of-freedom (MDOF) 

model idealized from a base-isolated tall buildings subjected to strong winds. The base 

isolation layer composed of rubber bearings and steel dampers was modeled as an elasto-

plastic SDOF model, while the upper structure was modeled as an elastic 10-DOF model. 

Time history analyses revealed the influences of the five structural parameters ((i) damp-

ing ratio and (ii) natural period of the upper structure, (iii) isolated period, (iv) yield shear 

force coefficient, and (v) yield deformation of the steel damper) on the isolation-layer en-

ergy dissipation in the MDOF model. These findings contribute to the proposal of equiv-

alent single-degree-of-freedom (ES) models to estimate the isolation-layer energy dissipa-

tion in base-isolated buildings under strong winds. The following conclusions are drawn 

from this study: 

(1) In the along-wind direction, the isolation-layer energy dissipation in the MDOF 

model is very small and negligibly influenced by the above five structural parameters 

because the wind forces contain mean components. 

(2) In the across-wind direction, three structural parameters (damping ratio and natural 

period of the upper structure and yield shear force coefficient of the steel damper) 

have significant impacts on the isolation-layer energy dissipation in the MDOF 

model, while the other two structural parameters (isolated period and yield defor-

mation of the steel damper) have slight impacts. 

(3) Considering the above findings, these five structural parameters were used in devis-

ing the ES model. Hence, their influences on the ES model are captured. This greatly 

contradicts the common single-degree-of-freedom (CS) model, which is not influ-

enced by the damping ratio and natural period of the upper structure. 

(4) Moreover, by considering the variation in the first mode shape of the MDOF model 

according to the elasto-plasticity of the base isolation layer, an appropriate first mode 

shape was selected for modeling the ES model. As a result, the ES model reproduces 

0

100,000

200,000

300,000

400,000

500,000

0 100 200 300 400 500 600 700

ES model
CS model
MDOF model

 [sec]

𝑊𝑏
 𝑠 𝑊𝑏

𝑐𝑠  𝑊𝑏        

Figure 14. Time history of accumulated isolation-layer energy dissipation in the ES model Wes
b , CS

model Wcs
b , and MDOF model Wb in the across-wind direction (ξu = 2%, Tu = 2.5 s, Tf = 5.0 s,

αsy = 0.03, δsy = 2.5 cm, and Force 03).

5. Conclusions

This paper analyzed a theoretical shear-type multi-degree-of-freedom (MDOF) model
idealized from a base-isolated tall buildings subjected to strong winds. The base isolation
layer composed of rubber bearings and steel dampers was modeled as an elasto-plastic
SDOF model, while the upper structure was modeled as an elastic 10-DOF model. Time
history analyses revealed the influences of the five structural parameters ((i) damping ratio
and (ii) natural period of the upper structure, (iii) isolated period, (iv) yield shear force
coefficient, and (v) yield deformation of the steel damper) on the isolation-layer energy
dissipation in the MDOF model. These findings contribute to the proposal of equivalent
single-degree-of-freedom (ES) models to estimate the isolation-layer energy dissipation in
base-isolated buildings under strong winds. The following conclusions are drawn from
this study:

(1) In the along-wind direction, the isolation-layer energy dissipation in the MDOF
model is very small and negligibly influenced by the above five structural parameters
because the wind forces contain mean components.

(2) In the across-wind direction, three structural parameters (damping ratio and natural
period of the upper structure and yield shear force coefficient of the steel damper)
have significant impacts on the isolation-layer energy dissipation in the MDOF model,
while the other two structural parameters (isolated period and yield deformation of
the steel damper) have slight impacts.

(3) Considering the above findings, these five structural parameters were used in devising
the ES model. Hence, their influences on the ES model are captured. This greatly
contradicts the common single-degree-of-freedom (CS) model, which is not influenced
by the damping ratio and natural period of the upper structure.

(4) Moreover, by considering the variation in the first mode shape of the MDOF model
according to the elasto-plasticity of the base isolation layer, an appropriate first mode
shape was selected for modeling the ES model. As a result, the ES model reproduces
accurately the isolation-layer energy dissipation of the first mode of a base-isolated
tall building against strong winds.

(5) A comparison of the isolation-layer energy dissipation in the ES and CS models versus
that in the MDOF model shows the ES model outperforms the CS model.

Based on the above conclusions, structural engineers can benefit from the proposed ES
model. Using the ES model, they can accurately and efficiently estimate the isolation-layer
energy dissipation in base-isolated tall buildings under strong winds.

Like any other method, the ES model has its limitations as its modeling is based
on the assumption of the first mode. Hence, for very tall buildings where the influence
of higher-order modes is dominant, it may have significant inaccuracies. Moreover, its
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modeling method is limited to base-isolated tall buildings equipped with rubber bearings
(isolators) and steel dampers.

Also, directly comparing the hysteresis loops of the ES and MDOF models is impossible
as the two models have different shear force–deformation relationship.

Despite the above limitations and advantages, the ES model can be used to estimate
the energy dissipation in base-isolated tall buildings subjected to ground motions [34]. It
can also be applied to different building configurations such as inter-story isolated tall
buildings [35,36] subjected to strong winds or ground motion for time-saving analyses. Fu-
ture work can address all the above limitations, e.g., extending the ES model to incorporate
other types of isolators (e.g., [37]) and considering other wind effects (e.g., [38]).
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Appendix A. Modeling Method for CS Models

Figure A1a,b show the common single-degree-of-freedom (CS) model and its shear
force–deformation relationship (Qcs-δcs relationship). The mass mcs, initial stiffness kcs

e ,
post-yield stiffness kcs

p , yield shear force Qcs
y , yield displacement δcs

y , damping ratio ξcs, and
wind force Fcs can be written, respectively, as follows:

mcs = mb +
10

∑
i=1

mui (A1)

kcs
e = kbe (A2)

kcs
p = kbp (A3)

Qcs
y = Qby (A4)

δcs
y = δby (A5)

ξcs = ξb (A6)

Fcs =
10

∑
i=1

Fui (A7)

According to the above equations, the influences of the structural parameters on the
CS model are summarized in Table A1. The three structural parameters (Tf , αsy, and δsy)
have impacts on the CS model and therefore may influence the isolation-layer energy
dissipation in the CS model. However, the other two structural parameters (ξu and Tu)
have no impact on the CS model, in contrast to the ES model (Table 1 in Section 3.4).
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Figure A1. Equivalent stiffness of the base isolation layer kbeq (an example of µb = 10).

After performing time history analyses for the CS models, the isolation-layer energy

dissipation in the CS model (per second [23])
.

W
cs
b is expressed as:

.
W

cs
b =

1
t1 − t0

∫ t1

t0

Qcs·
.
δ

cs
dt (A8)

where Qcs is the shear force of the CS model and
.
δ

cs
is the derivative of δcs with respect to

time. Here, δcs is the deformation of the CS model. t0 = 50 s and t1 = 650 s (the same as
Equation (12)).

Appendix B. On Selecting {φe} for the Yield Shear Force of the ES Model Qes
y

An elastic MDOF model is obtained by letting kbp = kbe of the elasto-plastic MDOF
model (ξu = 2%, Tu = 2.5 s, Tf = 5.0 s, and δsy = 2.5 cm) given in Section 2. Based on
the elastic MDOF model, an equivalent elastic SDOF model is then obtained using the
modeling method introduced in Section 3. Note that the damping ratio of the equivalent
elastic SDOF model is obtained using the Biggs method [33] based on

{
φp
}

, as will be
discussed in Appendix C.

Examples of the deformation time history of the base isolation layer of the elas-
tic MDOF model and the equivalent elastic SDOF model considering different values
of αsy (Force 02 in the across-wind direction and t = 0 ∼ 200 s) are shown in Figure A2a–e.
Note that the displacement of the elastic SDOF model needs to be multiplied by the mode
shape of the base isolation layer in the first mode shape of the elastic MDOF model. Here,
the result of the equivalent elastic SDOF model is very similar to that of the elastic MDOF
model at t = 0 ∼ 200 s, suggesting that the elastic first mode shape {φe} is selected for the
yield shear force of the ES model.

Minor discrepancies between the two results are due to (i) the minor influences of
higher-order modes and (ii) the fact that only the upper structure of the elastic MDOF model
follows a stiffness-proportional damping distribution, not including the base isolation layer.

Table A1. Influences of structural parameters on the CS model.

mcs kcs
e kcs

p Qcs
y δcs

y ξcs Fcs

ξu × × × × × × ×
Tu × × × × × × ×
Tf × # # # × × ×
αsy × # × # × × ×
δsy × # × # # × ×

# denotes having influence and × denotes having no influence.
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Figure A2. Deformation time history of base isolation layer of the elastic MDOF model and the
equivalent elastic SDOF model (Force 02 in the across-wind direction and t = 0∼200 s).

Appendix C. On Selecting
{

φp
}

for the Damping Ratio of the ES Model ξes

In selecting either {φe} or
{

φp
}

to be adopted for the damping ratio of the ES model ξes,
the following are calculated and contrasted:

(i) The equivalent damping ratio of the MDOF model ξeq (obtained using the Biggs
method [33]) with the equivalent stiffness of the base isolation layer kbeq. Here, kbeq is
calculated based on the different ductility factors of the base isolation layer µb (=ratio
between the maximum and yield displacements of the base isolation layer), as shown
in Figure A3.
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(ii) The damping ratio of the ES model ξes
e (obtained using the Biggs method [33]) consid-

ering {φe}.
(iii) The damping ratio of the ES model ξes

p (obtained using the Biggs method [33]) consid-
ering

{
φp
}

.

Figure A4 compares ξeq, ξes
e , and ξes

p (ξu = 2%, Tu = 2.5 s, Tf = 5.0 s, αsy = 0.025,
and δsy = 2.5 cm). ξeq decreases as µb increases from 0 to 14, with ξes

e and ξes
p at the upper

and lower bounds of ξeq, respectively. Desiring a conservative value for the damping
ratio, ξes

p is preferred over ξes
e . Hence, the plastic first mode shape

{
φp
}

is selected for the
damping ratio of the ES model.
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Figure A4. Comparison of ξeq, ξes
e , and ξes

p (ξu = 2%, Tu = 2.5 s, Tf = 5.0 s, αsy = 0.025, and
δsy = 2.5 cm).

Appendix D. On Selecting {φe} for the Wind Force of the ES Model Fes

In selecting either {φe} or
{

φp
}

to be adopted for the wind force of the ES model Fes,
the following are calculated and contrasted:

(i) Standard deviation of the equivalent wind force of the MDOF model σeq (refer to
Equation (30)) with kbeq (the same as Appendix C). Here, eq denotes equivalent.

(ii) Standard deviation of equivalent wind force of the ES model σes
e considering {φe}.

(iii) Standard deviation of equivalent wind force of the ES model σes
p considering

{
φp
}

.

Figure A5 compares σeq, σes
e , and σes

p (ξu = 2%, Tu = 2.5 s, Tf = 5.0 s, αsy = 0.025,
δsy = 2.5 cm, and Force 02 in the across-wind direction). At a glance, there is no obvious
difference between σeq (for µb = 0 ∼ 14), σes

e , and σes
p , suggesting that both {φe} and

{
φp
}

can
be considered for calculating the wind force of the ES model. However, a closer look reveals
that σes

e is a little bit higher or more conservative than σes
p . Hence, {φe} is selected for the wind

force of the ES model.
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